
XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 206

Show Me The Rules! A User Study On Making Data
Validation Rules Explicit in Spreadsheet Applications

Jessica Gava

Federal University of São João

del-Rei

jessica.gava@hotmail.com

Bruna Vilela

Federal University of São João

del-Rei

brunaraniquelli@gmail.com

Elder Cirilo

Federal University of São João

del-Rei

elder@ufsj.edu.br

Eiji Barbosa Adachi

Federal University of Rio

Grande do Norte

eijiadachi@imd.ufrn.br

ABSTRACT
Spreadsheet applications have become one of the most pop-
ular end-user programming environments with innumerous
built-in facilities, including arithmetic, financial and statis-
tical operations. Not surprisingly, spreadsheet applications
play significant role in decision-making processes in orga-
nizations, thus making spreadsheet errors serious threats.
Reports from field audits show that spreadsheet errors may
cause companies to lose millions of dollars annually. One
e↵ective and simple way of helping users to avoid introduc-
ing mistakes in their spreadsheets is data validation. In-
deed, most spreadsheet applications provide a wide range
of built-in functions to restrict the type of the input data
or the range of valid values entered into a cell. However, in
most of them, the underlying design decisions governing how
data input should be entered in a spreadsheet are not ex-
plicitly visible to its users. Hiding data validation rules from
users may hinder the comprehensibility and the usability of
a spreadsheet, thus increasing the risks of entering incorrect
data input. To assist end-user programmers in explicitly
expressing validation rules in spreadsheets, we propose the
SpreadSheet Validation Language (SSVL). We conducted a
user study to assess the e↵ectiveness of SSVL. The results
show that users using SSVL are faster and more produc-
tive in tasks involving the comprehension of data validation
rules. This is a promising result suggesting that SSVL can
actually improve the usability of spreadsheets.

CCS Concepts
•Software and its engineering !Domain specific lan-

guages; Software testing and debugging;

Keywords
Data Validation, Spreadsheets, Domain-specific Languages

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

SBSI 2017 June 5

th
– 8

th
, 2017, Lavras, Minas Gerais, Brazil

Copyright SBC 2017.

1. INTRODUCTION
Spreadsheet applications (e.g., Microsoft Excel, Google

Sheets) have become a common platform for end-users create
their own programs [15]. End-user programmers, or simply
end-users, are people who are not professional programmers,
but use spreadsheet applications as a platform to build solu-
tions in their domain fields [18], such as science, engineering,
insurance and banking, among others. Nowadays, spread-
sheet applications play important role in decision-making
processes in several organizations, thus making spreadsheet
errors serious threats to organization success [5][10]. How-
ever, end-user programmers and organizations are overcon-
fident in the correctness of their spreadsheet [14] and often
do not employ quality control measures commonly used in
regular programming [11][8]. These conditions foster a fer-
tile environment for the occurrence of errors in spreadsheet
programs. Not surprisingly, the study conducted by Panko
[13] observed 94% of spreadsheet programs contain errors.
To make matters worse, reports from field audits show that
spreadsheet errors may cause companies to lose millions of
dollars annually [4][16][13].

Spreadsheet programs are built on top of two basic con-
cepts: cells are used as variables and functions are used
to express relations between variables. Thus, mistakes in
spreadsheet programs can be introduced by either entering
incorrect data input into a cell, or by defining an incorrect
relation between cells. One e↵ective and simple way of help-
ing users to avoid introducing mistakes in their spreadsheet
programs is data validation [17]. Data validation is the pro-
cess of ensuring that input data are accurate according to a
set of validation rules. A validation rule is a logical sequence
of operators and operands performing tests on input data to
assure their validity. Indeed, most mainstream spreadsheet
applications provide a wide range of built-in functions to re-
strict the type of the input data or the range of valid values
entered into a cell. However, as observed by Caulkins et.
al. [4], spreadsheets typically do not validate many kinds
of human inputs, even though it is a recommended practice
that software should validate its inputs [7].

While building spreadsheet programs, end-user program-
mers can easily enter data validation rules. For example, in
Microsoft Excel and Google Sheets, end-user programmers
create new validation rules by selecting one or more cells to
validate and attaching to them the desired validation rule
by means of a “Data Validation” dialog, as shown in Figure

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 207

Figure 1: The Salary Management Spreadsheet in MS Excel

Employee

=(E3*D3)+F3

=(E4*D4)+F4

=(E5*D5)+F5

Department WagePerHour WorkedHours Commissions Salary

1. However, validation rules created are not visible in the
main interface of the spreadsheet program. In other words,
the underlying design decisions governing how data input
should be entered in a spreadsheet program are not explic-
itly visible to its users. Hiding data validation rules from
users may hinder the comprehensibility and the usability of
a spreadsheet program, thus increasing the risks of entering
incorrect data input [3][8][10].

