
XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017 

 25 

  

Deep Regressor Stacking for Air Ticket Prices Prediction

Everton Jose Santana

State University of Londrina

(UEL)

Electrical Engineering

Department

Londrina, Brazil

santana.everton@ieee.org

Saulo Martiello Mastelini

State University of Londrina

(UEL)

Computer Department

Londrina, Brazil

mastelini@uel.br

Sylvio Barbon Jr.

State University of Londrina

(UEL)

Computer Department

Londrina, Brazil

barbon@uel.br

ABSTRACT
Purchasing air tickets by the lowest price is a challen-

ging task for consumers since the prices might fluctuate over
time influenced by several factors. In order to support users’
decision, some price prediction techniques have been deve-
loped. Considering that this problem could be solved by
multi-target approaches from Machine Learning, this work
proposes a novel method looking forward to obtaining an
improvement in air ticket prices prediction. The method,
called Deep Regressor Stacking (DRS), applies a naive deep
learning methodology to reach more accurate predictions.
To evaluate the contribution of the DRS, it was compared
with the competence of the single-target regression and two
state-of-the-art multi-target regressions (Stacked Single Tar-
get and Ensemble of Regressor Chains). All four approaches
were performed based on Random Forest and Support Vec-
tor Machine algorithms over two real-life airfares datasets.
After results, it was concluded DRS outperformed the other
three methods, being the most indicated (most predictive)
to assist air passengers in the prediction of flight ticket price.
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1. INTRODUCTION
The International Air Transport Association’s 2016 review

reported that more than 3.5 billion passengers segments were
flown in 2015, and by 2034, air passenger number is forecast
to increase to seven billion annually [1].
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Besides the growth in the number of airplane travellers,
the access to the air ticket prices became more available
on the Internet, allowing the consumers to compare, more
easily, prices over time and to identify some pricing ten-
dencies, in order to choose the right moment to purchase
a ticket. However, identifying the patterns in the pricing
mechanism is a complex process composed of many factors
such as di↵erent classes of seats in the same flight, diverse
sellers, seasonality, amount of seats available and the price
of other companies, which cause a high variability in the
prince over time [8]. In fact, the large dispersion in airfares
for seats in the same flight, and the questioning of its rea-
sonableness, was already indicated in [15]. The prediction
becomes even harder because some variables are not acces-
sible to consumers [8, 9] and the companies are improving
yield management algorithms to optimize their profits [17].

Intending to support consumers to predict price changes,
some existing data-mining methods were used (Ripper, Q-
learning and Time Series) to propose the stacking generalizer
algorithm Hamlet [8]. Another approach was the represen-
tation of price series by marked point processes [17]. There
was also the proposal of a method that includes the preferen-
ces of passengers about the number of stops in the itinerary
or the specific airline to use [9], further developed to a tech-
nique called Developer-Guided Feature Selection [10].

Observing the multiple output characteristic of some da-
tasets, and the possible mutual dependence among the out-
puts, Spyromitros-Xioufis et al. [14] proposed two multi-
target regression methods: Stacked Single Target (SST) and
Ensemble of Regressor Chains (ERC). Both techniques use
target predictions as additional input variables in order to
increase the prediction accuracy. Among many validation
datasets, the referred work used the one presented in [9].

Motivated by SST, we propose in this paper a novel multi-
target technique denominated Deep Regressor Stacking (DRS)
looking forward to obtaining an improvement in air ticket
prices prediction. This model could be implemented in a
costumer decision support system and, consequently, avoid
that the user buy a high-priced ticket in the searching date
if the price is supposed to decrease in the following days.

This paper aims at comparing the performance of the sin-
gle target regression (ST) and the three multi-targets (SST,
ERC and DRS) approaches to predict air ticket prices, each
one with the regressors Random Forest (RF) and Support
Vector Machine (SVM), and evaluates which method would
bring the biggest improvement to the area.

This paper is organized as follows: Section 2 exposes exis-
ting multi-target regressions and describes our new proposal.
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  Section 3 portrays the experimental configuration, followed
by Section 4, which analyses the results. Lastly, Section 5
contains the final considerations of this paper and suggests
future work.

