
MIDAS: A Middleware to Provide Interoperability between
SaaS and DaaS

Tarcio Marinho, Vinicius Cidreira, Daniela Barreiro Claro, Babacar Mane
FORMAS - Grupo de Pesquisa em Formalismos e Aplicações Semânticas

Depto de Ciência da Computação – Instituto de Matemática – Universidade Federal da Bahia
Av. Adhemar de Barros, s/n, Ondina
Salvador – Bahia – Brasil 40170-110

tmmachado@dcc.ufba.br, vmcidreira@dcc.ufba.br, dclaro@ufba.br,
mbabacar@gmail.com

ABSTRACT
Software as a Service (SaaS) and Data as a Service (DaaS)
proves to be two promising areas of research in the cloud
computing field, however interoperability among different
cloud providers is yet poorly explored. Today, clients loo-
king for content or services from different providers need ex-
tra time and resources to learn and implement the required
adaptations from the other parties. In this paper we pro-
pose MIDAS, a novel middleware to interoperate SaaS and
DaaS services seamlessly and independently from provider.
That is, SaaS applications will be able to get data from DaaS
datasets by sending a query to our middleware and letting
it mediate the communication and return the expected re-
sults. We evaluate our proposal by developing a prototype
from two case studies and by analyzing the time effort to
query through our middleware. Our results presented that
no important overhead were required from providers nor to
the final user.

Categories and Subject Descriptors
H.3.2 [Information systems]: Data management systems—
Information integration

General Terms
Information Systems

Keywords
Cloud Interoperability, Middleware, DaaS, SaaS

1. INTRODUCTION
The amount of data produced around the world is doubling
every two years and is estimated to achieve 7.2 zetabytes
for 2016 [8]. At the same time, researchers have been facing
challenges with respect to data management. There is an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SBSI 2016, May 17th-20th, 2016, Florianópolis, SC, Brazil
Copyright SBC 2016.

important need for computer scientists to develop low cost
solutions to huge intensive data issues. At the same time,
there is a strong tendence among governments, intitutions
and companies to make public information. Typically, such
data is released as open data that may be freely used and
distributed. However it is not enough to distribute the data,
it is important to make them available in an understanda-
ble manner and ready for use by consumers. Thus provide
services for data is an envisioned mechanism to tackle with
this concern.

Cloud based services have been experiencing a rapid ex-
pansion. Some cloud service approaches [30] are Platform
as a Service (PaaS), which provides operating systems as a
service, Infrastructure as a Service (IaaS), which provides
server machines as a service, Software as a Service (SaaS),
which supplies cloud applications and Data as a Service
(DaaS), a novel paradigm for providing data independent
from application. It is noteworthy that Data as a Ser-
vice(DaaS) and Database as a Service (DbaaS) are two dis-
tinct services. The latter, often misdefined as DaaS, refers
to the offer of a conventional database such as Oracle or
MongoDB, but offered on demand and hosted in a cloud.
The focus of Data as a Service is in the data set itself, as
tables in a relational database, so that only the reading of
data is allowed. In this work we deeply explain DaaS and
SaaS because of their participation in our proposal.

Software as a Service (SaaS) [2] comes as a new para-
digm not only for running applications in the cloud, but
it has also been changing concerns about how to manage
data application in the cloud and how to improve its use for
better performance and scalability. In this new pay-per-use-
basis model both sides benefits: the application user, since
he/she will be able to access its application anywhere in the
world directly from the web; and the companies who will
now transfer its costs of application/database maintainer to
a third party service provider.

Data as a Service (DaaS) [30] provides data on demand.
Data provided by DaaS is usually provided through APIs
for the consumer to query on it or, in a few cases, to down-
load it. As a result of using DaaS, consumers do not need
to maintain large availability. Instead, they find a suitable
provider that owns a dataset having the desired information.
On the other hand, there is a call among governments, ins-
titutions and enterprises to make information publicly avai-
lable, which contributes for an increasing demand for DaaS
providers and a fast expansion of data assets available.