Comprehending how to properly use a spreadsheet pro-
gram is an inherent complex task [11]. The ability to build
a spreadsheet program by assigning small pieces of busi-
ness logic to specific cells makes it di�cult to get a global
sense of the program structure. In order to get an overview
of a spreadsheet program, users have to trace dependen-
cies among cells. When validation rules are used, another
layer of complexity is introduced in spreadsheet program
comprehension, since these rules are hidden from users and
scattered across di↵erent cells in spreadsheets. As a con-
sequence, consulting and comprehending validation rules is
still a time consuming task for users of spreadsheet pro-
grams. Users have to navigate across the entire spreadsheet
and open for each cell the same “Data Validation” dialog
end-user programmers use to create the rules. There is still
no straightforward way of users getting a clear overview of
which validation rules should be adhered in a given spread-
sheet. As a consequence, users do not always possess the
knowledge to properly use a spreadsheet program, which
may ultimately lead to users entering invalid data in spread-
sheet programs.

To assist end-user programmers in explicitly and mod-
ularly expressing validation rules in spreadsheets, we pro-
posed the SpreadSheet Validation Language (SSVL), a tool-
supported domain-specific language that seamlessly integrates
to a spreadsheet application (e.g., Microsoft Excel or Google
Sheets). SSVL allows end-users to declaratively express
modular validation rules without using typical dialog-based
data validation approaches. With SSVL, programmers ex-
press all validation rules in a single artifact, thus providing a
unique and clear view of all validation rules associated to a

given spreadsheet. We conducted a user study to assess the
e↵ectiveness of SSVL. The results show users using SSVL are
faster and more productive in tasks involving the compre-
hension of data validation rules. This is a promising result
suggesting that SSVL can actually improve the usability of
spreadsheet programs.

The main contributions of this paper are:

• We present a language-oriented approach (SSVL) for
data validation in spreadsheets which requires any spe-
cial training. The language intents to o↵er substantial
gains in expressiveness and ease of use compared with
dialog-based approaches.

• We present a tool to support the implementation and
automatic data validation according to SSVL approach.
Although the tool implementation is based on Excel,
its underlying concepts can be applied to data valida-
tion in spreadsheets build in any program (e.g., Mi-
crosoft Excel or Google Sheets).

• We assess the usability of data validation in Excel and
SSVL. Preliminary results show that SSVL helps users
to be faster when they are asked to observe all invalid
data and judge why they are considered invalid or to
explain why some specific set of data has cells values
that are considered valid. Furthermore, the partici-
pants like the usage of the proposed language-oriented
approach and rate it as most suitable than the tradi-
tional dialog-based approaches. However, in all case,
users were not able to precisely judge if they are aware
of which cells have no data validation set up.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a background related to data validation in
spreadsheets. Section 3 presents the language-oriented ap-
proach and how the proposed concepts can be used to con-
cretize some of its supporting ideas in a prototyping tool.
Section 4 presents the user study on making data validation
rules explicit in spreadsheet applications. Finally, Section 5
presents our conclusions and directions for future work.

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 208

 2. BACKGROUND
In this Section we present a short background related

to spreadsheets and data validation in spreadsheet appli-
cations.

2.1 Spreadsheets
Spreadsheet has been applied to solve complex problems

for many professionals. Spreadsheet applications (e.g., Ex-
cel, Google Sheets) are probably the most used end-user
programing environment on the planet. We consider end-
user programmers any one who have little or no training at
programming [15]. Indeed, in contrast to general purpose
programming languages, it is possible to create very useful
Spreadsheets without training at programming [11].

Yet based on a simple computation model, Spreadsheets
applications are powerful environments. They are mainly
composed of cells, which can contain values (numbers, texts,
dates, times), references to other cells, or formulas. Cells are
often disposed in a rectangular grid, composed of a quasi-
infinity number of rows and columns. To refer to the con-
tents of a cell, an unambiguous address has to be used. The
most common form of cells address is the A1-style. Figure
1 illustrates a simple A1-style Spreadsheet. In this format,
cells are referenced by its row and column position inside
the Spreadsheet grid. For example, a cell at column B and
row 3 would have the address B3. Groups of cells (i.e., cell
ranges), can be also specified, and have a named. For ex-
ample, the range of cells E3:E9 compose the group of cells
named Employee.

