
Intrusion Alert Correlation to Support Security
Management

Cláudio Toshio Kawakani
State University of Londrina

Computer Science
Department

Londrina, PR, Brazil
claudio.tk93@gmail.com

Sylvio Barbon Junior
State University of Londrina

Computer Science
Department

Londrina, PR, Brazil
barbon@uel.br

Rodrigo Sanches Miani
Federal University of

Uberlândia
School of Computer Science

(FACOM)
Uberlândia, MG, Brazil

miani@ufu.br
Michel Cukier

University of Maryland
A. James Clark School of

Engineering
College Park, MD, USA
mcukier@umd.edu

Bruno Bogaz Zarpelão
State University of Londrina

Computer Science
Department

Londrina, PR, Brazil
brunozarpelao@uel.br

ABSTRACT
To support information security, organizations deploy In-
trusion Detection Systems (IDS) that monitor information
systems and networks, generating alerts for every suspicious
behavior. However, the huge amount of alerts that an IDS
triggers and their low-level representation make the alerts
analysis a challenging task. In this paper, we propose a new
approach based on hierarchical clustering that supports in-
trusion alert analysis in two main steps. First, it correlates
historical alerts to identify the most typical strategies at-
tackers have used. Then, it associates upcoming alerts in
real time according to the strategies discovered in the first
step. The experiments were performed using a real data
set from the University of Maryland. The results show that
the proposed approach can provide useful information for
security administrators and may reduce the time between a
security event and the response.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
K.6.m [Management of Computing and Information
Systems]: Miscellaneous—Security

General Terms
Security, Management

Keywords
Intrusion Detection, Alert Correlation, Security Manage-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SBSI 2016, May 17th-20th, 2016, Florianópolis, Santa Catarina, Brazil
Copyright SBC 2016.

ment, Data Mining

1. INTRODUCTION
Information and Communication Technology (ICT) plays

a significant role in modern organizations, bringing many
benefits concerning facility and productivity. Information is
a valuable asset to every organization and its value dramat-
ically increased in recent years [10]. Therefore, a security
incident may cause loss of productivity, resources and rep-
utation [1]. Incident management performs a relevant task
for the information security of an organization, which defines
processes to detect, analyze and respond to an incident [9].

Network or system intrusions can cause security incidents.
Intrusion Detection Systems (IDS) are devices used to mon-
itor information systems and networks for these intrusions.
When the IDS detects a sign of security violation, it gener-
ates an alert and saves them into a log file. A better un-
derstanding of intrusions is possible by the analysis of alerts
that the IDS triggers. Thereby, a security administrator can
have a better situational awareness of the intrusions and ef-
ficiently respond to it. However, due to the huge amount
of alerts that the IDS generates, the manual analysis of the
IDS alerts becomes a time consuming and error prone task
[4].

The time between an incident and its response must be
reduced to limit the damage and lower the cost of recovery
[9]. Data mining techniques can be used to cut this time,
since it supports the analysis of a huge amount of intru-
sion alerts by finding interesting patterns and summarizing
them into improved information structures [4]. In this work,
we propose a new approach to assist the security analyst in
the intrusion alert analysis. The proposed approach is com-
posed of two elements: the offline correlator and the online
correlator.

The offline correlator aggregates historical alerts using
the connected components method, extracts attack strat-
egy graphs and uses hierarchical clustering to group similar
attack strategy graphs. For this, a new method to compare
the similarity between two attack strategy graphs is also pro-

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

313

posed. The attack characteristics of each generated cluster
are then identified.

The online correlator generates hyper-alerts which con-
tain useful attributes that assist the security analyst. A
hyper-alert is composed by different low-level alerts and it
is updated in real time as the upcoming low-level alerts are
triggered. Also, each hyper-alert is associated to a cluster
that the offline correlator defined previously. By analyzing
the cluster information, the security analyst can better un-
derstand the characteristics of an attack when only the first
alerts are available. The experiments were performed using
a real data set gathered by an IDS device deployed in the
University of Maryland with about 40,000 computers.

