
A Risk Calculus Extension to the XACML Language

Jhonatan Alves
Federal University of Santa

Catarina
Networks and Management

Laboratory
Florianópolis, Brazil

jhonatan.alves@posgrad.ufsc.br

Carla Merkle Westphall
Federal University of Santa

Catarina
Networks and Management

Laboratory
Florianópolis, Brazil

carlamw@inf.ufsc.br

Gustavo Roecker Schmitt
Federal University of Santa

Catarina
Networks and Management

Laboratory
Florianópolis, Brazil

gustavorschmitt@grad.ufsc.br

ABSTRACT
The increase of dynamic cloud computing environments introduces
the need for new ways of access control in applications. One access
control model which adapts flexibly to such systems on the Inter-
net is the RAdAC (Risk-Adaptive Access Control). This model is
based on the user confidence degree and the risk of releasing access
to some information taking into account the context in which a re-
quest is performed. However, in practice, to use such model it is
necessary to implement a technological support as, for example, ex-
tending the access control architecture present in the XACML (eX-
tensible Access Control Markup Language). This paper extends the
XACML access control architecture to support the RAdAC model
providing a quantitative, concrete and dynamic risk calculus in or-
der to improve the access control in cloud environments. A pro-
totype was developed in Amazon EC2 cloud environment to per-
form dynamic access control policies using the proposed XACML
extension. Some risk calculus tests are described in the paper to
exemplify the RAdAC decisions.

Categories and Subject Descriptors
K.6 [MANAGEMENT OF COMPUTING AND INFORMATION
SYSTEMS]: [Security and Protection,Authentication,Unauthorized
access]

General Terms
Security, Reliability, Availability, Confidentiality

Keywords
XACML, RAdAC, Risk Calculus, Cloud Computing

1. INTRODUCTION
Cloud computing is a new computational paradigm which pro-

vides IT resources as services. This paradigm improves the vir-
tualization efficiency of data centers making IT resources more
availed [6]. According to NIST (National Institute of Standards
and Technology) [11] a cloud computing model should have a set

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SBSI 2016, May 17th-20th, 2016, Florianópolis, Santa Catarina, Brazil
Copyright SBC 2016.

of essential characteristics which includes on-demand self-service,
broad network access, dynamic resource provisioning, measured
service and elasticity of resources. Moreover, cloud computing
brings lots of benefits to its users since it eliminates the need for
installing, configuring, managing and updating resources. How-
ever, there are a wide number of challenges related to the security
of cloud environments as, for example, data protection, malicious
behavior of insiders, service unavailability, handling of security in-
cidents, among others [1].

Since resources provided by cloud environments can be accessed
by different entities, then appropriate and dynamic access control
mechanisms are required to provide an improved security degree
to such resources. A dynamic access control model which adapts
flexibly to cloud computing environments is the RAdAC model.
It uses risk calculus at the request time to allow or deny access
request, since assessing the risk value is an essential tool to protect
cloud environments from negative events.

However, it is necessary to implement the RAdAC model in
order to use its access control facilities. One way of doing it is
through extending the XACML language. This language allows to
define a set of policies which delimits the actions an individual can
perform describing the general requirements for access control. It
also allows to specify requests and responses to aid the decision-
making during authorization process. The RAdAC model (Risk-
Adaptive Access Control) uses risk calculus at the request time to
allow or deny the access request.

In this paper, we present an XACML extension to provide sup-
port to the RAdAC model, enabling a quantitative, concrete and
dynamic risk calculus to be used in cloud computing environments.
In the literature, there is a lack of risk calculus proposals to access
control in the cloud, which is a propitious scenario to implement
a real RAdAC application. Besides, some works [8] [4] consider
the dynamic aspect of RAdAC as the possibility of using a set of
factors, which compose the context, at the request time, to decide
whether the access is allowed or denied. However, a particular
context can repeat over time, thus the answer to a request in such
context will be always the same independently of advancing time.
Thus, there is a need for a new factor capable of evaluating contexts
which repeat over time differentiating the access permissions as the
time advances.