From a design perspective, the content in spreadsheets is
usually arranged in tables. In this case, cells might contain
simple labels. In the example (Figure 1), cells B2, C2, D2,
E2, F2 e G2 are Label Cells. They are used to name the
column content. Label Cells can also be used as a form of
documentation or to provide additional information about
the overall Spreadsheet. Cells that contains any specific val-
ues and that are referenced by other cells are considered as
Input Cells. For example, the currency value “R$ 100.00”
in D3 and the integer value “180” in E3 are both inputs to
the formula in G3 (=(E3*D3)+F3). Finally, the cells that
contains formulas constitute the spreadsheet computation,
and are trivially called Formula Cells. The cell G3 is a For-
mula Cell that computes the multiplication of the values
placed in the Input Cells E3 and D3 plus the value placed
in the cell F3. These kind of cells are the ones which hold
all spreadsheet outputs. Considering the previous example,
the Formula Cell G3 outputs the Salary earned in a month
by a specific employee.

In summary, spreadsheets represent the logic, inputs and
outputs, all at the same place. In this case, end-user pro-
grammers are able to create their programs by performing
changes in any spreadsheet cells (i.e., Label Cells, Input
Cells and Formula Cells). However, each kind of change
have distinctive impacts on the spreadsheet. A change in a
Label Cells, usually modifies the means of the value stored
in near cells, while changes in Formula Cells produces modi-
fications in the spreadsheet computation. Changes in Input
Cells are often only the ones allowed to users and the ones
that should be validated, mainly because spreadsheets, are
in general used improperly or incorrectly, or without su�-
cient control [1][3]. Data validation is the process of ensuring
that user inputs are accurate according to a set of validation
rule. Next we overview how data validation is supported by

Excel, which o↵ers a dialog-based data validation approach.

2.2 Data Validation in Spreadsheets
When creating a spreadsheet, the end-user programmer

has a mental model of how it should be used [17]. One way
of expressing how users should input data in spreadsheets is
data validations [1][17]. Data validations are usually spec-
ified in terms of conditional construct as validation rules.
Such a validation rule consists of three parts: (i) an expres-
sion corresponding to the condition that has to be tested;
(ii) an action chosen based on the outcome of the condition
– if the condition is not satisfied, causes an error to be car-
ried out; and (iii) an error message that is displayed when
the input value is invalid.

With data validation, any cell should check for the valid-
ity of its content. This includes checks whether the data
is strongly typed, has the correct syntax, is within length
boundaries, or that numbers are correctly signed and within
range boundaries. Any data that does not match should be
rejected. In general, there are three category of validation
rules in spreadsheets:

• Data type: Every cell can have a data type that re-
stricts what values users can provide. For example,
the set of cells about Hours Worked should accept only
whole numbers, the Salary cells only decimals numbers
greater than or equals to 900.00, and so on.

• Limits: Restrict the input data to a minimum and/or
a maximum limit. For example, the cells range about
Commissions can be set to accept a limit between R$
00.0 and R$ 50.00.

• Input masks: End-user programmers can use an in-
put masks (e.g., regular expression) to validate data
by driving users to enter values in a specific format.
For example, an input mask can force users to enter
data in Department cells in accordance to a letter and
two-digit format such as, A10.

In next subsections we overview data validation in Mi-
crosoft Excel. We illustrate how data validation is supported
by such tool with a salary management spreadsheet (Figure
1). It is a very simple spreadsheet comprised of one sheet.
The Salaries Sheet provides access to the employee’s name,
department, wage/hours, worked hours, commissions and
total of incomes (salary).

2.2.1 Data Validation in Excel

In Excel, end-user programmers apply data validation to
restrict the type of data and the values that others enter into
a cell. Excel o↵ers several types of data validation. End-user
programmers can restrict data entry to: (i) whole numbers;
(ii) decimal numbers; (iii) date and time; or (iv) texts. The
numbers, date and time types can be restricted within limits
(or range of date and time), while textual values have to re-
spect a specific length or a regular expression. For example,
consider the spreadsheet in Figure 1. The cells in the D3:D9
can have a validation rule that restrict the Employees Wage
to be decimal values greater than or equals to R$ 50.00.

For adding any type of data validation, end-user program-
mers have to select one or a range of cells to validate and
attach to them the desired validation rule via the Data Vali-
dation dialog. Figure 1 overviews how to add data validation

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 209

 to a cell or a range. In the Allow box, end-user programmers
can configure the allowed type of data (e.g., whole number,
decimal, text). In the Data box, they can select the type
of restriction (e.g., between, greater or equals to). Finally,
they have to enter the minimum, maximum, or specific value
to allow. For example, consider the “Employees Wage” data
validation (range D3:D9). To set a minimum limit of Wage,
programmers have to select “greater than or equals to” in
the Data boxing and enter the values 50.00 in the Minimum
box. Excel also supports as value the return of a formula.
The Commissions (range F3:F9) minimum limit could be set
to a maximum limit of 10% of Employee Salary as the result
of the formula “=F3*0.10”.

