
Information Systems Development with Pair
Programming: An Academic Quasi-Experiment
Eduardo Fernandes, Fischer Ferreira, João Antônio Netto, Eduardo Figueiredo

Software Engineering Laboratory (LabSoft), Department of Computer Science
Federal University of Minas Gerais (UFMG)

Belo Horizonte, Minas Gerais, Brazil
{eduardofernandes, fischerjf, joaoantonio, figueiredo}@dcc.ufmg.br

ABSTRACT
Pair Programming is a development technique in which two
programmers collaborate to conduct the same development task.
The use of this technique in information systems development
may support many activities, such as code inspection and software
integration. Studies have investigated the advantages and
drawbacks of pair programming in both industrial and academic
context. However, with respect to academic research, the majority
of studies investigate this technique in European or North
American educational institutions. Considering that some social
and geographic factors may impact on the application and
efficiency of agile methods such as pair programming, we lack an
evaluation of this programming practice in the context of
Brazilian students. In this paper, we discuss the findings of three
one-hour quasi-experiments conducted with 55 undergraduate and
graduate students to assess pair programming in the development
of tasks to implement an information system. These participants
are students enrolled in Information Systems and related courses
of two Brazilian institutions. For the experiment, we divided each
class in two groups: one group for solo programming and the
other for pair programming. As a result, we observed that
participants developing tasks in pairs presented lower rates of
time spent and difficulty faced to complete development tasks
when compared with solo programming participants. However,
we did not observe a significant increase on the correctness in
tasks developed by both experiment groups: paired and solo
programmers. Finally, we conducted an analysis of participant
feedback regarding other advantages of using pair programming
in systems development.

Categories and Subject Descriptors
H.0 [Information Systems]: General. D.2.5 [Software
Engineering]: Testing and Debugging – code inspections and
walk-throughs. D.2.9 [Software Engineering]: Management –
programming teams.

General Terms
Experimentation, human factors, management, verification.

Keywords

Information systems, software development, pair programming,
academic context, superior education.

1. INTRODUCTION
Pair Programming (PP) is a software development technique,
related to Agile Methods, in which two programmers collaborate
to conduct the same development task [2][9]. One of the
programmers assumes the control of computational resources and
writes source code. The other programmer is responsible for
assisting the partner, verifying the source code during
implementation to identify flaws or mistakes, for instance [8].
This technique may also contribute for discussion and
brainstorming between partners to solve development tasks [5].

PP has been successfully applied in industry [2][23] aiming to
increase software quality, foster team collaboration, introduce
junior developers in a development team [19], and many other
contexts [10]. There are some investigation of pair programming
in academic context. For instance, previous work [12][24] has
assessed the impact of PP in the performance of undergraduate
students. One of the main positive impacts of PP in academia is
the knowledge sharing that can support undergraduate students in
programming courses [14]. However, we still lack a deeper
understanding regarding the benefits of PP in educational
environments (in general) and in Brazilian contexts (in particular).

To address this limitation, this study presents and discusses the
findings of three one-hour quasi-experiments comparing PP with
solo programming in the context of two Brazilian universities. For
this purpose, we collected data regarding time spent, difficulty
level, correctness, and feedback with respect to five development
tasks conducted by experiment participants. We aim to identify
advantages and drawbacks of using PP when compared with solo
programming in the development of information systems. We
designed tasks to be conducted in a one-hour experiment, using
Java programming language, and on a toy information system for
improvement or implementation of new features.

The experiments were conducted in three university courses of
two educational institutions; one of the courses has post-graduate
level. For the courses, undergraduate and graduate students were
randomly divided in two groups, one to use PP and the other to
use solo programming during the experiment. Each participant (or
pair of participants) conducted five development tasks in a
laboratory, using computers with support material, such as a pre-
installed IDE, source code of an information system, and its
documentation.

As a result, we observed significantly lower rates of time spent
and difficulty faced by participants who developed the proposed
tasks in pairs, when compared with solo programmers. However,
we did not observe a significant increase of correctness in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SBSI 2016, May 17–20, 2016, Florianópolis, Santa Catarina, Brazil.
Copyright SBC 2016.
.

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

486

source code developed by pair programmers in comparison with
programmers from the solo group.