2. MULTI-TARGET REGRESSION

2.1 Literature Review
Traditionally, multi-target problems were solved through

two broad approaches: algorithms adaptation and problem
transformation methods [4].

The algorithm adaptation is related to the change of some
single-target regression technique to deal with multiple out-
puts and address the possible statistical dependence among
targets. This strategy generates alteration in the original
technique modelling method, like the optimization function
(SVMs) [13, 20, 19], node splitting criteria (regression trees)
[11], among others. Some algorithms adaptation based tech-
niques were proposed [4], being used in diverse tasks [12, 18,
4]. Indeed, multi-output adapted algorithms have achieved
satisfactory performance in prediction, bringing the advan-
tages of internally exploring target dependence and genera-
ting a unique model to deal with all outputs. Nevertheless,
algorithm adaptation methods could be more challenging
because these techniques aim not only to predict the mul-
tiple targets at once but also to interpret the dependencies
among outputs.

The other approach to model multi-target tasks, problem
transformation, manipulates the training data in some man-
ner, adopting well known and applied regression techniques
to predict single-target problems separately. A simply deri-
ved approach is to predict each target variable independen-
tly, as a single-target (ST) problem.

In many cases ST method outperformed multi-target te-
chniques (based both in algorithm adaptation and problem
transformations) [4, 14], and was used as a performance ba-
seline. In contrast, ST does not explore the expected targets’
dependencies, so the use of a multi-target strategy should
lead better results.

Some techniques were proposed in the last years to address
multi-target problems as separated single output tasks, but
with the exploration of inter-targets properties. Zhang et
al. [20] proposed the modification of problem’s input space
through a virtualization procedure so that the task could be
represented as a wider single-target problem. The authors
used a Support Vector Regression (SVR) machine and achi-
eved results comparable to ST strategy. Tsoumakas et al.
[16] proposed the use of random linear targets combinations
to explore the relations between targets values. The origi-
nal feature space dimension is increased, and multiple ST
problems are solved in the transformed space. At the end of
the process, the predicted values are used to solve a linear
system to obtain the original targets predictions.

Inspired by the related area of multi-label classification,
Spyromitros-Xioufis et al. [14] proposed two techniques: SST
(Stacked Single Target), also called MTRS (Multi-Target
Regressor Stacking), and ERC (Ensemble of Regressor Chains).

The SST method consists of separately training ST mo-
dels and using their outputs as additional prediction fe-
atures. Thus, considering a dataset composed by X =
{x
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is utilized along Y values to train another regressors’ layer,
inducing new ST models, whose outputs are the final predic-
tions. New income instances are first subjected to the first
predictors’ layer to obtain targets approximations and com-
pose an augmented testing set, subjected to the second level
of predictors. Although using ST estimations, the inter-
target relationships are modelled and explored, consequently
increasing the task’s description capability and the predic-
tion performance.

The ERC method consists of using a set of randomly cho-
sen target chains to build ST models, following the generated
sequence. For each chain, at first, an ST model is induced
using the first output variable of the sequence. New models
are trained following the chain order. Each new regressor
uses an extended input dataset formed by the combination
of the original input variables and the previous models’ pre-
dictions. The described training process repeats until the
end of the chain sequence. After training all models, new
income instances are subjected to the set of chains. The
final prediction for a target y is the average of the y pre-
dicted values over all chains. Since the output variables
predictions come from the composition of values in di↵erent
chains positions, multiple levels of combinations and inter-
dependence among targets are investigated. In the original
formulation, ERC explores all possible targets permutations
if their number is less than 10, otherwise exactly ten random
combinations are selected.

Although more than one predictor is used to represent
the multiple targets problem, leading to decrease the model
interpretation facility and increasing the computational trai-
ning cost, this type of modelling o↵ers several advantages.
The possibility of using any base learner, even a hybrid set,
could lead to better predictive performance and particular
task’s characteristics exploration. Besides that, adaptation
techniques improve the solution’s modularity and concep-
tual simplicity, having obtained significantly better accuracy
than state-of-the-art methods [16, 14].