Also in the Data Validation dialog, an input messages can
be set in order to help users to know who input data that
is not valid. In the example, the message might be “The
Employees Salary must be a decimal greater than or equals
to R$ 900”. The Error Alert option in the Data Validation
dialog can be configured to check, whether the user-provided
data breaks the respective validation rule. If so, the input
is not accepted, and Excel displays an error message. Also,
the Circle Invalid Data action allows users to audit spread-
sheet by looking for incorrect data that may cause inaccurate
calculations or results. Excel identifies cells that contain in-
valid data by displaying a red circle around them so that
users can observe and correct any inconsistency. In Figure
1, the cell D9 is violating the respective data validation. As
can be seen, the Employee Wage per Hour is a value less
than 50.00.

Although be powerful and extremely complete, the dialog-
based approach implement by Excel, (and also by Google
Sheets), has some drawbacks that can hamper its use. Con-
sider the problem of restrict the Employee Salary to values
greater than or equals to R$ 900. The first challenge here
is capturing validations rules in a disciplined way. The rule
“greater than or equals to R$ 900” have to be applied uni-
formly in all cells in the column Salary. As the dialog-based
data validation approach provided by Excel inevitably hides
behind cells their attached data validation rules, set up data
validation properly might become a di�cult and error-prone
task. Indeed, there is no easygoing or direct way to end-user
programmers consult all existing validation rules in Excel.
Second, it might be also very time consuming for spreadsheet
users to get an overview of the underlying data validation
rules and possess the knowledge to use the spreadsheet prop-
erly. In next Section we introduce SSVL, our proposed ap-
proach which intents to overcome some existing drawbacks
in the dialog-based approach.

3. SPREADSHEET VALIDATION
LANGUAGE

The SpreadSheet Validation Language (SSVL) is a domain-
specific language [9] to explicitly and modularly express data
validation rules in spreadsheets. The SSVL aims at solv-
ing the limitations imposed by data validation approaches
implemented in current spreadsheet applications. In par-
ticular, these approaches express validation rules scattered
across di↵erent cells in spreadsheets, and also hide these
rules from the main view of spreadsheet programs. By pro-
viding notations and constructs custom-tailored towards the
data validation domain [6][18], SSVL intents to o↵er sub-
stantial gains in expressiveness and ease of use compared

Figure 2: Data Validation Specification in SSVL

with dialog-based approaches, without substantial e↵orts in
specific training. Once data validation rules are explicitly
expressed in a specific artifact, the task of consulting and
comprehending them should become less time consuming
and error-prone. Therefore, users might be more aware of
the rules to enter valid data in a spreadsheet with a reduced
e↵ort and just be more e↵ective and productive in their day-
life work.

Validation rules in SSVL contain: (i) the name of a con-
tinuous or non-continuous range of cells that should be val-
idated; (ii) the expected data type (integer, double, data,
time, or string); and (iii) an expression specifying the condi-
tion be tested. Figure 2 illustrates the data validation rules
written following the SSVL notation.

Figure 2 present data validation rules for the for a Salary
management spreadsheet (see Figure 1). In SSVL, the cell
constructor is the container that encompasses the validation
rules for a specific range of cells referenced by its name. For
example, the construction“cell WagePerHour: double grater
than or equals to 50.00” (line 3-4) express that all values in
cells inside the named range “Salary” (D3:D9) must accept
only double values greater than or equals to 50.0. Table 1
lists all SSVL expressions and how they are typically used.
End-user programmers can use in expressions literal values,
such as: integer numbers; double numbers; dates and times;
string; and regular expressions. Regular expressions and
strings, in contrast to numbers, dates and times values, have
to be place within quotations.

3.1 Tool Prototype
We developed a tool prototype for supporting the specifi-

cation and automatic data validation of spreadsheets accord-
ing to SSVL approach. Our prototype tool is implemented
as an Eclipse plugin based on Xtext 1, a framework for devel-
opment of domain-specific languages. The Xtext framework
provides a powerful grammar language for the description
of textual languages, and an infrastructure, including: (i)
typechekers; (ii) validators; and (iii) editing support with
syntax highlight and autocomplete capabilities.

We built our data validation rule engine over the Easy
Rules 2 framework. The Easy Rules provides adequate API
abstractions to create rules with conditions and actions, and
an engine to run them to evaluate the conditions and exe-
cute the data validation reporting actions. The data valida-
tion actions interfaces with the Apache POI 3 to open, read,
and change the style of the spreadsheet to be validate. The

1eclipse.org/Xtext/
2easyrules.org
3poi.apache.org

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 210

Table 1: The purpose of SSVL expressions

Expression Purpose

|NOT| EQUALS TO
<VALUE>

Test for cell value equals or not
equals to the provided value

|NOT| BETWEEN
<VALUE> AND
<VALUE>

Test for cell value between or not
between to the provided value

GREATER THAN
OR EQUALS TO
<VALUE>

Test for cell value greater than or
equals to the provided value

LESS THAN OR
EQUALS TO
<VALUE>

Test for cell value less than or
equals to the provided value

REGEX
“<PATTERN>”

Matches pattern strings

STARTS WITH
“<VALUE>”

Matches if the cell value starts with
the provided substring

ENDS WITH
“<VALUE>”

Matches if the cell value ends with
the provided substring

LEN <VALUE>
Test for string with length equals
to the provided value

Apache POI o↵ers a Java APIs for manipulating files formats
based upon the O�ce Open XML standards and Microsoft’s
OLE 2 Compound Document format. Therefore, although
the tool prototype is based upon Excel, its underlying con-
cepts can be applied to data validation in spreadsheets build
in other spreadsheet applications, like Google Sheets.