The remainder of this paper is organized as follows. Section 2
presents a background with relevant concepts to support the
understanding of our study. Section 3 describes the experimental
design, including the experiment scope and investigated
hypotheses. Section 4 presents and discusses our main research
results regarding the three applied quasi-experiments. Section 5
presents related work with respect to the investigation of PP in
academic and industrial contexts. Section 6 discusses some threats
to the validity of our study. Finally, Section 7 concludes this
paper and suggests future work.

2. BACKGROUND
Agile methods are a collection of development and management
techniques to support lightweight and fast software development
[9]. Agile methods are composed by various techniques with
different goals, such as prioritizing high software reliability [13],
simple documentation for small development teams [7], and client
satisfaction with respect to software product fast deliver [1]. Some
of the agile principles are continuous development of software
requirements, promotion of developers' motivation and
cooperation, technical improvements, appropriate software design,
and software quality [11].

Agile software development has been proposed in response to
limitations of traditional plan-oriented software processes, such as
the Waterfall model [9]. The Agile Manifesto1 focus on four key
statements: individuals instead of processes and tools, functional
software over extensive documentation, collaboration between
stakeholders and development team, and responding to change.
This manifesto also compiles the 12 principles of agile software
development that cover several software development practices.
Fowler and Highsmith [11] present agile methods as a new
development approach covering various programming techniques
and practices. Typical examples of agile methods include Extreme
Programming (XP) [3], Scrum [4], and Test-Driven Development
(TDD) [13].

XP is a collection of practices to support agile software
development that covers technical aspects, such as source code
implementation, software design, and testing. XP prescribes short
development cycles and flexible scheduling [3]. Scrum is another
agile method to support development management. Scrum aims to
minimize the overload of the traditional central control of
development teams, in a decentralized, iterative and incremental
fashion [21]. The development process is distributed to teams
under inspection. Scrum is recommended to complex and large
software systems, for instance [22].

TDD applies a technique in which software testing comes before
source code development [6]. It fits to critical and large systems
that require special attention to flaw detection, because it was
design to support increase of software quality by minimized
occurrences of bugs, for instance [17]. Its steps consists of (i)
writing unit tests to be run before a feature implementation, (ii)
developing of the aimed features, and (iii) successive testing until
the feature implementation is in accordance with the unit test [13].

In this study, we are interested on evaluating a specific agile
practice: Pair Programming (PP). PP is a software development

1 http://www.agilemanifesto.org/principles.html/

practice in which two programmers conduct the same
development task [2]. One of the programmers is responsible to
control the computational resources and write source code. The
other programmer is responsible for assisting the partner in source
code verification and validation, discussion, and other
contributions [8]. PP is a practice particularly recommended by
XP [18]. This practice have been investigated both in industry
[2][23] and academia [12][24].

3. EXPERIMENTAL DESIGN
This section describes the experimental design of our study. In
Section 3.1, we present the main goal and hypotheses that guided
this study. Section 3.2 describes the participant set before data set
reduction. Section 3.3 presents the artifacts we designed to
support our experiments. Finally, Section 3.4 describes the steps
of the experiment.

3.1 Goal and Hypothesis
In this study, we aim to evaluate the use of PP in academic
context when compared with solo programming, with respect to
the development of information systems. For this purpose, we
conducted three quasi-experiments in three Information Systems-
related courses in two educational institutions: Federal University
of Minas Gerais (UFMG) and University of Itaúna (UIT). Two
courses are undergraduate level (Software Engineering) and one is
post-graduated level (Empirical Software Engineering).

Our main goal is to identify advantages and drawbacks regarding
the use of PP by undergraduate and graduate students in the
development of programming tasks. We are also interested in the
participant feedback about the experiment.

The experiment goal, based on the Goal-Question-Metric (GQM)
method [25], is: Analyze the use of Pair Programming (PP), from
the purpose of performance evaluation when compared with solo
programming, with respect to time spent, difficulty level, and
correctness of developed tasks, from the point of view of
developers, in the context of Brazilian students.

To support our empirical study, we conceived the following
hypotheses.

H1. PP decreases time spent to develop tasks when compared
with solo programming.

H2. PP decreases the difficulty level to perform development
tasks when compared with solo programming.

H3. PP increases correctness of developed programming tasks
when compared with solo programming.

