
A Method Based on Naming Similarity to
Identify Reuse Opportunities

Johnatan Oliveira, Eduardo Fernandes, Maurício Souza, Eduardo Figueiredo
Software Engineering Laboratory (LabSoft), Department of Computer Science

Federal University of Minas Gerais (UFMG)
Belo Horizonte, Brazil

{johnatan-si, eduardofernandes, mrasouza, figueiredo}@dcc.ufmg.br

ABSTRACT
Software reuse is a development strategy in which existing
software components, called reusable assets, are used in the
development of new software systems. There are many ad-
vantages of reuse in software development, such as mini-
mization of development efforts and improvement of soft-
ware quality. New methods for reusable asset extraction
are essential to achieve these advantages. Extraction meth-
ods may be used in different contexts including software
product lines derivation. However, few methods have been
proposed in literature for reusable asset extraction and rec-
ommendation of these reuse opportunities. In this paper,
we propose a method for extraction of reuse opportunities
based on naming similarity of two types of object-oriented
entities: classes and methods. Our method, called JReuse,
computes a similarity function to identify similarly named
classes and methods from a set of software systems from
a domain. These classes and methods compose a reposi-
tory with reuse opportunities. We also present a prototype
tool to support the extraction by applying our method. We
evaluate the method with 38 e-commerce information sys-
tems mined from GitHub. As a result, we observe that our
method is able to identify classes and methods that are rel-
evant in the e-commerce domain.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—

Domain engineering, reusable libraries; D.2.2 [Software En-
gineering]: Design Tools and Techniques—Computer-aided
software engineering (CASE)

General Terms
Design, documentation, management.

Keywords
Software reuse, reusable assets, naming similarity, tool.
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1. INTRODUCTION
Software reuse is a development strategy in which existing

software components, called reusable assets, are used in the
development of new software systems [6]. It has been stud-
ied and pointed as an alternative to traditional development
aiming to increase software quality and decrease develop-
ment efforts by using previously developed, and sometimes
already tested, software components [11, 12, 14, 17].

The extraction of reusable assets is essential to support
software reuse activity by building repositories of reuse op-
portunities [4]. These methods may be used in different
contexts related to software reuse, including the support of
feature extraction for a software product line (SPL) [8], for
instance. Many methods have been proposed in the litera-
ture to support the extraction of reuse opportunities from
software systems [1, 5, 7, 10, 22].

There are different approaches used by proposed meth-
ods to identify reuse opportunities, such as natural-language
processing [10], formal specifications [1], machine learning [5],
and other Information Retrieval (IR) approaches [7, 22].
However, to the best of our knowledge, we did not find a
method for extraction of reuse opportunities and reuse rec-
ommendation considering most frequent elements such as
classes and methods from systems of a single domain.

In this paper, we propose a method for extraction of reuse
opportunities called JReuse. Considering a set of software
systems, JReuse aims to identify methods named with the
same token in similarly named classes from different sys-
tems. Then, we are able to identify methods, and classes
eventually, that may be recommended as reuse opportuni-
ties. We also present a prototype tool that applies the pro-
posed method.

We conduct an evaluation of our method through an ex-
periment with 38 Java information systems in the e-commerce
domain mined from GitHub. As a result, we observe that our
method is able to identify reuse opportunities using naming
similarity analysis. We also observe that JReuse provides
meaningful classes and methods in the analyzed domain they
may be indicated as reuse opportunities to developers of new
e-commerce systems.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a background to support the comprehension
of our work. Section 3 proposes a method for reuse oppor-
tunities extraction and the prototype tool to support this
method. Section 4 presents an evaluation of our method.
Section 5 describes the results obtained through the prelim-
inary evaluation and discusses some lessons learned. Sec-
tion 6 presents threats to the validity of our study. Sec-
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tion 7 discusses related work. Finally, Section 8 concludes
this paper with a discussion and presents of future work.

2. BACKGROUND
In software reuse, previously implemented software com-

ponents are used to support the development of new software
systems [6]. The main goal of reuse is the improvement of
software quality aspects followed by an increasing develop-
ment efficiency [17]. There are many approaches to support
reuse in software development. Krueger [6] presents an ex-
tensive study regarding definitions, approaches and applica-
tion of software reuse.

There are two types of software reuse: ad hoc and sys-
tematic reuse [11]. In an ad hoc approach, software reuse
is applied in an opportunistic way, without planning, taking
as an example the reuse of random software code snippets
from Web [18]. In turn, systematic software reuse follows
specific protocols and processes to provide the use of exist-
ing software components when developing new systems [11].