To solve this issue, we introduce into the risk calculus the notion
of user rank which expresses numerically the user behavior over
time. As the time advances, the user rank can change and influences
directly the risk calculus outcome. If in a given context at time t an
user does not have access to a resource, he may have access to such
resource in the same context at time t ′, with t < t ′, if the value of
his user rank increases enough to make it possible.

This paper is organized as follows. Section 2 describes related

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

321



works, the XACML language and its architecture are presented in
section 3, section 4 presents proposals for risk calculus, section 5
presents the proposal of this paper, section 6 describes some tests
and section 7 presents the final considerations.

2. RELATED WORKS
The XACML language was designed insomuch that its extension

could be as flexible as possible, allowing the introduction of new
components in its data flow architecture and the addition of new
elements in its XML Schema. This section presents a set of works
that have extended the XACML language.

Chen Chen et al. (2010) proposed a set of modules to continu-
ously control the risk calculus. If the access is allowed, then the
risk is recalculated from time to time, considering changes in the
context throughout the session. The access is canceled whether the
risk’s temporal distribution exceeds a certain threshold. Although
the idea is quite interesting, the authors do not present a concrete
formula of how risk should be calculated, they just claim it is a
measurement at a time t which combines the cost associated to the
resource to be consumed, the damage probability of the risk and its
temporal distribution that is calculated in previous moments.

Liang Chen et. al (2013) extended the XACML language to sup-
port the RAAC model (Risk-Aware Access Control). Since the vari-
ables associated to entities involved in the request can be expressed
as attributes, the risk associated with such attributes is rescued by
PIP block (responsible for storing and controlling any attributes of
individuals, resources, actions and environment), becoming part of
the risk calculus in such context. A risk mitigation strategy is used
to specify which obligations must be executed if a request in a given
context has an acceptable risk, this is, if such risk is in [k,k′). How-
ever, the authors do not present how exactly the risk is calculated.

Daniel Ricardo dos Santos et. al (2014) extended the XACML
architecture adding a set of new blocks, where Risk engine is re-
sponsible for analyzing and processing the policies associated with
a resource, Web Service is responsible for quantifying the access
risk when the user defines the method for calculating it and Risk
Policies defines how the risk-based access control should be as-
sessed for each resource. When an access request is received, the
decision point can run in parallel two decisions: a decision based
only on user attributes following XACML related policies and/or
a decision based on risk following the risk policies. However, the
authors do not present a concrete formula for risk calculus, leaving
the task of defining risk policies to the administrator or user.

The literature reports few studies extending XACML language
with support for risk calculus. Most of them is concerned to present
new components, how they work, test scenarios and factors that
should be considered during the calculus, but they do not show a
concrete way of how risk must be calculated.

3. THE XACML LANGUAGE
tha XACML language is a XML-based language which allows

to create flexible policies to describe the requirements for access-
ing resources. Among the various proposals for languages and ac-
cess authorization architectures, XACML stands out as an interna-
tional standard approved by OASIS, being a generic and extensible
model, having a distributed architecture and support for multiple
data types and functions [12]. The figure 1 illustrates the XACML
architecture.

The execution flow begins at PEP block (Policy Enforcement
Point) which is responsible for intercepting all access requests and
forward them to the Context Handler block. This block converts the
request into a standard XACML request which describes its context.

Figure 1: XACML data flow architecture.

The context of a request is composed by the subject who performs
the request, the resource he wants to access, the action to be ex-
ecuted and the environment from where the request comes. This
request is sent to the PDP block (Policy Decision Point) which de-
cides whether allows or denies the access request. To this end,
it asks PAP block (Policy Administration Point) the applicable set
of policies to the request and asks PIP block (Policy Information
Point) any additional attributes about the subject, resource, action
or environment.

The final answer, the XACML decision response, is composed
by the decision (allow or deny), state (determines if there was an
error during the authorization process) and obligations (set of op-
erations that must be performed by the PEP block when the request
is allowed). The answer is forwarded to context handler which
converts it into the PEP format and then sends the answer to PEP
block.

4. RISK CALCULUS
Risk may be defined as R = P x I, where P determines the prob-

ability of the occurrence of an event and I represent the impact of
this event. The risk calculus allows to determine whether an event
can cause some damage to a system and its estimation is useful to
take decision in order to avoid such damages. Various approaches
have been proposed to determine effective mathematical means for
estimating risk.