2.2 Deep Regressor Stacking - DRS
Our proposed technique applies the MTRS idea of using

targets approximations as additional predicting features in
a naive deep learning method. It is based on the hypothesis
that the interaction among targets that happens in deeper
layers could outperform the predictions obtained by none or
only one prediction layers as input (ST or MTRS, respecti-
vely).

In this sense, Figure 1 presents the concept of Deep Re-
gressor Stacking (DRS) multi-target regression. In ST method,
the dataset’s original attributes A are used to compute the
prediction of the N targets (T 1

1...N

). In its turn, MTRS pre-
dicts the targets using as input A and T

1

1...N

, which means
that the output predictions of T 2

1...N

are dependent, simulta-
neously, on the dataset attributes and the targets predictions
of layer 1. Following the same logic, the DRS method will
originate the prediction of the (j+1)-th layer using as input
the attributes A and all the predictions from the j previous
layers (T 1...j

1...N

).
MTRS is a particular case of DRS, for the maximum of

prediction layers used as input, j, equal to 1. By definition,
ST uses no prediction layer as input, as already mentioned.

The Algorithm 1 demonstrates how to compute a price
prediction based on DRS regression. The parameters of
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Figure 1: Comparison of ST, MTRS and DRS approaches.

the price function are the modelling dataset (Data

mod

), the
number of targets N , and the number of desired layers (�).
To be reasonable to refer to DRS, � should be any natural
greater than or equal to 3.

In the beginning of the algorithm, the dataset is split in
two subsets: one for training (Data

tr

) and the other for
validation (Data

val

).
Targets is a vector representing the outputs, initially set

with the N targets.
For N times the following procedure is adopted:

• DRS models are obtained with the training set, per-
formed for � layers. With the models, a prediction set
P is resulted laying hand of D

val

.

• In possession of P , the RMSE (Root Mean Square Er-
ror) between the target predictions and the output va-
lues are determined. The target with minimum RMSE
value (t

x

) and its corresponding layer (l) are recogni-
zed.

• The next step is training the dataset with a DRS struc-
ture again till the layer l. The prediction is calculated
for the target t

x

, and incorporated to the input set. In
this training phase, if the length of Targets is smaller
than N , besides using the 1 to j previous layers’ pre-
dictions as attributes, the predictions of the � layer of
the targets that were already combined in the input
are also used as feature.

• Afterwards, the target that presented the smallest er-
ror is removed from the Targets set and the model is
saved to the price set, which will contain models.

Once the prediction of all targets were combined in the
input (i.e., Targets is empty), the algorithm is finished.

Due to the stacking process, the dimensionality of this
method increases significantly as � and the number of out-
puts of the dataset increases, demanding a considerable pro-
cessing time to obtain the final model.

3. EXPERIMENTAL SETUP
This Section describes the datasets used to compare the

performance of the 4 di↵erent techniques, the base regression
algorithms, and the software libraries employed.

3.1 Dataset

Algorithm 1 Price prediction algorithm

1: function price(Data

mod

, N,�)
2: price {}
3: {Data

tr

, Data

val

} split(Data

mod

)
4: Targets {t

1

, t

2

, ..., t

N

}
5: repeat
6: train DRS(Data

tr

,�)
7: P  predict(train,Data

val

input

,�)
8: {l, t

x

} MIN
RMSE

(P,Data

val

output

)
9: model DRS(Data

mod

, l)
10: T

�

x

 predict(model,Data

mod

, t

x

)
11: Data

mod

 {Data

mod

, T

�

x

}
12: Targets Targets� t

x

13: price {price,model}
14: until Targets = {}
15: return price

Two benchmark datasets of multi-target regression were
explored in this work: ATP1D e ATP7D 1. A summary of
their attributes can be consulted in Table 1.

Name Observations Features Targets
ATP1D 337 411 6
ATP7D 296 411 6

Table 1: Name, number of observations, features and out-
puts of ATP1D e ATP7D datasets.

ATP stands for Air Ticket Prices, and both have 6 tar-
get variables that represent flight preferences: any airline
with any number of stops, any airline non-stop only, Delta
Airlines, Continental Airlines, Airtrain Airlines and United
Airlines. The main di↵erence between ATP1D and ATP7D
is that the first represent the target price in the next day;
The last, the minimum price observed over the next 7 days.
Among the input variables are present the number of days
between the observation date and the departure date, the
searching day of the week, the minimum price, mean price,
and number of quotes from all airlines and from each airline
quoting more than 50% of the observation days for non-stop,
one-stop, and two-stop flights, for the current day, previous
day, and two previous days [14].