Wang et al. [20] conduct an study regarding the identifi-
cation of business domain components to support software
reuse. According to their work, there are two types of com-
ponent identification: forward identification, in which soft-
ware reuse is planned before the development of software
systems; and reverse identification, in which reuse opportu-
nities are identified from a set of existing software systems.

Some studies investigated advantages and drawbacks of
systematic software reuse [11, 12]. Mohagheghi et al. [12]
studied the impacts of reuse on software quality through an
empirical study on large-scale system components. They
concluded that reuse provides software components with
lower defect-density and higher stability when compared with
non-reused components. Mohagheghi and Conradi [11] con-
ducted a literature review to investigate the impact of soft-
ware reuse in industrial development context. They identi-
fied flaw decreasing, reduction of development efforts, and
increasing of productivity as the main advantages of reuse.

Systematic software reuse is supported by reusable as-
sets, also known as reuse libraries, that are collections of
components to be used in the development of new software
systems [4]. Components of a reuse repository are called
reusable assets, and their extraction from existing software
systems may be supported by automated tools [3].

Many strategies are proposed in literature, based on tech-
niques such as: natural-language processing, in which lexi-
cal inspection of source code elements is conducted to iden-
tify reuse opportunities [10]; formal specifications, in which
reusable components are extracted with support of software
models and metrics analysis, for instance [1]; architectural
style [13], where software reuse is supported by the analysis
of interacting components in a high-level abstraction such
as software design and modeling; and machine learning, in
which different analyzes are conducted to extract reuse op-
portunities, such as automated semantic categorization of
software components [5].

3. THE PROPOSED APPROACH
In this section, we present our proposed approach for ex-

traction of reuse opportunities, composed of an extraction
method and a prototype tool. Section 3.1 describes the
adopted strategy to compute naming similarity. Section 3.2
describes each step of the proposed method for reuse oppor-

tunities extraction. Section 3.3 presents its supporting tool
and how it applies our method to provide reuse opportuni-
ties.

3.1 Identifying Similarity
Some studies in the literature investigate the textual sim-

ilarity identification [19, 24]. There are may application
for similarity analysis, such as comparison of dialects, spell
check, and plagiarism detection [9]. JReuse relies on static
code analysis techniques to extract reuse opportunities. An
adaptation of the normalized Levenshtein’s algorithm by Yu-
jian et al. [23] is used to compute the lexical similarity of
classes and methods by name. In short terms, given two
strings A and B, this similarity function computes the num-
ber of changes required to match A and B.

To extract similarly named classes, we adopted a thresh-
old of 80%. This threshold was derived empirically by the
authors. We considered some well-known naming conven-
tions for classes to define this threshold. For instance, the
similarity computed for Costumer and CostumerDAO, that are
common classes in e-commerce systems, is 72%. However,
intuitively both classes implements different functions (e.g.,
DAO classes implement data base persistence).

In turn, to extract similarly named methods, we adopted
a threshold of 100%. This threshold was chosen because we
observed that some well-known naming conventions for some
methods may lead to similarly named entities that clearly
represents opposite functions. For instance, in general get-
ters and setters (e.g., getProduct and setProduct) are
named with similarity between 80% and 100% according to
our similarity function. However, we know these methods
implement different functions. Therefore, in this case, we
should not extract these methods as the same reuse oppor-
tunity.

An example of the similarity analysis is shown in Table 1.
In this example we present five matches between two soft-
ware systems, i.e., five classes names from System A that
have at leas t 80% similarity rate with class names from
System B. The similarity rate alone is not enough for elect-
ing a class as a possible reuse opportunities, we also consider
which classes are more frequent among the systems (e.g., a
name of class with matches in 10 different systems is more
frequent than a name of class that matches in only 2 sys-
tems).

Table 1: Similarity evaluation
System A System B Similarity Rate

ProductController ProductsController 94%
OrderProductId OrderProduct 87,5%

Reviews Review 85%
ShoppingCartdto ShoppingCart 80%

3.2 The Extraction Method
A software domain is a set of systems that share a set of

common functionalities, requirements or terminology [15].
Thus, we can expect that software systems from the same
domain present lexical similarity in names of classes, meth-
ods and attributes, as they are chosen in order to be expres-
sive about their goals and the specific features of a business
domain [2].