We defined the hypotheses H1 and H3 to guide our study in
accordance with related work that investigate key-aspects of pair
programming and agile methods [2][23]: impacts of development
time spent and correctness of implemented features. In turn,
considering that we run our experiments in academic context, we
also are interested on investigating the difficulty faced by students
to apply PP in information system development (hypothesis H2).

3.2 Participant Set
We obtained an initial participant set composed by 60
undergraduate or graduate students in Information Systems and
related courses. Table 1 presents the total number of experiment
participants. C1 is the first class (Experimental Software
Engineering from UFMG), C2 is the second class (Software

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

487

Engineering from UIT), and C3 is the third class (Software
Engineering from UFMG) where the experiment was applied.

Table 1. Participant Set

Participant Group
Class

Sum
C1 C2 C3

Pair Programming 16 12 12 40
Solo Programming 7 7 6 20
Total 23 19 18 60

3.3 Experiment Artifacts
We designed the following artifacts required to run the
experiment.

 Commitment Form: this formal document: (i) describes the
experiment, (ii) requests the use of collected data for
analysis, and (iii) guarantees anonymous publication of
obtained results.

 Background Form: we designed this six-question form to
acquire participant data regarding previous knowledge in
software systems development topics and techniques used in
the experiment. Questions cover software development topics
that participants may know, previous professional
experience, and level of skill with respect to development
techniques applied in our study.

 Experiment Form: this document describes the five
programming tasks to be conducted in the one-hour
experiment. It also includes fields to inform initial time, end
time, and difficulty level for each development task. The
difficulty level is an integer value between 1 (no difficulty)
and 5 (unable to complete the task). This value aims to
measure the overall difficulty faced by participants to
complete an experiment task.

 Feedback Form: this form contains 9 questions to allow
participants report their difficulty faced to: complete the
experiment tasks, understand the source code provided for
experiment execution, use the Java programming language,
and use the Eclipse IDE. As in the Experiment Form,
difficulty level is an integer value between 1 and 5.

 Vending Machine information system: this is a Java toy
information system that participants used to develop tasks
described in the Experiment Form.

The Vending Machine system simulates a soda vending machine.
Users can insert coins with fixed value. Based on the inserted
amount of coins, users can buy products available in the machine.
Two classes totaling 261 lines of code (with JavaDoc comments)
compose this system: Dispenser and Vending Machine. We also
provided a support documentation in form of a class diagram. All
artifacts used in the experiments, including the Commitment
Form, the Experiment Form, and the source code of Vending
Machine, are available for consultation in the research group
website3.

Experiment Tasks and Difficulty Levels. Because of time
constraints and the context of application, we were not able to
design experiment tasks that are excessively complex. Therefore,
we conceived five simple experiment tasks to be conducted by
participants, covering activities, such as item listing, value
printing, arithmetic, and logic operations. The authors consider

3 http://goo.gl/qC7elq

Tasks 1 and 3 the easiest experimental tasks, because they require
only basic programming knowledge, such as printing of textual
messages and data computed by the system. We required that
participants conducted changes in these messages. In turn, Tasks
2, 4, and 5 are considered harder tasks to be solved because they
required deeper knowledge regarding logical and arithmetic
operations in addition to advanced object-oriented concepts.

3.4 Experiment Steps
We divided our experiments in the following four steps.

Step 1: Form Filling and Training. Before start with the
experiment, participants filled the Commitment Form and the
Background Form. Although none of the participants reported
lack of knowledge about PP in the Background Form, we
provided a brief description of the proposed experiment including
basic concepts of pair programming.

Step 2: Experiment Presentation. Then, we described the
experiment configuration for participants. We also instructed
participants with respect to the required form filling. We
presented the information system used to develop the
experimental tasks and answered eventual questions about the
experiment.

Step 3: Participant Randomization. For each class, we
randomly divided participants in two groups: a control group to
develop using solo programming and an experiment group to
develop in pairs. Each experiment group was allocated to a
different laboratory. We provided computers with the Eclipse
IDE4 installed and the source code of Vending Machine
previously imported and opened.

Step 4: Experiment Execution. Participants (or pairs of
participants) received an Experiment Form for filling during the
experiment execution. Finally, participants filled the Feedback
Form after concluding all tasks that they were able to complete in
the limit time of experiment.