4. USER STUDY
We conducted a user study to investigate whether and

how di↵erent data validation strategies (dialog-based ver-
sus language-based) influence users comprehension of vali-
dation rules in spreadsheets. In this study, we used the Excel
spreadsheet application as representative of the dialog-based
strategy, whereas SSVL represents the language-based strat-
egy. Next, we present the study settings and the observed
results.

4.1 Goal and Research Questions
In this study, our goal is to observe to what extent users

can understand an existing set of data validation rules ex-
pressed using two di↵erent approaches. Following the Goal-
Questions-Metrics (GQM) [2], we defined the goal for our
user study as follows:

To characterize the e↵ects of dialog-based and language-
based validation strategies on user comprehension from the
viewpoint of users of medium-sized spreadsheet programs in
the context of undergraduate students.

Then, we refined our research questions as follows.

• RQ1. Will user be more accurate in understanding
data validation with the aid of Excel or SSVL?

• RQ2. Will user be faster in understanding data vali-
dation with the aid of Excel or SSVL?

• RQ3. Will user be more satisfied with their experience
in Excel or SSVL?

Based on the research questions we defined the metrics
to be collected. To answer RQ1 and RQ2 we use two met-
rics: (i) the number of correctly answered the questions in
a questionnaire; and (ii) the time taken to answer the ques-
tionnaire. To answer the RQ3 we applied the USE question-
naire [12] as a measurement of user satisfaction experience.

4.2 Study Procedures
Our study comprised three steps. First, participants at-

tended an introductory tutorial giving an overview of data
validation strategies in spreadsheets. The introductory tuto-
rial was aimed to ensure that all participants had the same
basic knowledge about data validation in spreadsheets us-
ing SSVL and Excel. Next, we asked participants to an-
swer a questionnaire regarding data validation understand-
ing. This activity consists of a questionnaire about existing
spreadsheets and their respective data validation rules. We
recorded the time taken for each participant to answer each
question as well as their response, deriving the number of
correctly answered questions. Finally, we asked participants
to answer a USE questionnaire [12] comprising questions
about tool’s usability, satisfaction, and ease of use.

We designed our user study with the Latin square in order
to control the use of the data validation strategies by groups
of participants. The size of the Latin square is 2x2, in which
the x-axis is the participants and the y-axis is the spread-
sheets. The Latin square design gave us a random allocation
of Excel and SSVL in such a way that they were used once
by each participant (row) and once with each spreadsheet
program (column). This design avoids some e↵ects such as
learning throughout observations.

The study involved twelve participants, all undergraduate
students from the Federal University of São João del-Rei.
Therefore, we were able to replicate the 2x2 Latin square
six times, obtaining 24 independent observations.

4.3 Spreadsheets and Problems
The data validation problems were encoded into two spread-

sheets: Stock Control SS and Payroll SS. Participants were
given a brief overview of each spreadsheet. We explained the
functionalities of each spreadsheet, so that all participants
had exactly the same information about the spreadsheets.
The Stock Control SS controls the stock of restaurants, while
the Payroll SS calculates employee’s salary based on incomes
and deductions. There are sixteen cells with invalid data in
Stock Control SS and seventeen cells with invalid data in
Payroll SS. Both spreadsheets were laid out such that they
require scrolling, to ensure that not all invalid data would
be visible at once.

To facilitate comparing the impact of data validation ap-
proaches, we violated data validation rules that would ex-
pose only numeric errors. We introduce the values that vi-
olates the following kinds of rules: data type; equals; be-
tween; greater than or equals to; and less than or equals to.
To avoid biasing results, we introduced the invalid data uni-
formly across spreadsheets, assuring more than one invalid
data for each set of cells. Moreover, in order to observe the
ability of users to identify which cells do not have data vali-
dation rules, we remove from both spreadsheets a set of cells
and their respective data validation rules.