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

401

In order to better understand both new issues, we have de-
veloped an extensive research focusing on SaaS and DaaS.
As a result, we built two bubble charts summarizing our dis-
coveries, one about SaaS and the other about DaaS. Further
analysis led us to perceive a gap regarding the interopera-
bility between those two paradigms, that is, there were not
enough information describing how would be possible to a
SaaS application hosted on one provider to access data from
a DaaS provider. In order to accomplish this interoperabi-
lity issue we propose the model and implementation of our
MIDAS (Middleware for DaaS and SaaS) middleware.
MIDAS is responsible for mediating the communication

between different SaaS and DaaS providers, making possi-
ble that SaaS applications retrieve data seamlessly from a
DaaS datasource as it would be querying its own datacenter.
We presented a case study concerning two different DaaS
datasources that communicate with SaaS application. We
measured both experiments to analyze their overload and
performance. Our results present some measures which en-
courage the use of MIDAS to interoperate SaaS and DaaS
providers.
This paper is organized as follows. Section 2 brings a lite-

rature survey that motivated this paper and we expose two
bubble charts summarizing SaaS and DaaS research direc-
tions. In Section 3 we describe our middleware proposal.
Section 4 presents a case study of a prototyped scenario em-
ploying the MIDAS middleware in real world application to
evaluate our proposal. In Section 5 we discuss our results
and, in Section 6, the conclusion and future work.

2. LITERATURE SURVEY
We have conducted an extensive research covering Software
as a Service (SaaS) and Data as a Service (DaaS) areas with
the objective of gathering the most relevant papers discus-
sing data cloud related themes, which was our basic inclu-
sion criterion. The final set of papers contains twelve articles
regarding SaaS and other twelve regarding DaaS.
For the SaaS research our exclusion criteria discarded ar-

ticles focusing on other aspects such as security or the ap-
plication itself since our main goal was really to perceive
data concerns. Papers which did not present any related
work were also discarded. The remaining twelve papers
[5, 10, 12, 14–16, 18, 20, 23, 28, 29, 31] were mapped into the
bubble chart in Figure 1. The chart presents two readings
of the results. On the left side, the contributions to each su-
barea (Framework, Method, Tool, Architecture and Model)
and, on the right, the form of validation they used (Empi-
rical Evaluation, Use case, Benchmark, Controlled experi-
ment, Prototype). Bubbles grow up in accordance as the
number of papers. Looking at the chart we can see that two
papers did not provide any kind of validation. Also none of
them proposed a way for an application to access data from
a different provider, which is perceived by the empty Intero-
perability line in the chart. The major contribution observed
on the chart is regarding a Method approach. Considering
Validation reading, the major approach is by the use of a
Controlled Experiment. Regarding Migration research con-
text, it is observable that only Use Case approach is being
used for validation.
For the DaaS research [1,3,4,7,11,13,17,19,22,25–27], pa-

pers were discarded when they were focused on security or
structural aspects of the service. As our focus where aimed
at data aspects of the service, we had to maintain twelve

papers that were mapped into the bubble chart in Figure 2.
The chart is organized following the similar structure used
in SaaS chart. So, observing the chart it is possible to see
that just one paper did not explain the method they used
to validate their proposal. As it happened in the SaaS re-
search, there was no paper proposing a way to work with
dataset from different providers through a SaaS application,
which also can be perceived looking to the empty Interope-
rability line in the chart. The major contribution observed
on the chart is regarding the Architecture approach, howe-
ver the difference between Architecture and Model is not too
significative, thus both can be considered as a Contribution
to DaaS area. Considering Validation readings, the major
approach is by the use of Case Study approach. Thus, we
opted to either validate our approach by a case study.