Considering this scenario, our study proposes a method
called JReuse for extraction of reuse opportunities from soft-

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

306



ware systems based on naming lexical similarity of two object-
oriented code elements: classes and methods. Considering
software systems from a specific domain, this method com-
pares names of classes and methods in order to identify com-
mon elements among different systems.

Given a data set of software systems from the same do-
main, JReuse performs the following two steps:

Step 1: Comparison between Classes – In the first
step, JReuse compares names of each pair-wise classes from
the data set of systems. For this purpose, a similarity func-
tion is computed to identify classes named similarly. Step
1 aims to retrieve classes that are possible relevant entities
in the context of the analyzed business domain. Therefore,
each identified class may be considered a reuse opportunity
in this domain.

Step 2: Comparison between Methods – Considering
only classes pointed as reuse opportunities in the previous
step, JReuse compares pairs of methods by name to identify
recurrent methods in the analyzed domain. Step 2 applies
the same similarity function used in Step 1, to every pair of
methods from two different classes.

We believe that recurring names of classes may point rel-
evant entities in a given domain. Furthermore, frequent
names of methods in these classes may indicate common
behaviors and requirements in such entities, as stated by
Cybulski and Reed [2].

3.3 Tool Support
To allow a preliminary evaluation of our method, we devel-

oped a prototype tool that implements the proposed method
for Java software systems. We selected Java because this is
one of the most popular programming languages1. First,
our tool receives a set of software systems from the same
domain. Then, the tool processes classes and methods from
the input set to identify similarly named entities according
to the proposed method. Finally, the tool provides a list of
classes and methods identified as reuse opportunities.

Four steps are performed by our tool to extract reuse op-
portunities as follows:

1. The tool retrieves the name of all classes and meth-
ods from system data set. To support the identifica-
tion of similarly named entities (classes and methods),
we used the Eclipse Java Development Tools (JDT)
parser. This tool is used to retrieve the entities of
source code for analysis.

2. The tool compares names of classes in pairs to identify
class names with at least 80% of similarity. Classes
with similar name (matches) are gathered and each
class name receives a score that is the number of sys-
tems in which the class occurs. The higher a score, the
higher a class seems to be relevant for the analyzed do-
main.

3. For each group of classes identified in the previous step,
our tool compares method names with 100% similarity
rate.

1http://spectrum.ieee.org/static/interactive-the-top-
programming-languages-2015

4. Finally, the tool persists in data base the identified
entities (classes and methods) extracted as reuse op-
portunities.

The architectural design of our tool is presented in Fig-
ure 1. In Step 1, the tool receives Java software systems to
analysis. Then, in a processing step, we have two modules:
Step 2 for analysis of similarly named classes, and Step 3
to identify similarly named methods. Finally, the Step 4
is composed by a database were the results of analysis are
stored.

Figure 1: Architecture of the Tool Support

4. EVALUATION SETUP
This section describes our evaluation of the method for ex-

traction of reuse opportunities through an experiment. Sec-
tion 4.1 presents the goals of our study and the research
questions we designed to guide our experiment. Section 4.2
describes the data set used to run our prototype tool. Sec-
tion 4.3 presents the experiment steps.

4.1 Goals and Research Questions
The main goal of this study is to evaluate our method

developed to extract reusable assets from systems of a single
domain. We are interested in whether JReuse is able to
identify recurrent classes and methods in an specific software
domain. We are also interested in assessing the relevance
of the results provided by our method. For this purpose,
we chose the e-commerce domain for evaluation. We also
conceived the following research questions (RQs) to guide
our study.

RQ1 What are the most frequent classes in e-commerce in-
formation systems? And how are they distributed through
systems?

RQ2 What are the most frequent methods considering the
similarly named classes identified by the method? And
how are they distributed through these classes?

Through RQ1 we are interest on investigating: the ef-
ficiency of the prototype tool to identify classes that are
similarly name in different systems; and verify if the most
frequent identified classes are relevant for information sys-
tems from the e-commerce domain. In turn, with RQ2 we
aim to assess the same aspects of our tool in case of sim-
ilarly named methods from the classes pointed as similar.
We expect that JReuse is able to provide a list of classes
and methods whose recommendations for reuse makes sense
considering the evaluated domain.