A model for using risk in access control tasks is the RAdAC
(Risk-Adaptive Access Control) [13]. The execution data flow of
this model is expressed in figure 2. In RAdAC model, the risk of
an access request is calculated and then compared with a thresh-
old of applicable policies over such request. Then, the operational
need is determined, when specified by the applicable policies. The
operational need is represented by a value and is a special require-
ment of an user to access certain information in order to complete
a mission or execute a task. Usually, a nurse would not have access
to all medical information of a patient, but, when a patient is hav-
ing a heart attack, for example, a nurse is in a critical moment and
should have access to all information necessary to save the patient’s
life. This represents a situation of operational need, when there is a
new access control rule because of the context and moment. Thus,
the access is allowed if the operational need is bigger than the risk
value, otherwise it is denied [7]. In cases where the risk is not ac-
ceptable but the operational need is, then the access is allowed, if
the applicable policies allow the operational need to override the
risk.

The risk calculus is not a simple task and it is still a research
subject. In [8] some practical challenges to achieve the implemen-
tation of RAdAC are described, such as the real-time calculus of
security risk for each access decision, determination of operational
risk, quantification of confidence level, use of heuristics to achieve
access decisions and the possibility of revocation of access at any
time. However, in relation to the risk calculus the paper just men-

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

322



Figure 2: RAdAC data flow (adapted from [7]).

tions in which moments the risk must be calculated leaving open
how to calculate it.

A formal model for calculating risk associated with the action
will be taken over resources, considering features as confidentiality,
integrity and availability is described in [4]. The authors propose a
framework which uses context parameters, from where the access is
coming, to calculate the risk. Figure 3 illustrates such framework.

Figure 3: Framework architecture proposed in [4].

The access requests are received and analyzed by the main mod-
ule, Access control manager, which sends them to Risk Assessment
module along with context parameters collected by Context mod-
ule. In Risk Assessment, the risk calculus is performed and then
forwarded to the main module which will decide whether accepts
or denies the access request.

We adapted and implemented the formalisms of block Risk As-
sessment in our architecture to determine the risk calculus at the ac-
cess request time. Such formalisms are presented in section 5.2.3.

5. THE XACML EXTENSION
Our XACML extension proposal, described in this section, was

developed by using Heras implementation [10]. The XACML stan-
dard requests and its architecture were modified to provide RAdAC

support. The Risk Assessment module was defined with some math-
ematic formalism to perform the risk calculus.

5.1 The XACML Requests Standard Exten-
sion

The request extension consisted in adding a new set of informa-
tion to provide the context in which the request was conceived. As
illustrated by figure 4, this set of information is nested to the new
node (Context) which is formed by the local from where the request
comes (internal or external to the network in which the system that
holds the requested resource is), user role level (veryHigh, high,
medium, low, veryLow), type of machine used to make the request
(desktop or mobile device) and, finally, the type of application pro-
tocol (ssh, ftp, http).

<Request xmlns="...">
<Subject>

<Attribute>
...

</Attribute>
</Subject>
<Resource>

...
</Resource>
<Action>

...
</Action>
<Environment>

...
</Environment>
<Context>

<AccessLocation>internal</AccessLocation>
<UserRole>veryHigh</UserRole>
<MachineType>desktop</MachineType>
<ApplicationProtocol>ssh</ApplicationProtocol>

</Context>
</Request>

Figure 4: An example of the extended XML request.

Thus, it is possible to determine more precisely the factors in-
volved in the request. Using the context from where the request
came, we got a set of important information for calculating risk as
shown in section 5.2.1.

5.2 The XACML Architecture Extension
The extension of XACML architecture was developed with the

addition of a new set of blocks which are highlighted inside the
square in figure 5. In this extension, the risk is calculated by the
Request Enforcement Risk block which receives the execution flow
when the PDP block determines that no XACML policy is ap-
plicable on the current request. Thus, our proposed architecture
preserves the original execution of XACML data flow architecture
and triggers risk calculus when there is no policy available to ad-
dress access control to such request. Thus, rather than having to
break the glass to gain access control, i.e., forcing up the rights and
power of a request if needed, our proposed architecture provides
a risk-based access control to enable a dynamic chance to access
resources available, for example, on a cloud environment.