These datasets were collected from a search website between
February 22 and June 10, 2011 for 7 di↵erent origin–destination
pairs (including major cities in di↵erent parts of the United
States and some international destinations). The web spider
used to extract the information is representative since it used
the same information a costumer would have for acquiring
the data [10].

With the goal of motivating the application of MT soluti-
ons to address the airline tickets prices predictions, we used
two methods of statistical correlation assessment among tar-
gets variables of the analysed datasets: the correlation coef-
ficients of Pearson and Spearman [3].

The Pearson coe�cient measures linear relationships of
continuous variables. A relationship among two outputs is
linear when a change in one target is associated with a pro-
portional alteration in the other.

The Spearman coe�cient measures monotonic relationships

1The datasets can be downloaded from
http://mulan.sourceforge.net/datasets-mtr.html
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  among continuous or ordinal variables. In a monotonic re-
lationship, the targets should change together, but not ne-
cessarily at a constant rate.

Both metrics are equal to 1 when there is a perfect relati-
onship among two variables (�1 if a perfect reverse relation
is observed). When the coe�cients are near to 0, there is no
evidence of correlation among the observed variables. Com-
paring a target with itself will always generate a correlation
coe�cient equal to 1, for both methods.

Figure 2 shows the results of performed correlation tests
for ATP1D dataset. Observing the coe�cients results, it
is possible to perceive high levels of linear and monotonic
dependency among target variables in most of the cases,
which is an indication of a MT problem.

1.00 0.84 0.80 0.74 0.94 0.71

1.00 0.84 0.80 0.80 0.78

1.00 0.88 0.81 0.87
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Pearson Spearman

Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Target 1 Target 2 Target 3 Target 4 Target 5 Target 6
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Target 2

Target 3

Target 4

Target 5

Target 6

Figure 2: Pearson and Spearman correlation coe�cients
among ATP1D targets variables.

The same analysis was performed for the ATP7D dataset,
whose correlation results are presented in Figure 3. For this
dataset, it is possible to observe a decrease in both correla-
tion coe�cients when comparing with ATP1D results, which
is a clue that the targets outputs are less correlated or there
are levels of non-linear relationships among the output va-
lues.

1.00 0.57 0.63 0.43 0.81 0.42

1.00 0.74 0.64 0.52 0.64
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Target 4
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Figure 3: Pearson and Spearman correlation coe�cients
among ATP7D targets variables.

3.2 Parameters and Regression Algorithms
For the computation of DRS, the parameter � should be

pre-determined. For the tests of this work, the number of
desired layers was set to 10. We wanted to use a number
that was big enough to explore the deep dependencies and
not too big to avoid a long time of computation.

Two regression algorithms from Machine Learning were
used in the experiments: Support Vector Machine (SVM)

and Random Forest (RF). Their wide use and di↵erent the-
oretical foundation motivated our choice.

All regression algorithms used in this work were imple-
mented in R programming language, version 3.3.0, and used
with their standard parameters settings. The packages e1071
and randomForest were used for SVM and RF, respectively.

3.2.1 Support Vector Machine

The Support Vector Machine (SVM) is a classification and
regression method belonging to the general category of ker-
nel based methods. Its approach is based on maximizing the
separation margin between classes, or minimizing the pre-
diction regression error among training samples. Through
kernel space transformation, this technique has the flexibi-
lity to model varied data sources [2], increasing the input
dimensionality of data to a space where the separability is
also increased.

3.2.2 Random Forest

Random Forest algorithm consists in independently growing
decision trees based on di↵erent subsets of training data, for-
med by random sampling with replacement (Bagging). Each
tree uses a subset of features randomly chosen. These pro-
cedures increases allow to explore di↵erent aspects of data,
increasing the generalization capacity. The RF predictions
are formed by taking the average result over all trees in the
Forest [5].