We conducted a pilot experiment with three volunteers to validate
the feasibility of the proposed experiment. This pilot experiment
supported us making decision regarding difficulty of developing
the tasks, time constraints, form design, and applicability of the
collected data in drawing conclusions. The pilot experiment
execution also provided us feedback to refine the design of
artifacts presented in Section 3.3. Results of the pilot experiment
were discarded.

4. RESULTS AND DISCUSSION
This section presents and discusses the experiment results. Section
4.1 discusses the data set reduction. Section 4.2 presents an
analysis with respect to the background of participants. Section
4.3 discusses results regarding the experiment execution,
including the analysis of time spent, difficulty level, and
correctness for each experiment task developed by participants
using PP or solo programming. Section 4.4 analyzes the results of
the experiment feedback provided by participants.

4.1 Data Set Reduction
In Section 3.2, we present our original set of participants for
experiment execution. However, after running our experiment in
the three classes, C1 to C3, we discarded five participants from

4 https://eclipse.org/downloads/

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

488

C2 due to two main reasons: problems during the experiment
execution or unauthorized use of collected data for experimental
analysis. Figure 1 shows the distribution of participants after the
applied data set reduction.

Since we applied the experiment in classes, we rewarded
participants with one point in course grade to motivate their
participation. Moreover, the participation of students in the
experiment was counted as presence in the course.

Figure 1. Distribution of Participants per Class

4.2 Background of Participants
In our data analysis, we first assessed the overall background of
participants to identify a possible balance of participants in both
PP and solo programming groups. For this purpose, we extracted
data from the Background Form presented in Section 3.3.

Figure 2 presents the background of participants with respect to
previous knowledge about relevant software systems development
topics such as OO Programming, Software Modeling, and others.
In Figure 2, we compare the percentage of participants from both
groups (PP and Solo Programming) that informed they know
about each topic. We observe both groups have almost the same
reported knowledge for all studied topics, showing our
randomization was able to distribute proportionally the
participants through groups.

Figure 2. Background of Participants in Software
Development Topics

Figure 3 illustrates the background of participants with respect to
technical knowledge, covering professional experience and skills
regarding UML Modeling, Java programming language, Eclipse
IDE, and others. In Figure 3, we compare the percentage of
participants that reported they have any experience with each
topic. We considered any reported period of experience as
professional experience of participants. We also counted any
reported knowledge regarding the other technical topics as
knowledge (except “none” option). Again, we observe a

proportional knowledge distribution between PP and solo
programming groups. Then, we conclude that our participation
randomization provided a sufficient balance.

Figure 3. Technical Knowledge of Participants

4.3 Experiment Data
Through the analysis of collected data from the Experiment Form
(see Section 3.3), we investigated each hypothesis proposed in
Section 3.1. For each hypothesis, we divide our analysis in two
steps: first, we present and discuss the obtained results for each
experiment task by comparing both groups (PP and Solo
Programming); second, we compare groups in terms of the
distribution of results considering all the five tasks.

H1. PP decreases time spent to develop tasks when compared
with solo programming.

Figure 4 illustrates the collected data with respect to time spent by
participants to complete tasks, for each experiment group. We
observe that PP developers spent significantly less time to
complete the Tasks 2, 4, and 5 (the hardest tasks to complete, in
the viewpoint of authors). Although Task 1 demanded less
development time in PP than in solo programming group, PP
participants reached lower rates of correctness for this task than
other participants. In turn, considering Task 3, the PP group spent
more time and less correctness than solo programmers. Note that
Tasks 1 and 3 are considered the easiest tasks by authors.

Figure 4. Time Spent by Groups per Task

Figure 5 presents the distribution of total time spent by
participants to complete the experiment. In this figure, we have
the distribution of time per group (PP and Solo Programming).
Note that the three quartiles of the PP boxplot are above the
respective quartiles in the Solo boxplot. Moreover, the median in
time spent by pair is around 40 minutes, a lower value when
compared with the median of 60 minutes for solo participants.
Therefore, we conclude that PP supported a significant decrease
of time spent to complete development tasks.

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

489

Figure 5. Time Spent to Complete the Tasks

H2. PP decreases the difficulty level to perform development
tasks when compared with solo programming.