This architecture avoids the need for foreseeing and describing
in policies all contexts in which user can request access to a re-
source. As there are many contexts to consider, lots of them could
be forgotten or omitted by the policy administrator. The risk cal-
culus is a way to decide about access for contexts which were not
predicted. Thus, there will always be a guarantee that all contexts
will be evaluated either through policies or through risk calculus.

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

323



Figure 5: Extended XACML data flow architecture.

The next sections describe how the new blocks work into the
proposed extension of XACML architecture. All the values of fac-
tors necessary in the next formulas are retrieved from a set of XML
files which specify the users ranks, the actions which could be per-
formed and the elements that form contexts.

5.2.1 Request Enforcement Risk Block
This block is responsible for calculating the risk of a request

applying formula 1.

Risk = (w1 ∗ContextCost +w2 ∗ActCost)−w3 ∗RankCost (1)

This formula considers the cost of three factors: context (Con-
textCost) of the request, action (ActCost) to be taken over the de-
sired resource and user rank (RankCost) of the subject invoking the
access request. These factors are calculated by the blocks Context
Enforcement, Action Enforcement and Rank Enforcement, respec-
tively. To each factor a weight (w1, w2 and w3) is assigned express-
ing the importance degree of the factor in the risk calculus.

The main idea behind this formula is to sum the costs associ-
ated to context and action and over the result subtract the user rank
value. For an access request to be allowed it is necessary the com-
parison of the risk value returned by formula 1 with a threshold,
such that, the risk must be inferior than the threshold. The thresh-
old is defined by formula 2. Thus, it avoids the need for an admin-
istrator to set a comparison value. Formula 2 takes into account
the average of the n possible contexts of requests (different com-
binations of its elements), the m possible actions which could be
specified in a given request and performed over a resource and the
k users ranks of individuals which could perform access request.
The risk of a request must be less than the threshold.

T hreshold = (w1 ∗
∑n

j ContextCost j

n
+w2 ∗

∑m
j ActCost j

m
)

−(w3 ∗
∑k

j RankCost j

k
) (2)

If in a given context at time t an user does not have access to a
resource, he may have access to such resource in the same context
at time t ′ , with t < t ′, if the value of his user rank increase enough
to make it possible.

5.2.2 Context Enforcement Block

This block is responsible for calculating the cost associated with
the context of the access request. It obtains the values related to
the context from the extended request presented in section 5.1 and
applies formula 3.

(w4 ∗accessLocation+w5 ∗machineType+w6 ∗appProtocol

+(w7 ∗userRole) (3)

A weight (w4, w5, w6 and w7) is assigned to each context term
expressing their importance degree. The values of such terms are
obtained from a XML configuration file as exemplified in figure 6.

<context>
<accessLocation>

<internal>1</internal>
<external>5</external>

</accessLocation>

<userRole>
<veryHigh>1</veryHigh>
<high>2</high>
<medium>3</medium>
<low>4</low>
<veryLow>5</veryLow>

</userRole>

<machineType>
<desktop>3</desktop>
<mobile>5</mobile>

</machineType>

<appProtocol>
<ssh>1</ssh>
<ftps>1</ftps>
<http>3</http>

</appProtocol>
</context>

Figure 6: XML file to associate values to context terms.

According to our view, the higher the security a term expresses
less will be its value, while if the term expresses less security its
value will be bigger. For example, in a range from 1 to 5, a very
important user role (veryHigh) takes 1, while a user with minor role
(veryLow) takes 5. Thus, contexts considered safe (those having
context elements with small values) have a low score and insecure
contexts (those having context elements with big values) have high
score. The choice of the range and the value to be mapped to each
term must be defined by an administrator who can evaluate how
important a context term is.

5.2.3 Action Enforcement Block
This block is responsible for calculating the cost associated to

the action to be taken over the desired resource. To achieve this
goal, the block Risk Assessment proposed in [4] and presented in
section 4 was adapted and implemented in our architecture.