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

307



4.2 Data Set
To evaluate our method, we chose only systems from the e-

commerce domain for several reasons: First, these systems,
in general, are intuitive information systems and easy to
evaluate; Second, there is a large amount of e-commerce
systems available for download in GitHub2. Third, since e-
commerce is a well-defined domain, the authors of this paper
believed that it would be easy to find reuse opportunities
among systems from this domain.

The systems that compose our data set were retrieved
from GitHub repositories in January 2015. We searched for
information systems sorted by stars. In GitHub, stars are
a meaningful measure for repository popularity among the
platform users, and may be used to support the selection
of well-evaluated by developers. To retrieve information
systems, we used the following keywords related to the e-
commerce domain: e-commerce, ecommerce, electronic com-
merce, e-business, business, and electronic commerce.

The strategy for defining our data set is illustrated in Fig-
ure 2. First, we collected 100 Java information systems from
GitHub. Then, we used the following exclusion criteria to fil-
ter these systems: non-Java software systems, once GitHub
does not verify the main programmings language of a sys-
tems automatically, and systems with less than 500 lines
of code (LOC) (56 were discarded, remaining 44); systems
written in other languages than English were removed, since
our method is based on lexical similarity, and language may
impact our analysis (6 systems were discarded). Finally,
we removed all files with extensions others than .java from
the 38 resulting e-commerce systems (for evaluation conve-
nience).

Figure 2: Steps for Collecting Systems from GitHub

For each e-commerce system collected, we considered only
the last release of the system. This process was necessary to
discard different versions of the same system, that probably
contain lots of similarly named classes and methods.

4.3 Experiment Execution
To evaluate the JReuse prototype tool for extraction of

reusable assets through the research questions presented in
Section 4.1, we designed an experiment composed by the
three steps presented in Figure 3. Each step is discussed as
follows.

Step 1: Data Set Extraction from GitHub – We cloned
information systems from various domains from GitHub, in
order to identify a domain that fits to our experiment, i.e.,
that potentially provides a considerable number of similarly
named classes and methods. This ad hoc investigation lead
us to adopt e-commerce in this exploratory study. Then, we
searched for e-commerce information systems in GitHub and

2https://github.com/

Figure 3: Experiment steps

extracted these systems as discussed in Section 4.2. Finally,
we obtained 38 different systems.

Step 2: Manual Data Set Inspection – We performed
a preliminary evaluation of the data set in order to manu-
ally identify similarity among the systems. We conducted a
manual inspection of similar classes and methods in a sam-
ple from the 38 e-commerce systems collected in Step 1. We
selected 10 of the 38 systems with lower number of Source
Lines of Code (SLOC) to ease the manual process. After
this inspection, we were able to find similarly named classes
and methods in at least 80% of the sample, thus JReuse
should find relevant results.

Step 3: Method Execution through Support Tool –
We ran JReuse prototype tool using the 38 e-commerce sys-
tems to extract methods and classes similarly name among
systems. After the automated analysis, the tool provided a
list of methods and classes to compose our reuse repository.

5. RESULTS AND DISCUSSION
In this section, we present the results of the experiment

with the JReuse extraction tool and lessons learned through
our study. Section 5.1 discusses each proposed research ques-
tions. Section 5.2 provides an overview and a some discus-
sion regarding the main lessons learned.

5.1 Research Questions and Answers

RQ1 What are the most frequent classes in e-commerce in-
formation systems? And how are they distributed through
systems?

We analyzed the frequency of similarly named classes in
the 38 e-commerce software from our data set. In Table 2,
we present the most frequent classes identified by JReuse
supporting tool. The classes are sorted by decreasing num-
ber of occurrences in systems per class (Count).

Initially, JReuse identified 38 classes as reuse opportuni-
ties. To summarize data in Table 2, we adopted the following
exclusion criteria for classes to be listed: the class should
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occur in at least 3 different systems, because our method
compares classes in pairs and, then, two occurrences may
not be significant to a reuse recommendation. We discarded
22 classes based on this minimum threshold, the 16 remain-
ing are presented in Table 2. Consequently, the number of
systems to compose the table was reduced to 23.