The rest of this paper is organized as follows: Section 2
presents the related work, Section 3 explains the offline and
online correlators, Section 4 discusses the experiments and
analyzes the results. Section 5 concludes this paper.

2. RELATED WORK
Researchers have proposed different methods to assist in-

trusion alert analysis in recent years. The proposed methods
aim to reduce the amount of alerts, discover relationships
between them and provide a visual representation for the
correlated alerts.

Because of the enormous amount of alerts that IDSs trig-
ger, Julisch [4] proposes an approach to handle the IDS alerts
more efficiently. The proposed approach is based on the
root-cause detection. A root-cause is the reason for the oc-
currence of an alert. Julisch claims that few root causes are
responsible for 90% of the alerts. A clustering technique is
proposed to group the alerts, supporting the root-cause anal-
ysis. The author evaluated the proposed approach with real
data that was collected from a commercially used network.

To improve the quality of intrusion alerts information,
Spathoulas and Katsikas [12] propose a system to process
the intrusion alerts that belong to multiple IDSs and pro-
vide a high-level presentation of the security events. For
this, the alerts that have the same source and destination
IP addresses, same attack identifier and are close in time
are grouped. Then, the similar groups are clustered, and for
each cluster, a visual representation is provided. The pro-
posed system was evaluated using the DARPA 2000 data set
and an academic data set generated by attack simulation.

Considering that one attacker performs multiple attack
steps to reach its goal, Xuewei et al. [16] propose an ap-
proach to automatically identify the multistage attacks in
intrusion alerts. First, alerts are clustered by related IP ad-
dresses using the method of connected components. Then,
for each cluster, a directed graph that represents the at-
tacker steps is generated. Each node in the graph repre-
sents an attack type, and each edge contains the probability
of an attack type succeeds another attack type. The pro-
posed approach was evaluated with the DARPA 2000 data
set. Results showed that it could uncover the attack scenar-
ios properly.

Ghasemigol and Ghaemi-Bafghi [2] propose a system that
correlates intrusion alerts using their entropy. The goal of
the proposed system is to find causal relationships between
the intrusion alerts, providing a high-level representation of
the attack scenario. First, the number of alerts is reduced
using data aggregation. Data aggregation is applied to group
the alerts in clusters and the graphs of the clusters are gener-
ated for visualization. The authors reached a rate of 99.98%

Figure 1: Offline correlator overview.

of data reduction using the DARPA 2000 data set to evalu-
ate the proposed system.

Shittu et al. [11] propose a framework for intrusion alert
analysis. The proposed framework reduces the quantity of
false positive alerts and uses post-correlation methods to
support the alert analysis. For this, a metric for prioritizing
alerts and a method to cluster the similar alerts using DB-
SCAN were presented. Graph Edit Distance is used to com-
pute the difference between the correlated alert graphs. The
data set used to test the framework belongs to the 2012 cy-
ber range experiment that industrial partners of the British
Telecom Security Practice Team performed.

In our work, we propose a model that generates hyper-
alerts online considering the historical behavior of the at-
tackers. This model is based on the agglomerative hierar-
chical clustering using Ward’s method, which groups attack
strategies according to a new metric we propose to compare
their similarity. The proposed model also takes into account
the necessary time to notify the security analyst with high-
level information of the event. It is important to emphasize
that a real data set was used to evaluate the proposed model,
unlike the most of the related work, which use data sets from
the DARPA challenge.

3. PROPOSED APPROACH
The proposed approach is composed of two correlators:

the offline correlator and the online correlator. The offline
correlator receives as input a set of IDS alerts and constructs
the cluster model of attack strategies to be used in the on-
line correlation. The online correlator analyzes the incom-
ing alerts in real time and extracts useful information by
matching these alerts with the cluster model that the offline
correlator constructed. These two components are described
in the next subsections.