Considering both bubble charts, we can observe a lack in
interoperability issues considering SaaS and DaaS approa-
ches. Thus, our solution aims at developing a method to
interoperate SaaS applications and DaaS datasources. Ac-
cording to IEEE, interoperabiliy means the hability of two
or more systems to exchange information and use them [9].
Since the ISO [24] defined as the ability of functional units
run programs, communicate and transfer data between them
as to require minimal user knowledge about the unique fea-
tures of these units. On the other hand, researchers define
interoperability as the ability of software systems to unders-
tand and use the services one from the other [6]. Further-
more, in the context of SOA, it is defined as software systems
ability to use the services of each other [21]. Finally, within
the cloud computing context, interoperability is defined as
the ability to write code that work in more than one ser-
vice provider, regardless of the differences between them,
i.e. correctly recovering data from different sources. The
following sections describe our proposal and our case study.

3. MIDAS MIDDLEWARE FOR CLOUD IN-
TEROPERABILITY

This paper is the result of an intensive endeavour to pro-
pose a method so an application hosted on a Software as a
Service (SaaS) provider could not only retrieve data from
its own data center, but also from an external datasource
without extra effort. In sight of this goal, we propose a no-
vel middleware, called MIDAS (Middleware for DaaS and
SaaS), that commits to deliver a transparent and provi-
der independent communication between different SaaS and
DaaS providers.

The challenge is that as of today the only way to accom-
plish this interoperability is by doing it manually. One pos-
sibility is to acquire datasets from the DaaS providers and
then populate the database manually or maybe make a query
to a file. The problems here are (i) data will not be always
up-to-date and (ii) the SaaS provider would have to agree in
adapting to these procedures, which we assume is unlikely.
Another choice would be to access the DaaS provided API
directly from the application, but again, that would impli-
cate in having the SaaS provider to adapt its application to
a new method of retrieving data.

Our solution is a middleware service that will transpa-
rently mediate the communication between any SaaS and
DaaS providers. The core idea is that the SaaS application
will not have to adapt anyway more than it already does.
For example, normally the application requests data from

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

402

Figura 1: Bubble chart for SaaS

its server’s databases and get a result set as a response to
format and display on the screen. Now, the only thing that
will change is the application sending the database query
(regardless the language) to our middleware and it will be
in charge of querying the DaaS dataset and returning the
result set as expected.
MIDAS’architecture is depicted in Figure 3. The mid-

dleware is composed of two modules: Request and Result.
As the names suggest, Request Module handles the incoming
SaaS query while Result Module handles DaaS response.
The following subsections describe the whole architecture

in detail.

3.1 SaaS Application
The SaaS application developers will benefit from MIDAS

since a minimal extra effort is required to adapt it to the
middleware. The SaaS query is sent to MIDAS and then
our middleware takes the control.

3.2 MIDAS Middleware
MIDAS (Middleware for DaaS and SaaS) aims at provi-

ding a transparent communication between different SaaS
and DaaS providers, making possible that SaaS applications
retrieve data from a DaaS datasource. Our middleware is
composed of four modules: Query Decomposer, Data Provi-
der Information Storage (DIS), Query Builder and Result
Formatter. Figure 4 describes the sequence of each mo-
dule of MIDAS. It is possible to understand the interactions
among SaaS application, MIDAS, DaaS provider and the
user. From the point of view of the user, the same query is
sent and a required result is returned. Thus, MIDAS works
in a transparent manner.
Each module is described in following paragraphs.

Figura 3: MIDAS middleware model

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

403

Figura 2: Bubble chart for DaaS

Figura 4: Sequence Diagram of MIDAS

3.2.1 Query Decomposer
Query Decomposer is responsible for breaking the original

query into an array, which maps each part of the query to
an independent key-value format. This format is more in-
teroperable and will assure that the Query Builder will be
able to build the DaaS request independently of their API.

3.2.2 Dataset Information Storage (DIS)
Dataset Information Storage (DIS) aims to keep informa-

tion about DaaS providers’ datasets and APIs. In order to
persist it, we proposed the use of a relational database. The
Logical Database Diagram for DIS is depicted in Figure 5
within three tables. Since there is yet no way to get this
data automatically, the job of adding providers to the sto-
rage and maintaining them will have to be done manually
for now.

• Provider(id, name, domain, id api). In this table
we keep only essential data about the DaaS provider,
which are name and domain. The domain is the
first part of the DaaS request URL built by the Query
Builder. The attribute id api is a foreign key to the
API by the provider and the id is a numeric sequence.