3.3 Performance Metrics
To evaluate the models trained during the experiments

three di↵erent performance metrics were used: Coe�cient
of Determination (R2), average Relative Root-Mean-Square
Error (aRRMSE), and Relative Performance (RP). Besides
that, the multi-target techniques were performed using 10-
fold cross-validation.

The RRMSE (Relative Root Mean Square Error) is cal-
culated using the Root Mean Square Error (RMSE) of the
predictions for a target divided by the RMSE of the average
value of this output. This last acts as a baseline in the me-
tric and allows the measurement of the improvement over
a shallow predictor. This metric is very useful to compare
non-homogeneous targets distributions and has been used in
several multi-target works [4, 14]. The aRRMSE is defined
as the average of the d targets RRMSE.

aRRMSE =
1
d

dX

i=1

sP
N

test

l=1

(yl

i

� ŷ

l

i

)2
P

N

test

l=1

(yl

i

� y

i

)2
(1)

The Coe�cient of Determination (R2) explains the amount
of the total variation associated with the use of an indepen-
dent variable. Its values range from 0 to 1. The closer R2 is
to one, the greater is the quantity of the total variation in
the output which is explained by the independent variables
in the regression model [6].

The Relative Performance compares (RP) the aRRMSE
of a single-target model with the aRRMSE of the other MT
methods M (in our case, with MTRS, ERC and DRS), for d
datasets. Thus, it can measure if there was an increase (RP
greater than 1) or a decrease (RP lower than 1) relatively
to the single-target results [14].

RP

d

(M) =
aRRMSE(ST )
aRRMSE(M)

(2)
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  The aRRMSE allows the comparison of possible techni-
que superiority through the application of the Friedman’s
statistical test with significance level at ↵ = 0.05. The
null hypothesis states that the performances of all compared
multi-target techniques are equivalent regarding the avera-
ged RRMSE per dataset. When the null hypothesis is dis-
carded, the Nemenyi post hoc test could be applied, stating
that the performance of two di↵erent models are significan-
tly di↵erent whether the corresponding average ranks di↵er
by at least a Critical Di↵erence (CD) value. When multiple
models are compared, a Critical Di↵erence (CD) diagram
could be used to represent the comparisons, as previously
proposed in [7].

4. RESULTS AND DISCUSSION
After running the price prediction algorithm for the da-

tasets ATP1D and ATP7D, and also ST, MTRS and ERC,
statistical metrics were applied to the results.

The relative performance of the single-target method in
relation to each multi-target method was registered in Table
2.

Table 2: Relative performance for ATP1D and ATP7D of
ST in relation to MTRS, ERC and DRS methods.

Dataset Regressor MTRS ERC DRS

ATP1D
RF 1.0383 0.9549 1.9543
SVM 1.2835 1.0256 1.8245

ATP7D
RF 0.9280 1.0700 1.6649
SVM 1.0680 1.0548 1.7207

In ten out of the twelve values, the RP value was greater
than 1. In other words, multi-target techniques outperfor-
med single-target in 83,3% occurrences.

DRS had the best results among all combinations of methods,
datasets and regressors. For particular cases, the equivalent
DRS aRRMSE was reduced to almost the half of ST aR-
RMSE.

To propitiate a better comprehension of the results, the
average coe�cient of determination for the four methods
were determined, as Table 3 shows.

Table 3: Average coe�cient of determination for ATP1D
and ATP7D using ST, MTRS, ERC and DRS methods.

Dataset Regressor ST MTRS ERC DRS

ATP1D
RF 0.8535 0.8478 0.8436 0.9464
SVM 0.7996 0.7960 0.8081 0.9315

ATP7D
RF 0.7701 0.7756 0.7735 0.8612
SVM 0.6430 0.6335 0.6634 0.8826

The di↵erences among ST, MTRS and ERC were subtle,
with di↵erences in the order of 10�2. In contrast, the mean
R

2 for DRS for the two datasets and regression algorithms
were higher than the others in the order of 10�1, which is
a relevant di↵erence since the possible R

2 value is in an
interval of span 1.

For ATP1D, the overall R2 was higher than for ATP7D.
It was expected since the correlation among targets for the
first (Figure 2) already indicated that.