Table 2: Frequency of classes per projects
Systems
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S1 • • • • •
S2 • • • • •
S3 • • • • • •
S4 • • • •
S5 • • • • •
S6 •
S7 • •
S8 • • • •
S9 • •
S10 • • • • • • • •
S11 •
S12 • • •
S13 • •
S14 • • •
S15 • • • •
S16 • •
S17 • • • •
S18 • • •
S19 • • • • • • •
S20 • • • • • • •
S21 • • • • • • • • •
S22 • •
S23 •

COUNT 12 11 10 9 9 5 5 4 4 3 3 3 3 3 3 3
% 31,6 28,9 26,3 23,7 23,7 13,2 13,2 10,5 10,5 7,9 7,9 7,9 7,9 7,9 7,9 7,9

Analyzing Table 2, we can identify the most frequent
classes for the purpose of reuse opportunities. In response
to RQ1, we conclude that the top-five most frequent classes
for e-commerce domain, with more than 5 occurrences, are:
User, Product, Order, Category, and Customer. In fact,
according to the viewpoint of authors – Four Software En-
gineering specialists – these classes are meaningful and rel-
evant to the e-commerce domain.

For instance, classes Product, Order, Category, and Cus-

tomer are elementary entities to be expected in an e-commerce
systems. In turn, User is the most frequent class identified
by the tool and, although it is not specific of e-commerce
domain, it is expected in information systems in general.

Therefore, we conclude that our method is able to iden-
tify relevant classes for software reuse in 60% of the eval-
uated e-commerce systems (23 of the 38 systems collected
from GitHub). The other less frequent classes (e.g. Item,
Payment, and Cart) are also interesting in the e-commerce
domain.

Figure 4 shows the number of systems per minimum num-
ber of frequent classes identified using our method, consid-
ering the 38 e-commerce systems that compose our data set.
We observe that: our method extracted at least 1 class as
reuse opportunity for 23 of the 38 systems (around 60%);
the method also extracted at least 4 classes for 12 of the 38
systems (approximately 31%, or one third of the data set);
finally, our method provided at least 5 classes as reuse op-
portunity for 8 of the 38 (21%, or one fifth of the systems).
Considering that classes extracted by our method are, in
general, representative and meaningful in the e-commerce
domain, we may conclude that the method may support
reuse by providing a significant amount of reuse opportuni-
ties.

RQ2 What are the most frequent methods considering the
similarly named classes identified by the method? And
how are they distributed through these classes?

Figure 4: Distribution of frequent classes through
systems

Considering the results regarding RQ1, we are able to an-
swer RQ2 with respect to the extraction of similarly named
methods from classes identified as similar by JReuse. Ta-
ble 3 presents the most frequent methods identified only in
the classes listed in Table 2. To summarize data, we filtered
methods by the following inclusion criterium: it should ap-
pear in at least 2 classes from different systems. From 56
similarly named methods extracted, we discarded 34 accord-
ing to this criteria, remaining 22 methods.

Given a Class name C from the results of RQ1, and M
a method name from C, in Table 3 we present the pairs
(C,M) that were found in at least two systems in our data
set. The number in each cell from Table 3 is the number
of occurrencies of a given pair (C,M) among the analyzed
systems.

Table 3: Frequency of methods per class
Classes
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MAX

getId 8 5 7 6 2 3 2 8
setId 8 5 6 6 1 3 2 8
getName 5 3 5 3 5
setName 5 3 5 2 5
getPassword 5 8 8
getPrice 9 2 9
setPassword 5 7 7
setPrice 9 9
getEmail 5 4 5
setEmail 5 3 5
getDescription 7 7
setDescription 7 7
toString 4 2 4
getQuantity 3 3 3
getCity 2 4 4
setCity 2 4 4
equals 3 2 3
hashCode 3 3
getCategory 3 3
setCategory 3 3
getPhone 2 2
setPhone 2 2

COUNT 13 12 7 5 4 3 3 2 1
% 59 55 32 23 18 14 14 9,1 4,5
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For instance, the pairs (Product, getPrice) and (Prod-

uct, setPrice) are the most frequent among the systems
of our data set. Considering the domain under analysis ,
these results are meaningful, since the product abstraction
requires a monetary value for the product. Moreover, the
method getPassword occurs in 8 times in User and 5 times
in Costumer classes. This scenario is comprehensible con-
sidering that these classes intuitively represent entities that
have access to the e-commerce system for purchase and pay-
ment, for instance. Therefore, in the viewpoint of the au-
thors, the identified methods are relevant and consistent for
the domain under analysis.

An interesting finding is that 4 of the 5 most frequent
classes of our data set (Product, Customer, User, and Cate-

gory) also have the highest number of methods with similar
names. These classes presented 59%, 55%, 32%, and 23% of
the similar methods with respect to the 22 recurring meth-
ods considered. Thus, these classes and respective methods
may be relevant reuse opportunities for the domain under
analysis.