• Dataset(id, id provider). The attribute id is a
name that uniquely identifies the dataset among the
providers. Because of that we are able to find its res-
pective provider and API, which affords the SaaS ap-
plication to work with nothing more than the dataset
id as a targeted table.

• Api(id, search path, dataset param, query param,
sort param, limit param). The attribute id here is
a numeric sequence as in the Provider relation. The
attribute search path represents the piece of string in

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

404

the DaaS request that concatenates to the provider do-
main and gives the path to access the API. The attri-
butes dataset param, query param, sort param
and limit param represent respectively the API para-
meter names to inform dataset, query filters, ordering
field and the number of rows in the result.

Figura 5: DIS Entity Relationship Diagram

3.2.3 Query Builder
After receiving the decomposed query, the Query Builder

will proceed with the assembling process of transforming the
SaaS query in a DaaS request. For this matter, the Query
Builder search the Dataset Information Storage (DIS) in
order to get information about the provider that owns the
dataset being queried (Figure 5). With this information,
the Query Builder will follow-up matching the fields in our
independent format with the parameters that compose the
DaaS provider request using the column names in the Da-
taset Information Storage as a reference to the fields as its
correspondent in the DaaS API parameters. After finishing
the parameters matching, the Query Builder will then com-
pose the complete request parameter and send it to the DaaS
provider.

3.2.4 Result Formatter
The data received from the DaaS provider comes in a

JSON object packed along with other information that will
not be used by the SaaS application that initially reques-
ted the information. For this reason, the Result Formatter
is responsible to prune the returned object keeping just the
relevant information that needs to be sent to the SaaS ap-
plication.

3.3 DaaS Provider
The DaaS provider does not have to make any changes

in its service offering. Thus, the provider will receive the
request sent by MIDAS and proceed with the processing
within the dataset. After gathering all the data requested,
the provider will return all the information to MIDAS as a
JSON object.

4. CASE STUDY
Our case study aims to validate our MIDAS approach.

It illustrates a tourism agency web application that wants

to host their application in the Software as a Service (SaaS)
Red Hat cloud. Though the cloud provider offers the storage
space of a SQL data center, their interest is to assemble data
from different Data as a Service (DaaS) providers to build
their application.

In the current prototype, MIDAS is able to understand
simple SQL Standard queries, containing Select, From,Where,
Order By and Limit clauses. However, it is implemented in
a way that will easily incorporate new query languages in
their full potential as suited. In other words, the applica-
tion will send the query and wait for the result as the SQL
Standard database would return it.

For our case study we have prototyped a web applica-
tion that concerns displaying two different data sources: a
list of Wi-Fi hotspots (OpenDataSoft2 dataset) and a list
of hotels in the New York City metropolitan region (NYC
OpenData3) from OpenDataSoft’s public service1. Our web
application is hosted in the Red Hat SaaS public cloud2.
The application is based on HTML5 + CSS3 + JavaScript
front end along with a PHP 5.4 and MySQL 5.5 back end.
Bootstrap and jQuery were also used additionally and the
framework Codeigniter 2 was employed for the PHP imple-
mentation.

To better illustrate the scenario, we will assume for now
on Code 1 is the original SaaS query.

Code 1. Original SaaS query in SQL language
SELECT id, name, address, city
FROM nyc-wifi-hotspot-locations
WHERE city = ’New York’
ORDER BY id
LIMIT 10

As we can see in Code 2, the method takes the query
as a parameter and creates an array called $indexes, which
will collect the first index of each clause of the SQL Standard
syntax that is acceptable for now. They are: ‘from’, ‘where’,
‘order by’ and ‘limit’. The clause ‘select’ is assumed as index
0 since it has to head the query in SQL. Next, we store the
query columns, the ones between ‘select’ and ‘from’ in the
query, as an array inside our independent format array in the
position ‘fields’. The ‘dataset’ key relates to the value passed
in the ‘from’ clause, this will be the dataset id the DaaS
provider will look for. This means the SaaS application will
query the dataset as it would be querying a relational table.
The ‘filters’ key maps the ‘where’ clause value, ‘order’ maps
‘order by’s and the ‘limit’ key maps the ‘limit’ clause.