Figure 6 presents the results regarding difficulty levels faced by
participants to complete tasks, per experiment group. We observe
that PP developers reported significantly lower difficulty rates for
3 of 5 tasks, almost the same rate for 1 of 5 tasks, and higher rates
for only 1 of 5 tasks. An overall analysis points that PP may
decrease the difficulty to develop programming tasks when
compared with solo programming. This observation confirms H2.

Considering that Tasks 2, 4, and 5 are the most difficult to
complete in viewpoint of the study authors, we can conclude that
PP may increase the developer comprehension of software
requirements for a task. Therefore, PP may support knowledge
and validation of a development task. These tasks were reported
as the most difficult by paired participants when compared with
solo programmers. However, in the easiest tasks from the
viewpoint of authors, the difficulty level pointed by participants
was approximately the same for both groups, PP and solo
programming. This observation may point to an overestimation of
difficulty level of simple tasks by PP participants.

Figure 6. Difficulty Level of Groups per Task

Figure 7 presents the distribution of the mean difficulty level
faced by participants to complete the experiment tasks. Note that
the quartiles for paired participants are lower that the respective
quartiles for solo participants. There is a significant decrease in
difficulty in terms of median, for instance: pairs considered a
mean of 1.5 in difficulty scale (from 1 to 5); in turn, solo
participants have a difficulty around 2 in the same scale. Then, we

conclude that PP may decrease difficulty faced in the development
of programming tasks.

Figure 7. Mean of Difficulty Level to Complete Tasks

H3. PP increases correctness of developed programming tasks
when compared with solo programming.

To investigate the hypothesis H3, we analyzed the source code
sent by participants in the end of the experiment conduction.
Figure 8 illustrates the obtained results. We observed slightly
higher rates of correctness in tasks developed by PP participants
when compared with solo programming for 3 of 5 tasks. However,
this increase of correct development tasks is almost insignificant.

Figure 8 presents the percentage of participants that provided
correct implementations for each experiment task. We observe
that PP participants presented lower rates of correctness when
compared with solo programmers with respect to the easiest tasks
(Tasks 1 and 3). When considering the hardest tasks, PP showed a
slightly increase of correctness in Task 5 and the same correctness
rate for Tasks 2 and 4 when compared with solo programmers.

Considering only these results, we cannot affirm that H3 is
correct. However, we believe that correctness of source code may
be higher in PP groups than in solo programming groups. PP may
be useful in comprehension of complex systems in terms of
number of classes, attributes, methods, and packages.
Furthermore, the development of a more realistic and robust
system in terms of application domain may be benefited by the
use of pair programming.

Figure 8. Correctness of Developed Tasks per Group

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

490

To support a different analysis, Figure 9 presents the distribution
of correctness in answers from PP and Solo participants. In an
opposite way when compared with Figures 5 and 7, this figure
shows a slightly decrease of correctness in tasks performed by PP
participants. In the authors’ viewpoint, this situation occurred
because of the simplicity of the experiment. If we consider that
participants used a toy information system to develop tasks
designed for undergraduate and graduate students, the simplicity
of tasks may have contributed to excessive discussion regarding
the solution of tasks and, consequently, implementation mistakes.
We are based on the observations that PP may support increase of
correctness provided by related studies that, in turn, analyzed the
large-scale and industrial development context [2][23].

Figure 9. Distribution of Correct Answers

4.4 Feedback of Participants
Finally, we are also interested in participant feedback with respect
to the use of PP to develop the proposed tasks. In this context, we
provided a Feedback Form for filling in the end of the experiment
execution. It consisted of nine questions to assess participant
difficulty to comprehend the developed tasks, the source code,
documentation, and others. Considering that most of the question
in Feedback Form are related to the difficulty to comprehend and
execute the experiment tasks (an aspect already analyzed in
Section 4.3), we selected two questions for feedback analysis.

The first question for analysis is how difficult it was to use Java
programming language in the experiment by participants. We aim
to observe whether PP contributes to ease Java usage in class.
Figure 10 presents the distribution of difficulty level reported by
participants to use Java programming language in the experiment
execution. We observe almost the same distribution of values for
both PP and Solo participants. However, we can notice that the
median of difficulty for PP participants is lower than for solo
programmers. Although these results are a subjective viewpoint of
participants, we point that PP did not significantly affect the use
of Java in the experiment.