Another interesting observation is that the frequent method
names identified by our method are also recurrent among
different classes. Figure 5 represents the top-four most fre-
quent classes identified as similarly named through the 38
e-commerce systems, and the frequent methods identified in
these classes except toString, equals, and hashCode. These
three methods were discarded for summarize the Figure 5
because they are excessively common in Java implementa-
tions. In the left partition we have classes in bold, and in
the right partition we have methods. Note that getters and
setters were gathered for summarizing the figure because
they implement related functionalities. We can observe that
the getters and setters for Id, Name, Password and Email
are present in different classes. Thus even in the context of
a single system, it may be possible to observe reuse oppor-
tunities.

Figure 5: Most frequent methods of the top-four
identified classes

5.2 Lessons Learned
In this study, we learned a lot regarding interesting re-

search topics such as software reuse, reusable assets extrac-
tion, and recommendation systems. We discuss some of the
main lessons learned with support of the following questions.

How much a lexical analysis may support the extraction of
reusable assets? As discussed in Section 1, there are many
approaches to support software reuse in literature. Lexical
analysis is a simple one. However, as pointed by the results
of Section 5.1, it may be effective to identify reusable as-
sets in systems from a single domain. Moreover, we initially
conceived our method to gather elements with names that
are semantically similar. However, through our study we
identified some occurrences of similar entities in an intuitive
fashion that do not represent the same real-world concept.
For instance, in Step 2 of our experiment (see Section 4.3)
we found that frequent classes such as Client and Costumer

have distinct behaviors although intuitively they represent
the same real-world abstraction. Some classes named as
Client implement a simplistic system clients which register
data basically. In turn, Costumer classes generally imple-
ment system clients with more robust features such as data
management. Therefore, we conclude that lexical analysis
performs satisfactorily to extract reusable assets at least in
this domain.

Names of classes and methods are suitable to the entities
they represent in a business domain? We discuss in Sec-
tion 3 that names of classes and methods may be useful for
reusable asset extraction. In fact, we observed that naming
similarity identification may support reuse opportunities ex-
traction. However, to retrieve similarly named classes and
methods may be uninteresting if they are not representa-
tive in an specific domain. Section 5.1 highlights extracted
classes and methods that fit to e-commerce domain. These
entities are the most frequent that our tool detected. There-
fore, we believe that names of entities are, in general, suffi-
ciently representative. Moreover, we observed through this
study that our method is able to extract relevant reuse op-
portunities in randomly mined systems from GitHub, pro-
vided by different development teams. Therefore, we expect
to obtain even more relevant results in the context of an
specific organization.

How to apply our reusable assets extraction tool in a reuse
recommendation system? Methods and classes are elemen-
tary entities of object-oriented software systems, and also
attributes. Knowing these entities, we are able to describe
the architecture of a system. Therefore, with results pro-
vided by our tool, we see an opportunity for reuse recom-
mendation through software modeling using class diagrams,
for instance. This conclusion lead us to a future work con-
sisting of the improvement of our tool to also identify sim-
ilarly named attributes and, then, to integrate our JReuse
tool into a recommendation system based on class diagram
modeling.

To the best of our knowledge, we have not found many
recent studies with respect to reusable assets extraction,
support tools for this activity, and methods to support the
building of reuse repositories with similar approach. There-
fore, as an interesting research topic, we lack more quantita-
tive data to measure and compare different techniques that
support software reuse.
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6. THREATS TO VALIDITY
We based our study on related work to support the method

definition, the reusable assets extraction tool development,
and the proposal of a recommendation system. Regarding
the evaluation of our extraction tool, we conducted a careful
empirical study to assess efficiency of the tool with respect
to reusable assets extraction that are representative in the
e-commerce context. However, some threats to validity may
affect our research findings. The main threats and respec-
tive treatments are discussed below based on the proposed
categories of Wohlin et al. [21].

Construct Validity. Before running our reusable assets
extraction method, we conducted a careful filtering of infor-
mation systems from GitHub repositories. However, some
threats may affect the correct filtering of systems, such as
human factors that wrongly lead to the discard of a valid
system to be evaluated. Considering that the exclusion cri-
teria to system selection were applied in a manual process,
we may have discarded interesting systems that we identi-
fied as non-Java, for instance.