3.1 Offline Correlator
The offline correlator aims to get a set of historical IDS

alerts and organize them into clusters, giving a better un-
derstanding of the attacks. For this, the first step consists in
separating the alerts into connected components (aggrega-

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

314

Table 1: First example of IDS alerts.
Time Source Destination Signature

01/01/2016 00:30:00 10.0.0.0 10.0.0.1 A
01/01/2016 00:35:00 10.0.0.1 10.0.0.2 B
01/01/2016 00:40:00 10.0.0.1 10.0.0.3 C
01/01/2016 00:45:00 10.0.0.64 10.0.0.65 D
01/01/2016 00:50:00 10.0.0.64 10.0.0.65 D
01/01/2016 00:55:00 10.0.0.64 10.0.0.65 E
01/01/2016 01:00:00 10.0.0.64 10.0.0.65 F

Figure 2: Connected components for the first exam-
ple of IDS alerts.

tion step). Then, for each connected component, the attack
strategy graph is extracted. After that, the attack strategy
graphs are separated into clusters using hierarchical clus-
tering techniques (clustering step). Figure 1 presents an
overview of the offline correlator. This process is detailed
next.

Let s, d, t, k be the source IP address, the destination IP
address, the timestamp and the attack signature of an alert,
respectively. Then, an alert A is defined as the 4-tuple A
= 〈s, d, t, k〉. The offline correlator uses the IP address and
timestamp information to organize the alerts. This organi-
zation is based on the method that Treinen and Thurimella
[13] used in their work, known as connected components.
In the aggregation step, the connected component organiza-
tion separates the alerts by their IP addresses. If the alerts
have related IP addresses, i.e. A1.s = A2.s or A1.d = A2.d
or A1.s = A2.d or A1.d = A2.s, then they are grouped.
In this work, another condition must be satisfied to group
the alerts: the alerts must have a difference of timestamps
shorter than x minutes, i.e. A2.t−A1.t < x minutes.

For example, considering the set of alerts of Table 1, two
connected components can be constructed. Figure 2 shows
the connected components, where each node represents the
IP address, and each directed edge represents the direction
of the attack (from source to destination).

Another example, from Table 2, highlights the importance
of the condition related to the difference of timestamps of
alerts with related IP addresses. All of the alerts in Table 2
have related IP addresses, but three of them were recorded
hours after the first ones. Considering a maximum time of
60 minutes for the difference of timestamps of alerts with

Table 2: Second example of IDS alerts.
Time Source Destination Signature

01/01/2016 00:00:00 10.0.0.0 10.0.0.1 A
01/01/2016 00:40:00 10.0.0.1 10.0.0.2 B
01/01/2016 01:20:00 10.0.0.1 10.0.0.3 B
01/01/2016 10:00:00 10.0.0.0 10.0.0.4 A
01/01/2016 10:40:00 10.0.0.4 10.0.0.5 B
01/01/2016 11:20:00 10.0.0.4 10.0.0.6 B

Figure 3: Connected components for the second ex-
ample of IDS alerts.

Figure 4: Attack strategy graphs of the alerts in
Table 1.

related IP addresses, the first three alerts compose one con-
nected component, and the last three alerts compose another
connected component, illustrated in Figure 3.

Using the alerts signature and timestamp makes it pos-
sible to determine the sequence of signatures triggered in
each connected component. The sequence of signatures is
represented in a directed graph format, where each node
represents one signature and each edge represents the se-
quential relationship between the signatures. This graph is
named attack strategy graph. One attack strategy graph is
generated for each connected component. Figure 4 shows
the attack strategy graphs created for each connected com-
ponent of the alerts from Table 1.