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 211

Figure 3: Boxplot - Correctly Answered Questions

Q1 − Answers Q1 − Interpretation Q2 Q3

Excel SSVL Excel SSVL Excel SSVL Excel SSVL

0.0

0.5

1.0

Techniques

Sc
or

es

4.4 Questionnaires
The questionnaire used in our study has three questions

about the existence of data validations rules. These ques-
tions aim to quantify to what extent a user understands the
existing data validation rules. Therefore, we designed ques-
tions to observe whether users are able to: (q1) identify all
invalid data and judge why they are considered invalid (i.e.,
which validation rules they are violating); (q2) judge if they
are aware of which cells have no data validation set up; and
(q3) explain why some specific sets of data have cell values
that are considered valid.

The participants were also asked to answer a questionnaire
about their user-experience. This questionnaire is based on
the USE questionnaire, and is composed of 30 seven-point
Likert scale questions. For each question the participant
assigned a score ranging from 1 (strongly disagree) to 7
(strongly agree) to a given statement regarding on of the
three dimensions addressed by the USE questionnaire (us-
ability, satisfaction and ease of use).

4.5 Results and Analysis
In this section, we first compare participant’s performance

regarding the understanding of data validation rules. We
answer questions RQ1 and RQ2, and also discuss the results
from the USE questionnaire.

4.5.1 Correctly Answered Questions (RQ1)

To answer our first research question, we analyzed the
number of correct answers. The questions were analyzed
over the perspective of partially correct answers. That is, we
assigned a score for each participant considering answer as
being partially correct. We calculated this score by dividing

Table 2: Descriptive Statistics – Correctly Answered

Questions

Excel SSVL

Mean 2.16 2.14
Min 1.56 1.50
Max 3.00 3.00
Median 2.00 2.00
Stdev 1.39 1.81

Figure 4: Boxplot - Time Taken to Answer

300

400

500

600

 Excel SSVL

Techniques

Ti
m

e
(s

ec
on

ds
)

the number of correctly provided answers elements by the
sum of all elements – hits and misses. We considered a miss
a wrong element in the answer or the absence of a correct
one.

Table 2 presents the descriptive statics of correct answers.
We observe that, in general, the means are almost equals. It
shows that there is no explicit di↵erence between Excel and
SSVL groups. Figure 3 shows a box plot for the scores ob-
tained by participants in each question (Q1, Q2 and Q3). All
participants working with Excel and SSVL identified simi-
lar percentages of the invalid data (Q1 – Answers), and were
capable of judging why they were considered invalid (Q1 –
Interpretation). Moreover, in all cases, they were also able
to correctly answer why some specific sets of data have cell
values that were considered valid (Q3). However, only two
participants were aware of which cells have no data valida-
tion rules (Q2). In this case, we can confirm that neither
Excel nor SSVL are able to help users on the task of iden-
tifying which sets of cell do not have data validation rules.
Yet, in general, the results suggest that a language-oriented
approach seems to be easy to learn and equally powerful
as the common practice employed by the main spreadsheet
programs (e.g., Excel and Google Sheets).

The statistical test corroborates our observation. First,
we used the Shapiro-Wilk test to check for normality and
results indicated the sample does not follow a normal dis-
tribution (p < .05). Therefore, Kruskal-Wallis test was con-
ducted to determine whether there was a di↵erence in total
score considering correct answers from participants assisted
by Excel and SSVL. Results indicated there was no statisti-
cally significant di↵erence, df = 23, p > .05.

Table 3: Descriptive Statistics – Time Taken to An-

swer Questions

Excel SSVL

Mean 475.9 387.2
Min 356.0 250.0
Max 649.0 600.0
Median 457.5 363.0
Stdev 92.7 102.0

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 212

4.5.2 Time Taken to Answer Questions (RQ2)

We analyzed the time (in seconds) taken to answer all the
questions. We avoided analyzing only the time of correct
answers because participants had a distinct number of cor-
rect answers, which makes impracticable to compare their
total times. Moreover, as we presented in Section 3.5.1,
this choice is also justifiable because participants were, in
general, successful in answering the questionnaire. Table 3
presents the descriptive statics of the time taken by partici-
pants to answer the questions.

Figure 4 shows a box plot for the time spent by partic-
ipants in each tool (Excel and SSVL). Analyzing the box
plot, we notice that SSVL allows participants to comprehend
data validation rules faster than in Excel. The di↵erence be-
tween groups also indicates that users without training on
language-oriented approaches are able to quickly understand
how to read the validation rules specified in SSVL. Indeed,
participants using SSVL present a much lower variance. The
lower time achieve by SSVL is credited to the fact that the
information required for understanding data validation rule
is explicitly shown in a single artifact. That is, SSVL elim-
inates the need for navigating through many di↵erent cells
across the spreadsheet.

Results of the Shapiro-Wilk test indicate that the sample
follows a normal distribution (p > .05). Results of an Anova
test indicate there was a statistically significant di↵erence
(F = 5.38, p < .05) between the time spent by participants
assisted by Excel or SSVL. Therefore, the statistical test
corroborates our observations.