Internal Validity. We conducted a lexical classification of
entities that may be affected by some threats. To treat this
possible problem, we selected a sample of 10 e-commerce
systems from our data set, with diversified number of code
lines. Then, we manually identified the names of entities
from source code to find synonyms. We compared our man-
ual results with the results provided by the tool and observed
a loss of 10% in synonym terms identified through the auto-
mated process.

Conclusion Validity. After running our extraction tool,
we gathered manually classes that seemed to represent the
same real-world object. For instance, classes named as Client
and Costumer were considered the same type of entity. The
same occurred with methods identified by the tool as reuse
candidates. However, this is a subjective process that may
be affected by human factors. In this first exploratory study,
we decided to not unify terms (eg., Customer and Client) in
the quantitative analysis.

External Validity. We evaluated our method with a set of
38 information systems, extracted from GitHub. Consider-
ing that they may not represent all existing e-commerce sys-
tems, our findings may be not be generalized. Furthermore,
we evaluated only one system domain, in case, e-commerce
information systems. However, the collected systems are
the most popular on GitHub that is a largely used platform.
Finally, we evaluated systems implemented only in Java pro-
gramming language, although it is one of the most popular
languages worldwide.

7. RELATED WORK
Many approaches have been proposed in literature to ex-

tract reusable assets. For instance, Kawaguchi et al. [5]
proposes an algorithm to categorize software projects au-
tomatically. This method aims to identify similar software
systems using duplicated code detection and machine learn-
ing techniques.

Information Retrieval (IR) may be used to identify soft-
ware components and extract reusable assets. For instance,

CodeBroker [22] is a tool to support runtime identification
of reusable software components using IR techniques. This
tool provides source code recommendation in production en-
vironment according to the software component under de-
velopment. CodeBroker is powered by search engines and
Javadoc artifacts.

Another related work is presented by Kuhn et al. [7]. This
study uses IR to explore linguistic data from source code
such as identifiers and comments. This method partitions
a software system in different semantic groups to identify
source code concerns through the system.

Oliveira et al. [16] proposed a tool for recommendation
of reusable assets. Their tool applies a technique that sup-
port software reuse and extraction of reusable assets called
Automatic Identification of Software Components (AISC).
The tool also provides an interactive graphic interface and
export feature using a metadata representation model.

In turn, our reusable asset extraction method and sup-
porting tool aim to identify candidates for reuse from soft-
ware systems from an specific domain, using lexical analy-
sis. Our method also ranks software components identified
as reusable assets by frequency in which their appear in dif-
ferent systems from the same domain. We expect that this
approach is helpful in reuse recommendation by suggesting
methods and classes that are the most used in information
systems given an specific domain.

8. CONCLUSION AND FUTURE WORK
In this paper, we propose a method to extract reusable

assets from information systems. We also present a proto-
type tool that implements the proposed method. Finally,
we present the preliminary idea of a recommendation tool
to suggest software reusable assets in a class diagram-based
vision. Through our study, we were able to identify the main
issues of the software reuse and opportunity extraction pro-
cess.

We evaluate our extraction tool through an experiment
with 38 information systems from e-commerce domain ex-
tracted form GitHub. Our findings point that the proposed
method was able to suggest methods and classes that appear
in different systems from the set of input systems. We also
observed that the most frequent methods and classes pointed
by the tool as candidates to software reuse are interesting
to most of the information systems from the e-commerce
domain.

As future work, we intend to: increase the JReuse reusable
assets extraction tool to compare also attributes from sim-
ilarly named classes. Then, we will be able to recommend
classes as reuse opportunities considering the three basic ele-
ments from object-oriented software systems: classes, meth-
ods, and attributes; to develop a recommendation tool that
uses JReuse for extraction of reusable assets. The main
purpose of this tool is to provide reusable assets for devel-
opers using a class diagram-based vision. As the developer
models its application using UML diagrams, the recommen-
dation searches for reuse opportunities in a reusable assets
repository. Then, the tool provides suggestions of archi-
tectural components for the systems under modeling. The
relationships between classes may be retrieved through an
attribute-based analysis, so the tool may support the devel-
opment of new software systems based on the architecture
of existing systems.

We also intend to evaluate the proposed recommendation
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tool in two steps: First, an empirical study with developers
to assess the tool’s accuracy in suggesting assets that are ap-
propriate to an specific software domain; Second, through
an empirical study with software systems from an specific
software development company, to assess the applicability
of our method in the extraction of reuse opportunities from
systems developed in the same organization.
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