The next step of the offline correlator is to group similar
attack strategy graphs. For this, a method to verify if two
graphs are similar (or dissimilar) should be defined. Ning
and Xu [7] verified the similarity between two attack strat-
egy graphs using the Graph Edit Distance technique. The
Graph Edit Distance technique measures how many edit op-
erations (node insertion, deletion or substitution, and edge
insertion, deletion or substitution) are required to trans-
form one graph into another. The more edit operations
are needed, more dissimilar are two graphs. However, this
method showed to be inadequate to our attack strategy
graphs due to its performance when applied to a real data
set. Also, for smaller graphs, the Graph Edit Distance is
low even if the graphs are completely different, because few
edit operations are necessary. Figure 5 demonstrates this
problem: the cost for both situations will be one node sub-
stitution (X for Y), even taking into account that the situ-
ation (a) shows similar nodes (A and B). Therefore, if two
graphs have a huge amount of similar edges and nodes and
only one different node, the Graph Edit Distance technique
will consider only the different node.

When the Graph Edit Distance is applied to compare at-
tack strategy graphs, each edit operation must have a prede-
fined cost. As Ning and Xu [7] stated, each stage of the at-
tack (each node of the attack strategy graph) is more signif-
icant than the causal relationship between the attacks (the
edges of the strategy graph). Therefore, the cost of node
operations, in Ning and Xu work, was proposed to be signif-
icantly higher than the cost of edges operations. Following
this reasoning, we propose a new method to measure at-
tack graph similarity using Jaccard index. Since, according
to Ning and Xu, the nodes of an attack strategy graph are

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

315

Figure 5: Example of attack strategy graphs for
Graph Edit Distance and for the new method based
on Jaccard index.

more significant than the causal relationship between them,
the use of an algorithm like Graph Edit Distance showed to
be unnecessary.

Jaccard index measures the similarity between two finite
sets. Considering M and N two finite sets, the Jaccard index
between M and N is defined as the size of the intersection
of M and N , divided by the size of the union of M and N
(Equation 1) [8]. If both sets are empty, the Jaccard index is
defined as 1. To measure the similarity between two attack
strategy graphs, two Jaccard indexes were calculated, first
for all nodes, then for all pair of nodes (representing the
edges). Then, the mean of the two results was considered
the similarity between two attack strategy graphs. For the
attack strategy graphs of the situation (a) in Figure 5, the
similarity is calculated as follows:

1. First, it is calculated the similarity S1 of nodes, which
is the size of the intersection of the nodes, i.e. {A,B},
divided by the size of the union of nodes, i.e. {A,B,X, Y }.
Therefore, S1 = 2/4 = 0.5.

2. Then, it is calculated the similarity S2 of the edges,
which is the size of the intersection of the edges, i.e.
{A → B}, divided by the size of the union of edges,
i.e. {A→ B,B → X,B → Y }. Therefore, S2 = 1/3 =
0.3.

3. The final similarity is the mean between S1 and S2,
which is 0.4.

J(M,N) =
|M ∩N |
|M ∪N | (1)

With this new metric, the problem presented in Figure 5 is
solved, because all nodes and their edges are taken into con-
sideration. Also, this metric does not present performance
problems, as observed with the Graph Edit Distance.

Using this new metric, all attack strategy graphs can be
compared, generating a similarity matrix. The similarity
matrix is used as input to the agglomerative hierarchical
clustering using Ward’s method [14, 6]. Considering zik the
set of elements of a cluster k (which have nk elements), and
considering z̄k the mean of the elements, the error sum of
squares for cluster k is given by the Equation 2.

Ek =

nk∑

i=1

‖ zik − z̄k ‖2 (2)

Considering Ek defined by the Equation 2, the Ward’s
method calculates the total error sum of squares E for all g
clusters using the Equation 3.

Figure 6: Example of dendrogram for agglomerative
hierarchical clustering using Ward’s method.