Code 2. Query decomposer’ indexes structure
private function _query_decomposer($query){

$sql = strtolower(trim($query));

$indexes[] = strpos($sql, "from");
$indexes[] = strpos($sql, "where");
$indexes[] = strpos($sql, "order by");
$indexes[] = strpos($sql, "limit");

$jsonArray["fields"] = $this->_getFields($sql,
$indexes[0]-6);

$jsonArray["dataset"] = $this->_getDataset($sql,
$indexes[0]+4, $indexes, 1);

1http://public.opendatasoft.com/explore/
2https://www.openshift.com

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

405

$jsonArray["filters"] = $indexes[1] === false ?
false : $this->_getFilters($sql, $indexes[1]+5,
$indexes, 2);

$jsonArray["order"] = $indexes[2] === false ? false
: $this->_getFilters($sql, $indexes[2]+8,
$indexes, 3);

$jsonArray["limit"] = $indexes[3] === false ? false
: $this->_getLimit($sql, $indexes[3]+5);

return $jsonArray;
}

After being processed by our middleware’s Request Mo-
dule, the original query will be turned in a DaaS request.
Information about DaaS requests had already been stored
in DIS. Each DaaS provider needs to store its relevant infor-
mation manually, since until now there is no way to obtain
it automatically. A brief example about DaaS information
stored in DIS can be seen as follows. This example was used
in our case study.

http://public .opendatasoft.com/api/records/1.0/search?dataset
=nyc−wifi−hotspot−locations&q=city+%3D+’New+York
’&rows=10&sort=id

Then, the request is processed by the DaaS service and
a JSON result is generated. Because the object returned is
too large, we only present its first record in Code 3. This
result is returned to the middleware where it will be handled
by the Result Module.

Code 3. JSON result from DaaS
{"nhits": 712, "parameters": {"dataset": ["nyc-wifi-

hotspot-locations"], "timezone": "UTC", "q": "city
= ’New York’", "rows": 10, "sort": "id", "format":
"json"}, "records": [{"datasetid": "nyc-wifi-
hotspot-locations", "recordid": "
a4e6f313395a4eab66019164ea30b18a7103ca6a", "fields
": {"city": "New York", "name": "Metropolitan
Museum of Art", "zip": "10028", "url": "http://www.
metmuseum.org/", "geom_x_y": [40.779426050712786,
-73.96343466448646], "geom": {"type": "Point", "
coordinates": [-73.96343466448646,
40.779426050712786]}, "address": "1000 Fifth Avenue
", "type": "Fee-based", "id": 1359.0}, "geometry":
{"type": "Point", "coordinates":
[-73.96343466448646, 40.779426050712786]}, "
record_timestamp": "2015-04-22T22:08:01+00:00"}]}

As we can see in Code 3, the JSON object provided by
the DaaS service contains too much information that does
not concern the SaaS application, so when it specifies the
name of the attributes within the SELECT parameter in
the query, the Result Formatter will remove the unwanted
attributes from the JSON object. To do that pruning, the
Result Formatter retrieves, from the DIS, the name of the
field into the object that contains the target information.
After doing this, the Result Formatter will turn the returned
object in another JSON object but following the structure
of a result set as would be returned from SQL Database,
which means that it holds both the numeric and associative
keys containing the information from the dataset (Code 4).

Code 4. JSON from Result Formatter
[{"0":"New York","city":"New York","1":"Metropolitan

Museum of Art","name":"Metropolitan Museum of Art

","2":"1000 Fifth Avenue","address":"1000 Fifth
Avenue","3":1359,"id":1359}]

Now that the result is in the SaaS expected format it is
returned as a response to the original query. All steps can
be better visualized in Figure 6, where each step (1-5) is
described concerning its respective module in MIDAS.