The second question we analyze is about how difficult was to use
the Eclipse IDE in the experiment by participants. Considering
that participants include undergraduate students that may not
know tools such as Eclipse, we aim to observe the impact of PP to
ease the usage of this tool. Figure 11 presents the distribution of
difficulty faced by participants to use Eclipse IDE per group.

Again, we observe no significant difference between difficulty
level faced by PP and Solo groups to use the Eclipse IDE.

Figure 10. Distribution of Difficulty to Use Java Language

Figure 11. Distribution of Difficulty to Use Eclipse IDE

In the authors’ viewpoint, we are not able to identify significant
advantages of using PP to support ease of learning and using
development technologies (in case, Java and Eclipse IDE) because
of the simplicity of our experiment. In the experiment execution,
we did not require from participants the usage of advanced
features of Java, for instance. However, we expect that in the
development of large-scale and complex information systems PP
may be more helpful, as indicated by related work [2][23].

5. RELATED WORK
We were able to find few studies that investigate specifically the
application of pair programming in the industrial context
[2][20][23]. For instance, Vanhanen and Lassenius [23] studied
the impacts of using pair programming in comparison with single
programming in large-scale software development. They
conducted a survey with 28 experienced developers to investigate
the relationship of pair programming with software quality,
development effort, learning, and other aspects of software

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

491

development. They conclude pair programming may support
learning and team collaboration, for instance. They also observed
a slightly increase of software quality when programming in pairs.

Arishholm et al. [2] conducted an extensive experiment with 295
developers with different professional experiences, from 29
consultancy companies in three countries. This experiment aimed
to assess the use of pair programming in development tasks. The
authors observed a significantly positive impact of using pair
programming only in case of complex and large software system
development, including an increase of correctness without
decreasing the time spent to develop programming tasks. It was
also observed a higher support of PP in development activities
with respect to juniors when compared with experienced
developers. Finally, Prechelt et al. [20] conduct an experiment to
assess advantages of using pair programming in academic context.
The authors aim to provide guidelines to support the execution of
empirical studies in industry, such as PP assessment, that are
generalizable to other contexts such as academic context.

Previous work investigate the use of pair programming in the
academic context [12][15][16][24]. McDowell et al. [16]
investigate the impact of pair programming on the performance of
undergraduate students in class. About 600 students composed the
participant set. The participants were divided in groups to assess
the use of pair programming when compared with single
programming. As a result, developers in pairs produced software
with higher quality and obtained higher grades in the course when
compared with other participants. They also discuss that pair
programming may be useful in class. McChesney [15] presents
another study. In this work, three years of experiments using pair
programming are conducted to assess contributions of PP on
computer science education. The author observed many
advantages of using PP in academy including improvement of
student performance and pairwise communication.

Williams et al. [24] conducted experiments with over 1200
undergraduate students in order to assess the efficacy of pair
programming in the academic context. These experiments were
applied in two educational institutes in US. They concluded that
pair programming may support the student formation, improving
their programming skills when compared with the use of
individual programming. Finally, Hannay et al. [12] conducted a
meta-analysis regarding the experiments with pair programming
both in industry and academy. This study covered experiments
that compare the use of pair in development with single
programming. They conclude that, in general, pair programming
may support software quality, although with significant impact on
time spent and effort to developers. However, they point common
bias in studies with respect to the comparison of pair
programming with other development practices.

6. THREATS TO VALIDITY
We designed and conducted carefully the three experiments
described in Section 3. For instance, we delimited our experiment
scope prior to the execution of the experiments, defined our
hypotheses, and how to assess them, after study and based on
previous studies. However, some threats to validity may affect our
research findings. Following, we discuss each of the four types of
threats, with respective treatments, listed by Wolin et al. [25]:
internal, conclusion, construct, and external validity.

Construct Validity. We designed our experiments to be applied
in different education institutions without significant adaptations,
in order to prevent the decharacterization of the experiment. We

conducted pilot experiments with volunteers to define
development tasks that could be adequately performed by students
considering aspects such as experiment time, difficulty level, and
the use of Java language in academic context. To provide
impartiality of participants with respect to our research questions
and experiment hypotheses, we omitted this information to all
participants. Therefore, we expected an experiment execution with
minimization of biases. Finally, we proposed an oracle for each
task, to base the assessment of correctness to each developed task.