E =

g∑

k=1

Ek (3)

The agglomerative hierarchical clustering method begins
with n clusters that contain a single element (where n is the
number of elements). Then it performs n−1 merging steps.
At each step, the two clusters that give the smallest increase
in the total error of the clusters are merged. The method
ends with one cluster that contains all n elements. As a
result, this method outputs a dendrogram, which is a tree
that represents the entire clustering process (Figure 6). The
cutting height of the dendrogram that defines the number
of clusters is problem dependent [3, 15]. In this work, the
cutting height is defined as the value of the third quartile
of the sorted set of heights, which separates the 75% lower
heights from the 25% higher heights [5].

Figure 6 illustrates an example of the agglomerative hier-
archical clustering technique, where each height represents
the square root of the total error of the clusters after a merge
between two clusters (calculated with Ward’s method) [6].
In this example, the number of elements is four. Therefore,
three (n−1) merging steps were required. The first merging
step groups the clusters Y and Z, creating the new cluster
Y Z. The second merging step groups the clusters X and
Y Z, creating the new cluster XY Z. The last merging step
groups the clusters XY Z and K, creating the new cluster
XY ZK. The dendrogram has been cut in the height 10.75
(third quartile of the heights 3.2, 5.5 and 16). Thus, two
clusters were generated: the first cluster is composed of the
elements X, Y and Z and the second cluster is composed
of the element K. In our work, each element is an attack
strategy.

After the offline correlation, we have all historical alerts
separated into clusters according to the relationships be-
tween attack steps. Each cluster groups similar attack strate-
gies and provides a summarized overview of them. The clus-
ters information can be used to support the analysis of the
upcoming alerts by the online correlator.

3.2 Online Correlator
The online correlator (Figure 7) receives alerts in real

time, correlates them according to the clusters of attack
strategies generated in the previous step and creates or up-
dates hyper-alerts. Each hyper-alert is a structure that con-
tains a set of related low-level alerts (representing one con-

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

316

Figure 7: Online correlator overview.

nected component), one attack strategy graph and other
useful information. Table 3 describes all attributes of a
hyper-alert. The first column represents the category of the
attributes, the second column represents the attributes of
each category and the third column describes each category.
These attributes assist the security management by giving
a better insight of what is happening in the network.

To create the hyper-alerts, the online correlator separates
the input alerts in connected components, generates the at-
tack strategy graph for each connected component and ex-
tracts the other useful information. The techniques used
for the connected component identification and attack strat-
egy graph comparison are the same as employed in the of-
fline correlation. The difference from the offline correlator is
the alerts are processed as they are generated in real time.
Therefore, for each new alert A, it is verified if A belongs
to an existing connected component comparing the IP ad-
dresses and timestamp (otherwise, A will belong to a new
connected component). After determining to which con-
nected component the new alert belongs, the attack strategy
graph of this connected component is updated with the new
alert A. Then, using the Ward’s method, the online corre-
lator associates the updated attack strategy graph G to one
of the clusters that the offline correlator generated. Asso-
ciating the new attack strategy graph to a cluster provides
useful information for the security analyst, since each clus-
ter contains information about typical attack strategies that
attackers have adopted against the network.

As a result, the online correlator outputs useful informa-
tion for each hyper-alert (Table 3). Also, the hyper-alert
information is updated in real time as it receives a new low-
level alert. With this new information, the security analyst
has a better situational awareness of the environment in real
time to react faster to a security event.

4. EXPERIMENTS AND RESULTS
The IDS alerts used in the experiments were recorded in

July 2012 by an IDS deployed in a network with about
40,000 computers from the University of Maryland. The

Figure 8: Attack strategy graphs of the Cluster 7.

alerts triggered in the first 14 days of July 2012 were the
input of the offline correlator to generate the cluster model
of attack strategies. The alerts triggered in the other days
of the month (from 15th to 31st of July 2012) were used
to test the online correlator. The maximum time difference
between two alerts of a connected component was defined as
60 minutes for the offline and online correlator.