Figura 6: Steps of MIDAS

Is it important to observe that our MIDAS provides inte-
roperability approach, following step-by-step as proposed in
our model. The first step depicts the query request descri-
bed in our case study as SQL statement. The second step
corresponds to the indexes in Query Decomposer where each
clause in query request is decomposed into key value appro-
ach. The third step concerns the communication between
the Query Builder and DIS. The fourth step is a pure DaaS
result and the fifth step is actually the DaaS result formatted
as following the SaaS application’s request.

5. EVALUATION
Our evaluation was made based on the comparison between

the direct access to a datasource and access through MIDAS
through all steps since the initial query. For that we used a
tool called Hurl3 to test HTTP requests.

As a first test, a set of 40 requests were sent through MI-
DAS from the SaaS application using both DaaS Providers:
NYC Open Data and OpenDataSoft. The second test was
made by the direct access to both datasources, where either
40 requests were sent to each datasource provider. As a
result, we obtained an average of 228.24 ms on the direct
access to NYC OpenData and 286.88ms by the use though
our middleware MIDAS. The difference between the direct
access and MIDAS was 58.64ms.

Considering the second data source, OpenDataSoft, the
average response time within direct access was 370.08ms,
while using MIDAS was 450.04ms. Thus the difference between
direct access and MIDAS was 79.96ms. The time difference
between the datasets was due to the number of fields and
data returned. The OpenDataSoft DaaS has a larger num-
ber of fields and data than NYC Open Data.

Analyzing the result times obtained, a low dispersion (LS
- LI) on query returning through MIDAS is observed. In
both providers there is a negative asymmetry in delay time,

3https://www.hurl.it/about

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

406

thus finding not very high values for returning time using our
middleware. In the case of NYC OpenData, the turnaround
time via MIDAS was within the range between Q3 and LS
boxplot on comparison with direct access to provider. Thus
the overtime for accessing through MIDAS does not reflect
into performance. It was observable that the JSON object
returned has a large number of fields and data, requiring
more operations in our Formatter Result of MIDAS. This
conclusion comes from the fact that there is an intersection
between the graphic access via MIDAS and direct access at
the point that goes between the Q1 and the LI of the first
and the LS and the second of Q3.
In addition, the median (Med) was analyzed for access via

MIDAS and direct access to NYC OpenData whose results
were 277ms and 215ms respectively. For OpenDataSoft the
results are 438ms and 345ms, respectively. Finally, the tur-
naround time to query via MIDAS was between 20% and
25% for both providers, which is offset by the benefit pro-
vided by use of our middleware, since it adds the ability to
query different data sources. It is worth noting that this
time also includes the access time for a provider that hosts
our middleware, which could increase the total return time.

6. DISCUSSION
With our case study we were able validate the effectiveness

of MIDAS through a step-by-step explanation of how we
achieved the interoperability between our SaaS application
and both DaaS datasets. We chose those providers for their
reputation with cloud services and the availability of a public
service, which enabled the implementation and hosting of
our current prototype.
Concerning time efforts, we could verify that no response

overtime was perceived from the users’ perspective. Search
results were displayed on the screen in approximately one
second from the instant the search button is clicked. As
the best of our knowledge, there is no similar proposal co-
vering a middleware implementation and its evaluation to
interoperates SaaS and DaaS.

6.1 Threats of Validity
We can position some threats of validity. Concerning our

case study we have application and middleware running in
the same domain, which will not be the case for real world
use. In those cases, the middleware would run on an inde-
pendent cloud service. However this does not diminish our
proposal as our case study can be located abroad.
Another threat can be the use of a public dataset. One of

the advantages of choosing a public dataset is that we did not
need to worry about authentication concerns, nevertheless
this also means that our current implementation does not
cover authentication issues in protected domains. In that
case, the SaaS provider would have to send its authentication
key along with the query so it can be validated by the DaaS
service. Despite that, it will not interfere with the current
functionality.