4.5.3 User Satisfaction Questionnaire

Finally, participants were requested to answer a series of
questions regarding three aspects of SSVL: (i) usability; (ii)
satisfaction; and (iii) ease of use. Analyzing the boxplot in
Figure 5 we can derive useful insights. The highest averages
of each dimension show that participants consider SSVL to
be more useful, easier to use and learn, and they are more
satisfied with SSVL than with Excel. Indeed, statistical test
corroborate our observations. Results of the Shapiro-Wilk
test indicate that the sample does not follow a normal distri-
bution (p < .05). Therefore, Mann-Whitney U test was con-
ducted to determine whether there was a di↵erence in total
score considering user experience from participants assisted
by Excel and SSVL. Results of that analysis indicated that
there was a statistically significant di↵erence, w = 58804, p
< .05.

We also analyzed the three most positive and the three
most negative aspects of each tool. We consider the most
positive aspects the one with highest mean and lowest stan-
dard deviations. On the other hand, we consider the most
negative aspects the ones with lowest mean and highest stan-
dard deviations. The most positive aspects of Excel are: its
usefulness, it is quick to learn how to use it, and it is easy
remembering how to use it. Yet, the most negative aspects
of Excel are that it does not help users to be more e↵ec-
tive, it does not help users to be more productive and it
does not do everything the users would expect it to do. In
fact, the results corroborate with our claim that although
dialog-based approaches are easy to learn and use, they do
not help users to be more e↵ective and productive in their
daily activities.

Analyzing the three most positive aspects of SSVL we
could observe that it is flexible, it works the way users want

Figure 5: Boxplot - User Satisfaction Questionnaire

Usefulness Ease of Use and Learning Satisfaction

Excel SSVL Excel SSVL Excel SSVL

1

2

3

4

5

6

7

Techniques

Sc
or

es

it to work, and it does not present inconsistencies as users
use it. Yet, the three most negative aspects of SSVL are that
it makes the things users want to accomplish easier to get
done, both occasional and regular users would like it, and
users can use it without written instructions. Corroborating
with the observed results (Section 3.5.1 and 3.5.2), we can
assume that users are in general satisfied and agree that the
language design is mature enough to help them to be more
productive. However, as SSVL implements a non-traditional
data validation approach, the users agree that it is harder
to learn and use than dialog-based approaches.

The analysis of the user experience questionnaire speaks
in favor of a language-oriented approach. In general, par-
ticipants using SSVL were more satisfied than those using
Excel. The use of a dialog interrupts the workflow of spread-
sheet users, because they have to open a ”Data Validation“
dialog window and read the according data validation rule
expressed by means of several combo and text boxes. Since
interruptions can be very expensive, they should be avoided
whenever possible. Our results indicate that SSVL can limit
the amount of interruptions caused by dialog usage.

4.5.4 Threats to Validity

Threats to validity can be discussed into internal and ex-
ternal validity. In this section, for each category, we list the
possible threats and the procedure we took to alleviate their
risk.

Internal Validity. Since there is no standardized assess-
ment of data validation in spreadsheets, we applied our own
questionnaire to our participants. Therefore, we cannot be
sure how well we captured the metrics correct answers and
time. To reduce this threat, we developed a questionnaire
based on literature review about empirical and user studies
in spreadsheets [18]. Likewise, to minimize threats related
to confounding or poor design questions, we proceed by an-
swering questions from participants as they were emerging.
To avoid biasing the experiment results, we resort the expla-
nations to what was demonstrated during the introductory
tutorial and to what clarifications were absolutely necessary.

We used numerous mechanisms to deal with small sam-
ples. First, we use a Latin square design to apply both tools

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 213

 (Excel and SSVL) to all subjects without side e↵ects, such
as learning. Moreover, we we applied variants of significant
tests that were developed to deal with small samples. Fi-
nally, Cohen’s test indicates from medium to large e↵ects.
We also did not correct the response times for wrong answers
because our sample is small. Indeed, there is no consensus
in literature whether the use of e�ciency measure as combi-
nation of correctness of answers and response time may lead
to falsely accepting or rejecting a hypothesis. Since answers
results deviated considerably towards the maximum value
that is 3, we consider that this thread is insignificant in our
study.

External Validity One external risk is caused by spread-
sheets. The selected ones might not be representative of all
practices. To reduce this risk, we selected one spreadsheet
from Excel’s sample and the another is a real-life stock con-
trol spreadsheet. Moreover, although the size of the chosen
spreadsheets is limited, this characteristic allowed us to ob-
tain more consistent results that could be interpreted. An-
other threat can be caused by our sample, which consisted
mostly of undergraduate students. However, the benefits of
recruiting students are twofold: (i) they have relatively little
experience with data validation in spreadsheets, which sup-
ported us to observe that any of both tools required specific
level of special training; (ii) their heterogeneity helps to ad-
dress the biasing the study results to a specific subgroup of
professionals.