Let A be the set of user actions and Oai be the set of outcomes
of action ai ∈ A. For each result o jai

∈ Oai , its risk is calculated
considering the characteristics of availability, integrity and confi-
dentiality according to the formulas 4, 5 and 6, respectively.

RD(o jai
) = P(o jai

)∗CD(o jai
) (4)

RI(o jai
) = P(o jai

)∗CI(o jai
) (5)

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

324



RC(o jai
) = P(o jai

)∗CC(o jai
) (6)

Where, CD(o jai
), CI(o jai

) and CC(o jai
), in this sequence, corre-

spond to costs of outcomes o jai
in terms of availability, integrity

and confidentiality and P(o jai
) refers to the probability of o jai

oc-
currence.

Formulas 7, 8 and 9 determine the risk values over the previously
defined equations, where p = |Oai |.

RV D(ai) =
p

∑
j

RD(o jai
) (7)

RV I(ai) =
p

∑
j

RI(o jai
) (8)

RVC(ai) =
p

∑
j

RC(o jai
) (9)

Finally, the overall risk associated with an action ai is given by
formula 10, where the possible outcomes of an action are specified
considering availability, integrity and confidentiality aspects.

R(ai) = w8 ∗RV D(ai)+w9 ∗RV I(ai)+w10 ∗RVC(ai) (10)

The XML file of figure 7 exemplifies the format in which an
action must be written. In this example, the allowed action is read
and unavailable is one of its possible outcomes.

<actions>
<read>
<outcomes>
<unavailable>
<availability>

<probability>0.4</probability>
<impact>10</impact>

</availability>
<integrity>

<probability>0.3</probability>
<impact>0</impact>

</integrity>
<confidentiality>

<probability>0.4</probability>
<impact>1</impact>

</confidentiality>
</unavailable>

</outcomes>
</read>

</actions>

Figure 7: Format of an action.

5.2.4 Rank Enforcement Block
The Rank Enforcement block is responsible for returning the user

rank from the entity that request a resource, where rank express nu-
merically the entity behavior over time. Entities with good behavior
have high ranks, while bad behavior implies in low rank values.

The rank allows a dynamic risk calculus, as time progresses, the
rank value changes and it impacts the result of the risk calculus. If
in a given context in time t a user did not have access to a resource,
he could have access to such resource in the same context at a time
t ′, if his rank value increases enough.

In this work, the context of request is dynamically determined
at runtime and then the permission is decided. However, a certain

context may repeat over time, then the decision for such context
will be always the same. With the introduction of rank, even if the
context repeat over time, the decision may be different.

This block is responsible just for maintaining and returning the
ranks values. The monitoring of user behavior as well as the assign-
ment of rank values are not addressed in this work. It is assumed
that the system which uses this extension is responsible for imple-
menting an user behavior monitoring. A reference that deals with
monitoring of user behavior and rank inference is [9].

6. TESTS AND RESULTS
A prototype was developed in a cloud environment to evaluate

access control policies dynamically, using the XACML extension
proposed in this work. Figure 8 presents the implemented struc-
ture. The main tools used were: XML language for defining data
and requests; Amazon EC2 cloud to host a client application and
a server application (which implements our proposal for evaluating
the risk-based access control); Java EE language; Tomcat applica-
tion server; and Web services to communicate between different
parts of the application.

Figure 8: The developed prototype.

Suppose the following tests were performed in a hospital in which
doctors and nurses have access to patients’ medical records avail-
able on the hospital’s cloud environment. Table 1 shows which kind
of user role doctors and nurses play at the hospital according to their
service time. Doctors play user role as very high when their service
time is superior than 3 years, otherwise their user role is high, while
nurses play user role as medium when their service time is superior
than 3 years, low when their service time is between 1 and 3 years,
or very low when their service time is less than 1 year.

Staff Service Time User role

Doctor > 3 years very high
≤ 3 years high

Nurse > 3 years medium
≥ 1 and ≤ 3 years low

< 1 year very low
Table 1: User roles to doctors and nurses.