7. CONCLUSION AND FUTURE WORK
In this paper we proposed a novel middleware called MI-

DAS that enables the interoperability between Software as
a Service (SaaS) and Data as a Service (DaaS) cloud provi-
ders. With MIDAS, SaaS applications will be able to query
DaaS datasets transparently as it would be querying its own

databases, which means a minimal adaptation for SaaS and
DaaS providers. Results have shown that our middleware
was able to deliver the expected results to the application
with a low overtime, from the moment the user clicks on the
search button to the moment the result table is filled. This
shows how our project can encourage the conception of a
middleware in despite of the cross-provider communication.

In future work we intend to address issues left open in
this paper, such as offering a more robust support to SQL
Standard queries and authentication concerns for protec-
ted domains. We also plan to build a new case study de-
monstrating the middleware operation with a non-relational-
database application.

ACKNOWLEDGMENTS
Babacar Mane would like to thanks FAPESB BOL3693/2014.

8. REFERÊNCIAS
[1] S. Ahirrao and R. Ingle. Scalable transactions in cloud

data stores. In Advance Computing Conference
(IACC), 2013 IEEE 3rd International, pages 116–119.
IEEE, 2013.

[2] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and
J. Rittinger. Multi-tenant databases for software as a
service: schema-mapping techniques. In Proceedings of
the 2008 ACM SIGMOD international conference on
Management of data, pages 1195–1206. ACM, 2008.

[3] S. Barouti, D. Alhadidi, and M. Debbabi.
Symmetrically-private database search in cloud
computing. In Cloud Computing Technology and
Science (CloudCom), 2013 IEEE 5th International
Conference on, volume 1, pages 671–678. IEEE, 2013.

[4] N. Bonvin, T. G. Papaioannou, and K. Aberer. A
self-organized, fault-tolerant and scalable replication
scheme for cloud storage. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 205–216.
ACM, 2010.

[5] E. Boytsov and V. Sokolov. Multi-tenant database
clusters for saas. proceedings of BMSD, page 144, 2012.

[6] D. Chen, G. Doumeingts, and F. Vernadat.
Architectures for enterprise integration and
interoperability: Past, present and future. Comput.
Ind., 59(7):647–659, Sept. 2008.

[7] G. Chen, H. T. Vo, S. Wu, B. C. Ooi, and M. T. Özsu.
A framework for supporting dbms-like indexes in the
cloud. Proceedings of the VLDB Endowment,
4(11):702–713, 2011.

[8] J. GANTZ and D. REINSEL. Extracting value from
chaos. (1142):9–10, 2011.

[9] A. Geraci. IEEE Standard Computer Dictionary:
Compilation of IEEE Standard Computer Glossaries.
IEEE Press, Piscataway, NJ, USA, 1991.

[10] I. Gorti, N. Shiri, and T. Radhakrishnan. A flexible
data model for multi-tenant databases for software as
a service. In Computational Science and Engineering
(CSE), 2013 IEEE 16th International Conference on,
pages 1059–1066. IEEE, 2013.

[11] J. Han, M. Song, and J. Song. A novel solution of
distributed memory nosql database for cloud
computing. In Computer and Information Science
(ICIS), 2011 IEEE/ACIS 10th International
Conference on, pages 351–355. IEEE, 2011.

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

407

[12] D. Hou, S. Zhang, and L. Kong. Placement of saas
cloud data and dynamically access scheduling strategy.
In Computer Science & Education (ICCSE), 2013 8th
International Conference on, pages 834–838. IEEE,
2013.

[13] M.-J. Hsieh, C.-R. Chang, L.-Y. Ho, J.-J. Wu, and
P. Liu. Sqlmr: A scalable database management
system for cloud computing. In Parallel Processing
(ICPP), 2011 International Conference on, pages
315–324. IEEE, 2011.

[14] M. Hui, D. Jiang, G. Li, and Y. Zhou. Supporting
database applications as a service. In Data
Engineering, 2009. ICDE’09. IEEE 25th International
Conference on, pages 832–843. IEEE, 2009.