For the offline correlator, a total of 20,509 alerts were gen-
erated. The aggregation step separated these 20,509 alerts
into 895 connected components. Then, the connected com-
ponents that represent exceptional situations were filtered.
A connected component was considered as an exceptional
situation if it contains only one alert or contains only alerts
with the same signature. These cases do not depict attack
strategies used by attackers, as they show an attack-flow
with a single step and do not provide enough information
on the behavior of the attacker. With this filtering, 3,796
alerts were removed, with 16,713 remaining alerts. These
16,713 alerts are represented by 57 connected components.
For each one of these 57 connected components, the attack
strategy graph was generated, and the similarity matrix was
computed using the proposed metric based on Jaccard in-
dex. Finally, the 57 attack strategy graphs were separated
into clusters by the hierarchical clustering technique.

A total of 12 clusters were generated. The two clusters
(Cluster 1 and Cluster 7) that represent the majority of the
alerts were chosen to be further explained in this experiment.
Cluster 1 covers 14,138 alerts (84.59% of the 16,713 alerts)
and has 10 connected components. Cluster 7 covers 2,317
alerts (13.86% of the 16,713 alerts) and has 12 connected
components. This means that 98.46% of the 16,713 alerts
are covered by these two clusters. Cluster 1 is character-
ized by buffer overflow attacks. Figure 8 shows the attack
strategy graph of Cluster 7. This cluster is characterized
by reconnaissance attacks, such as the port scan Possible
Nmap Scan(XMAS (FIN PSH URG)), and the Fingerprint-
ing Probe, which tries to ascertain the operational system
of the target.

The alerts triggered From 15th to 31st of July 2012 were
used for the online correlator validation. In this period,
19,933 alerts were generated. To test the online correlation,
a simulator was developed to release the alerts one by one.
As explained in Section 3, for each new alert, it is verified to
which connected component it belongs. After determining
to which connected component the new alert belongs, the at-
tack strategy graph of this connected component is updated
with the new alert. Then, the updated attack strategy graph
is associated to one of the clusters generated by the offline
correlator.

Therefore, this is a process where each connected compo-
nent (and consequently each attack strategy graph) changes

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

317

Table 3: Hyper-alert information.
Attribute
Category

Attributes Description

Status
information

Status.

The connected component is closed if no alert is added
in x minutes, otherwise it is under construction. If the
connected component is closed, it means that it will not
receive more alerts. Then, this is the final state of the
hyper-alert.

Cluster
information

Best cluster and increased error.

Reports the best cluster for the hyper-alert and the new
error of the cluster, in case of the attack strategy graph
of this hyper-alert was added to this cluster (using
Ward’s method). The bigger the error, the greater the
difference between the cluster and the attack strategy
graph.

Time
information

Start time, end time and duration.
Reports the time of the first and the last alert of the
hyper-alert and the difference in minutes between these
times.

Quantity
information

Quantity of alerts,
quantity of distinct attackers,
quantity of distinct targets and
quantity of distinct signatures.

Counts the amount of alerts, attackers, targets and
signatures that composes the hyper-alert.

Address
information

The amount of distinct source IP
addresses and destination IP
addresses that are involved in the
event.

This information is useful to determine which IP
addresses are responsible to trigger more alerts and
which IP addresses receive more attacks.

Signature
information

The amount of distinct signatures
that occurred and the attack
strategy graph.

This information is useful to determine which
signature happens more often and to understand
the causal relationship between these signatures.

Relationship
information

The connected component and
a list of relationships.

One relationship consists of one source IP address,
one destination IP address, and the number of time
that these IP addresses appear in the same alert of the
connected component. This information is useful to
understand the relationship of the IP addresses.

Attack
characteristic
information

The mean of the targets per
attacker and the mean of
attackers per target.

This information is useful to understand the
characteristic of the attack. For example, if the mean
of targets per attacker is high, it may indicate an
reconnaissance attack. Or if the mean of attackers per
target is high, it may indicate an DDoS attack.