The tests performed access requests to patients’ medical records
in different contexts for which no policy were predicted. Thus, the
prototype realized risk calculus to decide about the permissions. In
such tests some contexts were repeated over time in order to verify
how much impact the varying of user rank value caused in the risk
calculus. Since we consider the degree relevance of availability

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

325



bigger than integrity, which by its turn, is bigger than confidential-
ity, then the weights of formula 10 were w8 = 0.5, w9 = 0.3 and
w10 = 0.2 and read (see section 5.2.3) was the action taken over
the required resources. Note that such weight values can be set to
any value according to what the administrator thinks is more ap-
propriate.

The values obtained for calculating the contexts are those showed
in the section 5.2.2 and 0.25 was assigned to weights of formula 3.
We consider the factors which compose formula 3 have the same
relevance degree. It was determined that a user rank can assume a
value in the range [0,10] and the average of users rank was 6. Such
range can not be too large because a very high user rank can influ-
ence the risk calculus to turn an access request acceptable even in
unsafe contexts. In formula 1 the weights of context cost and ac-
tion cost were assigned with the same value, such that, w1 = 0.45
and w2 = 0.45. The weight of user rank was assigned with a low
value, w3 = 0.1, so it is not a determinant factor in the risk calculus
but it is a complement which may assist the calculus to give access
in contexts which repeat over time. Moreover, the cost associated
to action read (see figure 7) is 2.06. Finally, using formula 2 we
obtained a threshold value equals to 1.62.

Test 1
At time t, in which test 1 was performed, a nurse whose service

time is less than 3 years and bigger than 1 year and user rank is
equal to 4 requests an access in which context is illustrated by figure
9.

<Context>
<AccessLocation>external</AccessLocation>
<UserRole>low</UserRole>
<MachineType>mobile</MachineType>
<ApplicationProtocol>http</ApplicationProtocol>

</Context>

Figure 9: Context of test 1.

The risk value is calculated as follows (see formula 1):

Risk = (0.45∗4.25+0.45∗2.06)−0.1∗4

The request is rejected because the risk value is 2.43 that is big-
ger than the threshold 1.62. This happened because the combi-
nation of context elements are mostly insecure, that is: a request
access from an external network is more dangerous than when it
is from the internal network where the requested resources are lo-
cated; using a mobile device to make a request is not much safe
because this kind of device is generally not equipped with security
mechanisms and it runs the risk of being stolen; HTTP is a proto-
col with very security limitations; for many reasons an employee (a
nurse in this case) with low service time has very limited access to
resources of an enterprise.

Test 2
The same nurse from test 1 tries a new request access at time t ′,

with t < t ′, such that her service time is now bigger than 3 years and
her user rank is equal to 4. The new context, in which test 2 was
performed, is illustrated by figure 10.

The value of the risk is calculated as follows:

Risk = (0.45∗4+0.45∗2.06)−0.1∗4

The request is also rejected because the risk value is 2.33 that
is bigger than the threshold 1.62. Even with the user role chang-
ing from low to medium the request access is rejected because the
combination of context terms are still mostly insecure.

<Context>
<AccessLocation>external</AccessLocation>
<UserRole>medium</UserRole>
<MachineType>mobile</MachineType>
<ApplicationProtocol>http</ApplicationProtocol>

</Context>

Figure 10: Context of test 2.

Even if the user rank become 10 (the maximum allowed value
to users ranks according to our configurations) and a new request
was performed for this context the request would be rejected as
well (the risk would be 1.73). This test shows that a good user rank
should not allow access in high-risk contexts. For this request being
accepted, the context elements must change to safer ones and the
user rank must increase.

Test 3
The same nurse from the above tests requests a new access at

time t ′′, with t ′ < t ′′, such that her user rank is equal to 4 and the
context, in which test 3 was performed, is illustrated by figure 11.

<Context>
<AccessLocation>internal</AccessLocation>
<UserRole>medium</UserRole>
<MachineType>desktop</MachineType>
<ApplicationProtocol>http</ApplicationProtocol>

</Context>

Figure 11: Context of test 3.

The value of the risk is calculated as follows:

Risk = (0.45∗2.5+0.45∗2.06)−0.1∗4

In this case, the context elements are safer than the ones in tests
1 and 2, however it was not possible to release the access to the
required resource because the risk value is equal to 1.65. Note
that changing the context elements decreased the risk value and
the request was almost accepted.