[15] L. Jiang, J. Cao, P. Li, and Q. Zhu. A mixed
multi-tenancy data model and its migration approach
for the saas application. In Services Computing
Conference (APSCC), 2012 IEEE Asia-Pacific, pages
295–300. IEEE, 2012.

[16] K. Lanju, L. Qingzhong, and W. Xue. Multi-level
index model for saas application. In Web Information
System and Application Conference (WISA), 2013
10th, pages 23–28. IEEE, 2013.

[17] Y. Li, L. Guo, and Y. Guo. Cacss: Towards a generic
cloud storage service. In CLOSER, pages 27–36, 2012.

[18] H. Liu and S. Wu. Data storage schema upgrade via
metadata evolution in saas. In Consumer Electronics,
Communications and Networks (CECNet), 2012 2nd
International Conference on, pages 3148–3151. IEEE,
2012.

[19] E. Mykletun and G. Tsudik. Aggregation queries in
the database-as-a-service model. In Data and
Applications Security XX, pages 89–103. Springer,
2006.

[20] J. Ni, G. Li, J. Zhang, L. Li, and J. Feng. Adapt:
adaptive database schema design for multi-tenant
applications. In Proceedings of the 21st ACM
international conference on Information and
knowledge management, pages 2199–2203. ACM, 2012.

[21] S. Pokraev. Model-Driven Semantic Integration of
Service-Oriented Applications. PhD thesis, University
of Twente, October 2009.

[22] A. M. Segura, J. S. Cuadrado, and J. D. Lara. Odaas:
Towards the model-driven engineering of open data
applications as data services. In Enterprise Distributed
Object Computing Conference Workshops and
Demonstrations (EDOCW), 2014 IEEE 18th
International, pages 335–339. IEEE, 2014.

[23] W. Shengqi, Z. Shidong, and K. Lanju. A dynamic
data storage architecture for saas. In Multimedia
Information Networking and Security (MINES), 2010
International Conference on, pages 292–296. IEEE,
2010.

[24] M. J. Standard. Information Technology - Vocabulary
- Part 1: Fundamental Terms (ISO/IEC 2382-1:1993,
IDT). Malaysian standard. Department of Standards
Malaysia, 2005.

[25] O. Terzo, P. Ruiu, E. Bucci, and F. Xhafa. Data as a
service (daas) for sharing and processing of large data
collections in the cloud. In Complex, Intelligent, and
Software Intensive Systems (CISIS), 2013 Seventh
International Conference on, pages 475–480. IEEE,

2013.

[26] H.-L. Truong, S. Dustdar, J. Götze, T. Fleuren,
P. Müller, S.-E. Tbahriti, M. Mrissa, and C. Ghedira.
Exchanging data agreements in the daas model. In
Services Computing Conference (APSCC), 2011 IEEE
Asia-Pacific, pages 153–160. IEEE, 2011.

[27] Q. H. Vu, T.-V. Pham, H.-L. Truong, S. Dustdar, and
R. Asal. Demods: A description model for
data-as-a-service. In Advanced Information
Networking and Applications (AINA), 2012 IEEE
26th International Conference on, pages 605–612.
IEEE, 2012.

[28] C. Weiliang, Z. Shidong, and K. Lanju. A multiple
sparse tables approach for multi-tenant data storage
in saas. In Industrial and Information Systems (IIS),
2010 2nd International Conference on, volume 1,
pages 413–416. IEEE, 2010.

[29] Z. Xuxu, L. Qingzhong, and K. Lanju. A data storage
architecture supporting multi-level customization for
saas. In Web Information Systems and Applications
Conference (WISA), 2010 7th, pages 106–109. IEEE,
2010.

[30] M. Zhou, R. Zhang, D. Zeng, and W. Qian. Services in
the cloud computing era: A survey. In Universal
Communication Symposium (IUCS), 2010 4th
International, pages 40–46. IEEE, 2010.

[31] X. Zhou, D. Zhan, L. Nie, F. Meng, and X. Xu.
Suitable database development framework for business
component migration in saas multi-tenant model. In
Service Sciences (ICSS), 2013 International
Conference on, pages 90–95. IEEE, 2013.

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

408