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

318

Figure 9: Evolution of one hyper-alert associated to
the Cluster 7.

as a new alert is added to it. A new attack strategy graph
(updated by only a few alerts) can be associated to a cluster
at the beginning and, after receiving a few more alerts, it can
be associated to another cluster because the more alerts are
used to update the attack strategy graph, the more precise
is its association.

After the experiments, the attack strategy graphs showed
fast convergence into their final cluster: we observed that
an attack strategy graph is correctly associated to its final
cluster after an average of 1.54 associations with a standard
deviation of 0.7. The average of associations for an attack
strategy graph is 8.73 with the standard deviation of 10.05
(the high standard deviation is due to the difference in the
attack strategy graphs size). Each new association is per-
formed after the addition of a new alert that changes the
attack strategy graph.

A hyper-alert is considered closed when no alerts are added
to its attack strategy graph during 60 minutes. After that,
no more alerts can be added to this attack strategy graph,
and, hence, to this hyper-alert.

Interesting results were observed after analyzing the on-
line correlator output: 16 out of 59 hyper-alerts were as-
sociated to the Cluster 1 and contained between 748 and
1209 alerts. By analyzing the time information of the hyper-
alerts, we observed that these 16 hyper-alerts were built dur-
ing the night. Also, each one of the 16 hyper-alerts was
generated once a day (from 15th to 31st of July 2012) with
the exception of the day 29th. Moreover, by analyzing the
address and signature information of the hyper-alerts, we
identified that the same source IP address was responsible
for about 70% of these alerts, which have the same signa-
ture. The security analyst could have identified this pattern
in the first days by using the proposed approach. Since this
problem is responsible for a significant amount of alerts, the
amount of future alerts could have been reduced with the
mitigation of this situation.

13 hyper-alerts were associated to the Cluster 7 and have
between 6 and 32 alerts. A significant pattern found in each
of these hyper-alerts is the presence of a single source IP
address attacking multiple destination IP addresses. Figure
9 demonstrates the evolution of a hyper-alert associated to
the Cluster 7 by showing its quantity of alerts, best cluster,

connected component and attack strategy graph. The IP
addresses of the connected components were changed to the
labels from A to H for privacy purposes. When the hyper-
alert had only three alerts, it was associated to the Cluster
2. After adding a new alert, the association of the hyper-
alert changed to Cluster 7 and remained on it until the end
(when the hyper-alert was closed with seven alerts). This
hyper-alert shows an interesting pattern when its connected
component is investigated: only one source IP address is at-
tacking other IP addresses. The mean of targets per attacker
is 7, which reinforces the characteristic of a reconnaissance
attack. The attack strategy graph of this hyper-alert is very
similar to the attack strategy graph of the Cluster 7 (Figure
8). Therefore, with 4 alerts, it was possible to infer that this
hyper-alert had the same behavior of other attacks on the
Cluster 7.

Thereby, the offline correlator was able to organize the
historical intrusion alerts into clusters. These clusters show
the summarized information for each attack pattern found in
the related alerts and they were useful to support the online
correlator. Two main clusters that represent the majority
of the alerts (98.46%) were identified, which means that the
majority of the attacks directed to this network are similar.
The online correlator was able to correlate the alerts in real
time, generating the hyper-alerts with much useful infor-
mation that help the response to security events. Analyzing
the hyper-alerts, we were able to find interesting patterns re-
lated to the relationship between attacker and target, time,
signature and quantity of alerts. Also, we were able to un-
derstand the attack scenarios with only their first alerts by
analysing the cluster of a given hyper-alert, anticipating the
response to a possible intrusion.

5. CONCLUSION
To support the information security management, this pa-

per approached the problem of analyzing and correlating the
huge amount of intrusion alerts recorded by an IDS device.
A new approach that assists the security analyst in the in-
trusion alert analysis was proposed. The proposed approach
correlates the historical alerts into clusters using data min-
ing techniques and associates the upcoming alerts to these
clusters in real time. It was evaluated using a real data
set from the University of Maryland. The experimental re-
sults show that the proposed approach can discover useful
information from historical alerts to assist the analysis of
the upcoming alerts. Therefore, the time between a security
event and its response may be reduced.