Increasing the user rank to 6 make possible the access to the
required resource since the new risk value becomes 1.45. Even if
the user rank become 4,32 (users ranks could decrease over time
according to their behaviors) and a new request was performed for
this context the request would be still acceptable (the risk would be
1.62).

Test 4
At time t, in which test 4 was performed, a doctor whose service

time is less than 3 years and user rank is equal to 4 requests an
access in which the context is illustrated by figure 12.

<Context>
<AccessLocation>external</AccessLocation>
<UserRole>high</UserRole>
<MachineType>desktop</MachineType>
<ApplicationProtocol>http</ApplicationProtocol>

</Context>

Figure 12: Context of test 4.

The risk value is calculated as follows:

Risk = (0.45∗3.25+0.45∗2.06)−0.1∗4

The request is rejected because the risk value is 1.99 that is big-
ger than the threshold 1.62. This happened because the combina-
tion of context elements are mostly insecure. Note that, excepting

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

326



the user role, the context elements of this test are the same of test 1.
However, in this test the risk is less than the risk of test 1 because a
doctor’s user role is more important than a nurse’s user role.

Test 5
The same doctor from test 4 whose user rank increased to 7 tries

a new request access at time t ′, with t < t ′, the context, in which
test 5 was performed, is illustrated by figure 13.

<Context>
<AccessLocation>external</AccessLocation>
<UserRole>high</UserRole>
<MachineType>desktop</MachineType>
<ApplicationProtocol>http</ApplicationProtocol>

</Context>

Figure 13: Context of test 5.

The risk value is calculated as follows:

Risk = (0.45∗2.5+0.45∗2.06)−0.1∗7

The request is accepted because the risk value is 1.35 that is less
than the threshold 1.62. This test shows that a good rank could
allow access in medium-risk contexts.

Test 6
At time t, in which test 6 was performed, another doctor whose

service time is bigger than 3 years and user rank is equal to 7 re-
quests an access in which context is illustrated by figure 14.

<Context>
<AccessLocation>internal</AccessLocation>
<UserRole>veryHigh</UserRole>
<MachineType>desktop</MachineType>
<ApplicationProtocol>http</ApplicationProtocol>

</Context>

Figure 14: Context of test 6.

The risk value is calculated as follows:

Risk = (0.45∗2+0.45∗2.06)−0.1∗7

Since the context elements are secure elements and user rank is
above average of ranks, the request was readily accepted with value
equals to 1.13.

Test 7
The same doctor from test 6, now with user rank equals to 10,

tries a new request access at time t ′, with t < t ′, in which context is
illustrated by figure 15.

<Context>
<AccessLocation>internal</AccessLocation>
<UserRole>veryHigh</UserRole>
<MachineType>desktop</MachineType>
<ApplicationProtocol>ssh</ApplicationProtocol>

</Context>

Figure 15: Context of test 7.

The risk value is calculated as follows:

Risk = (0.45∗1+0.45∗2.06)−0.1∗10

The risk value is 0.38, so the request was accepted. This con-
text is formed by the safest elements, so there is almost no risk in
accepting this request.

7. CONCLUSION
Cloud computing has a large number of challenges related to se-

curity of resources. In this sense, this work contributed in defining
a way to control access to resources on the cloud, by extending
the XACML language to support the RAdAC model, presenting
a quantitative and concrete form of risk calculus, considering the
context, impact on confidentiality, integrity and availability of re-
sources and the introduction of the user rank. The introduction of
user rank allowed a dynamic risk calculus such that users who did
not have access to a resource in a given time t could have it at time
t ′ if their ranks increase enough for that.

The implemented model is easily handled, the administrator just
need to change the XML files and the weights of the formulas
as needed. Moreover, this model is flexible, so it may be easily
adapted or extended. In a next step we intend to focus our efforts
in determining formal means to quantify the RAdAC operational
need and implement it in our XACML architecture.