CD = 2.347

1 2 3 4 5 6 7 8

DRS-RF
DRS-SVM
ST-RF
ERC-RF

MTRS-SVM
ST-SVM
ERC-SVM
MTRS-RF

Figure 4: Comparison of the aRRMSE values per dataset
for each CV fold configuration, according to the Nemenyi
test. Groups of methods that are not significantly di↵erent
(at ↵ = 0.05) are connected.

The Nemenyi test was performed to verify if the discussed
di↵erences were statistically significant. According to Figure
4, with a significance level of 5%, the performance of DRS
using as regressor RF presented no di↵erence in relation to
DRS with Support Vector Machine. DRS with RF was the
the first in the rank, meaning that it had the best outcomes
in relation to the others. In its turn, the critical distance of
DRS with SVM showed that this method is comparable to
ST-RF, ERC-RF and MTRS-RF.

On the account of what was evaluated, both DRS-RF
and DRS-SVM outperformed ERC-SVM, ST-SVM, MTRS-
SVM. This fact shows that RF was the best regression al-
gorithm to interpret these datasets, and only DRS was able
to obtain superior performance for SVM.

Apart from the presented performance advantages, DRS
method had a particular drawback: the training phase re-
quested plenty of time, even though using 10 layers. Howe-
ver, after the final model is complete, the application has a
linear complexity. Additionally, in an ordinary system, the
model is supposed to be created just one time (with possi-
ble re-training due to changes in the input information or
modification in the data behaviour).

Figure 5 exemplifies how RMSE value has the possibility
to decrease with the stacking of multiple layers, provided by
DRS. For this, we used the prediction P recorded during
training for the target LBL+ALLminp0+fut 001 (ATP1D)
in an specific cross-validation fold, with random forest.

In the single-target prediction, the RMSE value was sligh-
tly bellow 0.042. In the second predictive layer, the RMSE
dropped to around 0.019. In the third output layer, this
value was even lower, bellow 0.01. This value continued de-
creasing in layers 4, 5 and 6. In the seventh layer the RMSE
of this target increased, followed by a decrement in layer 8,
an increment in layer 9, and again a decrement in the tenth
layer, where the RMSE dropped to bellow 0.005, the lowest
value among all layers.

The layers in which the growth in the amplitude of RMSE
occurs are not necessarily the same. To exemplify this, the
RMSE behavior in another fold for the same target, dataset
and regressor was represented in Figure 6.

In this fold, the layer 8 interrupts the decreasing mono-
tonicity, instead of the layer 7, as verified for the previous
case.

It is questionable whether stopping the training in the fifth
or in the tenth layer, for instance, would imply in extreme
di↵erences in the final results since their RMSE di↵erences
are not so significant. Thus, depending on the required ac-
curacy of a problem, the choice of an optimal � would be
crucial to have the fastest model computation without af-
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Figure 5: RMSE behavior for target
LBL+ALLminp0+fut 001, from ATP1D, during trai-
ning with random forest. Blue segments represent that the
RMSE value of a higher layer was greater than the RMSE
value of its immediate previous layer.
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Figure 6: RMSE behavior for target
LBL+ALLminp0+fut 001, from ATP1D, during trai-
ning with random forest, in another CV fold. Blue
segments represent that the RMSE value of a higher layer
was greater than the RMSE value of its immediate previous
layer.

fecting the quality of the prediction.

5. CONCLUSIONS
In this paper, we described a novel method (DRS) for

improving the prediction of air ticket prices. Our original
contribution towards Multi-Target prediction overperformed
the state-of-art methods in two real-life datasets with two
di↵erent learn-based algorithms.

The next step would be the implementation of a system
with the DRS as the kernel. The output screen would es-
sentially display to the user 3 columns, one for the current
price, another for the for the next-day price and a final for
the minimum price over the following 7 days. The system
would also be capable of extracting some features automati-
cally, for example, the day of the week and the ticket prices
of all airlines present in the dataset output, similar to the
current systems, although more accurate.

The authors a�rm that DRS could be also used for pre-
dicting other Multi-Target scenarios. Besides the choice of
a �, another suggestion of future work is testing DRS with
di↵erent problems that evolve price prediction.
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