As a future work, the first objective is to evaluate the pro-
posed approach in other data sets, extracted from both real
and experimental environments. Moreover, we intend to ex-
plore streaming mining techniques, that may help improving
the aggregation step of our approach.

6. ACKNOWLEDGMENT
The authors would like to thank Gerry Sneeringer and

the Division of Information Technology at the University
of Maryland for allowing and supporting the described re-
search.

7. REFERENCES
[1] A. Ahmad, J. Hadgkiss, and A. B. Ruighaver. Incident

response teams - challenges in supporting the

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

319

organisational security function. Comput. Secur.,
31(5):643–652, July 2012.

[2] M. GhasemiGol and A. Ghaemi-Bafghi. E-correlator:
an entropy-based alert correlation system. Security
and Communication Networks, 8(5):822–836, 2015.

[3] A. K. Jain, M. N. Murty, and P. J. Flynn. Data
clustering: A review. ACM Comput. Surv.,
31(3):264–323, Sept. 1999.

[4] K. Julisch. Clustering intrusion detection alarms to
support root cause analysis. ACM Trans. Inf. Syst.
Secur., 6(4):443–471, Nov. 2003.

[5] G. J. Kerns. Introduction to Probability and Statistics
Using R. Free Software Foundation, first edition, mar
2011.

[6] P. A. Macfarlane. Kansas geological survey, dakota
aquifer program - ward’s method, sep 1996.

[7] P. Ning and D. Xu. Learning attack strategies from
intrusion alerts. In Proceedings of the 10th ACM
Conference on Computer and Communications
Security, CCS ’03, pages 200–209, New York, NY,
USA, 2003. ACM.

[8] S. Niwattanakul, J. Singthongchai, E. Naenudorn, and
S. Wanapu. Using of jaccard coefficient for keywords
similarity. In Proceedings of the International
MultiConference of Engineers and Computer
Scientists, volume 1, page 6, 2013.

[9] R. Ruefle, A. Dorofee, D. Mundie, A. Householder,
M. Murray, and S. Perl. Computer security incident
response team development and evolution. Security
Privacy, IEEE, 12(5):16–26, Sept 2014.

[10] A. Shameli-Sendi, R. Aghababaei-Barzegar, and
M. Cheriet. Taxonomy of information security risk
assessment (isra). Computers & Security, 57:14 – 30,
2016.

[11] R. Shittu, A. Healing, R. Ghanea-Hercock,
R. Bloomfield, and M. Rajarajan. Intrusion alert
prioritisation and attack detection using
post-correlation analysis. Computers & Security, 50:1
– 15, 2015.

[12] G. P. Spathoulas and S. K. Katsikas. Enhancing ids
performance through comprehensive alert
post-processing. Comput. Secur., 37:176–196, Sept.
2013.

[13] J. J. Treinen and R. Thurimella. A framework for the
application of association rule mining in large
intrusion detection infrastructures. In Proceedings of
the 9th International Conference on Recent Advances
in Intrusion Detection, RAID’06, pages 1–18, Berlin,
Heidelberg, 2006. Springer-Verlag.

[14] J. H. Ward Jr. Hierarchical grouping to optimize an
objective function. Journal of the American statistical
association, 58(301):236–244, 1963.

[15] R. Xu and I. Wunsch, D. Survey of clustering
algorithms. Neural Networks, IEEE Transactions on,
16(3):645–678, May 2005.

[16] F. Xuewei, W. Dongxia, H. Minhuan, and S. Xiaoxia.
An approach of discovering causal knowledge for alert
correlating based on data mining. In Dependable,
Autonomic and Secure Computing (DASC), 2014
IEEE 12th International Conference on, pages 57–62,
Aug 2014.

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

320