The work of Meeta Sharma et. al (2012) considers only the char-
acteristics of confidentiality, integrity and availability for risk cal-
culus in cloud environments, but let to the administrator or user the
task of definition of risk policies. Chen Chen et. al (2010) proposed
a set of modules to continuously control the risk calculus. If access
is released, the risk is recalculated from time to time, considering
changes in the data context throughout the session. However, the
authors do not present a concrete formula of how risk should be
calculated. Liang Chen (2013) extended the XACML language to
support the RAAC model. The main variables associated with en-
tities involved in the access request may be expressed as attributes.
However, the authors do not present how the risk is in fact calcu-
lated.

These works are concerned in presenting new components, how
they work, test scenarios and factors that should be considered for
risk calculus, although do not present how exactly the risk is cal-
culated. Some future works can be developed to: a) test the ap-
plication using a real case study to validate our approach; b) add
intelligent components to adapt user ranks according to history of
user actions; c) implement the RAdAC’s operational need; d) im-
plement an automatic and smarter way of defining the weighs of
the previous formulas.

References
[1] Security for cloud computing: 10 steps to ensure success.

Technical report, 2012.

[2] Chen Chen, Weili Han, and Jianming Yong. Specify and en-
force the policies of quantified risk adaptive access control. In
Weiming Shen, Ning Gu, Tun Lu, Jean-Paul A. Barthès, and
Junzhou Luo, editors, CSCWD, pages 110–115. IEEE, 2010.

[3] Liang Chen, Luca Gasparini, and Timothy J Norman. Xacml
and risk-aware access control. 2013.

[4] Nguyen Ngoc Diep, Sungyoung Lee, Young-Koo Lee, and
Heejo Lee. Contextual risk-based access control. In Selim
Aissi and Hamid R. Arabnia, editors, Proceedings of the 2007
International Conference on Security & Management, SAM
2007, Las Vegas, Nevada, USA, June 25-28, 2007, pages 406–
412. CSREA Press, 2007.

[5] Daniel Ricardo dos Santos, Carla Merkle Westphall, and Car-
los Becker Westphall. A dynamic risk-based access control
architecture for cloud computing. In Proceedings of the 14th
IEEE/IFIP Network Operations and Management Symposium
NOMS 2014. IEEE/IFIP, IEEE Press, May 2014.

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

327



[6] Thomas Erl and Zaigham Mahmood Ricardo Puttini. Cloud
Computing: Concepts, Technology and Architecture. The
Prentice Hall Service Technology Series from Thomas Erl.
Pearson Education, 2013.

[7] Doudou Fall, Gregory Blanc, Takeshi Okuda, Youki
Kadobayashi, and Suguru Yamaguch. Toward quantified risk-
adaptive access control for multi-tenant cloud computing. In
Proceedings of the 6th Joint Workshop on Information Secu-
rity (JWIS 2011), Kaohsiung, Taiwan, August 2011, 2011.

[8] Bassam Farroha and Deborah Farroha. Challenges of op-
erationalizing dynamic system access control: Transitioning
from abac to radac. In IEEE International Systems Confer-
ence, pages 1–7, march 2012.

[9] Giorgos Giannopoulos, Ulf Brefeld, Theodore Dalamagas,
and Timos Sellis. Learning to rank user intent. In Proceed-
ings of the 20th ACM International Conference on Informa-
tion and Knowledge Management, CIKM ’11, pages 195–
200, New York, NY, USA, 2011. ACM.

[10] Heras. http://www.herasaf.org/heras-af-xacml.html, 2012.
[Accessed in 12/04/2015].

[11] Peter Mell and Timothy Grance. The nist definition of cloud
computing. Technical report, Gaithersburg, MD, United
States, 2011.

[12] OASIS. extensible access control markup language version
3.0 oasis standard, 2013.

[13] JASON Program. Horizontal integration: Broader access
models for realizing information dominance. Technical re-
port, MITRE Corporation, 12 2004.

[14] Meeta Sharma, Yan Bai, Sam Chung, and Lirong Dai. Us-
ing risk in access control for cloud-assisted ehealth. In High
Performance Computing and Communication 2012 IEEE 9th
International Conference on Embedded Software and Systems
(HPCC-ICESS), 2012 IEEE 14th International Conference
on, pages 1047–1052, 2012.

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

328