Internal Validity. Participants collected data regarding time
spent and difficulty level for each developed task through the
Experiment Form. However, this procedure may be affected by
the comprehension of participants with respect to each proposed
task. To minimize this problem, we provided a brief tutorial for
form filling, as well as code documentation, and supported
participants during the experiments in case of difficulty to
understand tasks. We also helped participants in case of problems
with Java language, but it was not recurrent mainly because we
provided Internet access to support. Moreover, participants may
have been unmotivated to complete the experiment. In this
context, we rewarded participants with scores in course grade.
Our findings may also be affected by the unbalance between
participant groups. To minimize this problem, we randomly
allocated participants in groups with approximately same size. We
discuss the obtained balance in Section 4.

Conclusion Validity. We conducted a careful data analysis to
draw conclusions regarding the applied experiments, to minimize
problems with respect to data interpretation. We also chose
carefully descriptive analysis techniques to present results
appropriately. We based our selection of data to be collected in
related work, to ensure that such data would be useful in drawing
conclusions.

External Validity. Some factor may prevent the generalization of
our research findings. For instance, the 55 participants consisted
of undergraduate and graduate students from two educational
Brazilian institutions. They may not represent properly all
Brazilian students, considering their amount, background, cultural
aspects, professional experience, and others. However, the
available participants for experiment were randomly distributed in
groups to minimize this problem and increase the
representativeness of the groups. Furthermore, we restricted our
experiment execution to one hour, because the experiments were
conducted in class. This constraint may affect our findings, since
participants may be uncomfortable to develop under time
restrictions. However, our experiments were placed in laboratories
equipped with sufficient computers and all required tools (Eclipse
IDE, for instance) to appropriate experiment execution.

7. CONCLUSION
In this study, we investigated the use of PP in academic context,
with undergraduate and graduate students from two educational
Brazilian institutions. For this purpose, we run three one-hour
experiments composed by five development tasks to be conducted
using Java and Eclipse IDE. We compare performance of students
using PP and solo programming with respect to: difficulty level
faced by participants to complete tasks, time spent, and
correctness of implementations provided by participants for tasks.

In general, we observed a positive impact of PP on development
regarding time spent and difficulty to complete tasks. Although
paired students presented significantly lower difficulty levels and
time spent to develop almost all the proposed development tasks

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

492

when compared with solo programmers, we were not able to
observe an increase of correctness in source code implemented by
pairs. Therefore, we conclude PP may support software
development performance and product delivery. However, it is
necessary another study to assess accurately the possible increase
of software quality when using PP as a development practice.

We also observe significant indications that PP may be more
efficient when compared with solo programming, considering
complex and large software systems in terms of lines of code,
number of entities, complexity of application domain and other
software aspects. Therefore, PP may be useful in requirements
comprehension and software verification, decreasing costs with
software maintenance, for instance. However, for simple systems,
PP may not be more efficient than solo programming, requiring
unnecessary time to develop tasks, for instance.

As future work, we suggest the application of this experiment in
other institutions to cover more participants from different estates
and contexts. A larger set of participants, with more diversified
background and professional experiences, may be interesting to
increase the generalization of our findings. We also suggest a
more robust statistical analysis, to support drawing conclusion
regarding the application of PP in academic environment.

8. ACKNOWLEDGMENTS
This work was partially supported by CAPES, CNPq (grant
485907/2013-5), and FAPEMIG (grant PPM-00382-14).

9. REFERENCES
[1] Ambler, S. and Lines, M. 2012. Disciplined Agile Delivery:

A Practitioner's Guide to Agile Software Delivery in the
Enterprise. IBM Press.

[2] Arisholm, E., Gallis, H., Dyba, T., and Sjoberg, D. 2007.
Evaluating Pair Programming with Respect to System
Complexity and Programmer Expertise. Transactions on
Software Engineering (TSE) 33, 2, 65-86.

[3] Beck, K. 2000. Extreme Programming Explained: Embrace
Change. Addison-Wesley Professional.

[4] Begel, A. and Nagappan, N. 2007. Usage and Perceptions of
Agile Software Development in an Industrial Context: An
Exploratory Study. In Proceedings of the 1st International
Symposium on Empirical Software Engineering and
Measurement (ESEM), 255-264.

[5] Begel, A. and Nagappan, N. 2008. Pair Programming: What's
in it for me?. In Proceedings of the 2nd International
Symposium on Empirical Software Engineering and
Measurement (ESEM), 120-128.

[6] Bhat, T. and Nagappan, N. 2006. Evaluating the Efficacy of
Test-Driven Development: Industrial Case Studies. In
Proceedings of the 5th International Symposium on
Empirical Software Engineering (ISESE), 356-363.

[7] Cockburn, A. 2004. Crystal Clear: A Human-Powered
Methodology for Small Teams. Pearson Education.

[8] Cockburn, A. and Williams, L. 2000. The Costs and Benefits
of Pair Programming. Extreme Programming Examined,
223-247.

[9] Cohen, D., Lindvall, M., and Costa, P. 2004. An
Introduction to Agile Methods. Advances in Computers 62,
1-66.

[10] Dyba, T., Arisholm, E., Sjoberg, D. I., Hannay, J. E., and
Shull, F. 2007. Are Two Heads Better than One? On the
Effectiveness of Pair Programming. Software 24, 6, 12-15.

[11] Fowler, M. and Highsmith, J. 2001. The Agile Manifesto.
Software Development 9, 8, 28-35.

[12] Hannay, J., Dyba, T., Arisholm, E., and Sjoberg, D. 2009.
The Effectiveness of Pair Programming: A Meta-Analysis.
Information and Software Technology 51, 7, 1110-1122.

[13] Janzen, D. and Saiedian, H. 2008. Does Test-Driven
Development Really Improve Software Design Quality?
Software 25, 2, 77-84.

[14] Kavitha, R. and Ahmed, M. 2015. Knowledge Sharing
through Pair Programming in Learning Environments: An
Empirical Study. Education and Information Technologies
20, 2, 319-333.

[15] McChesney, I. 2016. Three Years of Student Pair
Programming: Action Research Insights and Outcomes. In
Proceedings of the 47th Technical Symposium on Computer
Science Education (SIGCSE), 84-89.

[16] McDowell, C., Werner, L., Bullock, H., and Fernald, J. 2002.
The Effects of Pair-Programming on Performance in an
Introductory Programming Course. In Special Interest
Group on Computer Science Education Bulletin (SIGCSE
Bulletin) 34, 38-42.

[17] Nagappan, N., Maximilien, E., Bhat, T., and Williams, L.
2008. Realizing Quality Improvement through Test Driven
Development: Results and Experiences of Four Industrial
Teams. Empirical Software Engineering (ESE), 13, 3, 289-
302.

[18] Paulk, M. 2001. Extreme Programming from a CMM
Perspective. Software, 18, 6, 19-26.

[19] Plonka, L., Sharp, H., Van der Linden, J., and Dittrich, Y.
2015. Knowledge Transfer in Pair Programming: An In-
Depth Analysis. International Journal of Human-Computer
Studies, 73, 66-78.

[20] Prechelt, L., Zieris, F., and Schmeisky, H. 2015. Difficulty
Factors of Obtaining Access for Empirical Studies in
Industry. In Proceedings of the 3rd International Workshop
on Conducting Empirical Studies in Industry (CESI), 19-25.

[21] Schwaber, K. 1997. Scrum Development Process. Business
Object Design and Implementation, 117-134.

[22] Schwaber, K. 2004. Agile Project Management with Scrum.
Microsoft Press.

[23] Vanhanen, J. and Lassenius, C. 2007. Perceived Effects of
Pair Programming in an Industrial Context. In Proceedings
of the 33rd Conference on Software Engineering and
Advanced Applications (EUROMICRO), 211-218.

[24] Williams, L., McDowell, C., Nagappan, N., Fernald, J., and
Werner, L. 2003. Building Pair Programming Knowledge
through a Family of Experiments. In Proceedings of the 2nd
International Symposium on Empirical Software
Engineering (ISESE), 143-152.

[25] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell,
B., & Wesslén, A. 2012. Experimentation in Software
Engineering. Springer Science & Business Media.

XII Brazilian Symposium on Information Systems, Florianópolis, SC, May 17-20, 2016

493