5. CONCLUSIONS
Spreadsheet applications play significant role in decision-

making processes in organizations [5]. Thus spreadsheet er-
rors are serious threats as reported by several works [13][16].
One e↵ective and simple way of helping users to avoid intro-
ducing mistakes in their spreadsheets is data validation [17].
However, most of spreadsheet applications, nowadays hide
from users the underlying design decisions governing how
data input should be entered in a spreadsheet. In this paper,
we present a language-oriented approach for data validation
in spreadsheets that requires no special training. The lan-
guage intents to o↵er substantial gains in expressiveness and
ease of use compared with dialog-based approaches o↵ered
by most of mainstream spreadsheet applications.

We assess the usability of data validation in Excel and
SSVL. Preliminary results show that SSVL helps users to
be faster when they are asked to observe all invalid data
and judge why they are considered invalid or to explain why
some specific set of data has cells values that are considered
valid. Furthermore, the participants like the usage of the
proposed language-oriented approach and rate it as most
suitable than the traditional dialog-based approaches. How-
ever, in all case, users were not able to precisely judge if
they are aware of which cells have no data validation set
up. In feature work, we plan to evolve the language expres-
siveness as well as integrating it with existing spreadsheet
testing tools in order to support the generation of test inputs
based on validation rules. Finally, we also plan to concretize
our proposed approach as two Add-Ins, one for Excel and
another to Google Sheets.

6. REFERENCES
[1] R. Abraham, M. Erwig, S. Kollmansberger, and

E. Seifert. Visual specifications of correct

spreadsheets. In Symposium on Visual Languages and
Human-Centric Computing, 2005.

[2] V. R. Basili, G. Caldiera, and H. D. Rombach. The
goal question metric approach. In Encyclopedia of
Software Engineering. Wiley, 1994.

[3] M. Burnett, C. Cook, O. Pendse, G. Rothermel,
J. Summet, and C. Wallace. End-user software
engineering with assertions in the spreadsheet
paradigm. In 25th International Conference on
Software Engineering, 2003.

[4] J. P. Caulkins, E. L. Morrison, and T. Weidemann. Do
Spreadsheet Errors Lead to Bad Decisions?, pages
44–62. IGI Global, 2008.

[5] J. P. Caulkins, E. L. Morrison, and T. Weidemann.
Spreadsheet errors and decision making: Evidence
from field interviews. Journal of Organizational and
End User Computing, 19(3):1 – 23, 2017.

[6] D. M. Groenewegen and E. Visser. Integration of data
validation and user interface concerns in a dsl for web
applications. Software & Systems Modeling,
12(1):35–52, 2013.

[7] M. Howard, D. LeBlanc, and J. Viega. 24 Deadly Sins
of Software Security: Programming Flaws and How to
Fix Them. McGraw-Hill, New York, 1 edition, 2010.

[8] D. Jannach, T. Schmitz, B. Hofer, and F. Wotawa.
Avoiding, finding and fixing spreadsheet errors – a
survey of automated approaches for spreadsheet {QA}.
Journal of Systems and Software, 94:129 – 150, 2014.

[9] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe,
M. Schindler, and S. VoÌ́Llkel. Design guidelines for
domain specific languages. In 9th Workshop on
Domain-Specific Modeling, 2009.

[10] J. Lawrance, R. Abraham, M. Burnett, and M. Erwig.
Sharing reasoning about faults in spreadsheets: An
empirical study. In Visual Languages and
Human-Centric Computing, 2006.

[11] B. R. Lawson, K. R. Baker, S. G. Powell, and
L. Foster-Johnson. A comparison of spreadsheet users
with di↵erent levels of experience. Omega, 37(3):579 –
590, 2009.

[12] A. M. Lund. Measuring usability with the use
questionnaire. In STC Usability SIG Newsletter. 2001.

[13] R. R. Panko. Spreadsheet errors: What we know.
what we think we can do. In Symp. of the European
Spreadsheet Risks Interest Group, 2008.

[14] R. R. Panko. Two Experiments in Reducing
Overconfidence in Spreadsheet Development, pages
131–149. IGI Global, 2008.

[15] R. R. Panko and D. N. Port. End user computing:
The dark matter (and dark energy) of corporate it. In
45th Hawaii Inter. Conf. on System Sciences, 2012.

[16] S. G. Powell, K. R. Baker, and B. Lawson. A critical
review of the literature on spreadsheet errors. Decision
Support Systems, 46(1):128 – 138, 2008.

[17] C. Sca�di, B. Myers, and M. Shaw. Topes: Reusable
abstractions for validating data. In 30th International
Conference on Software Engineering, 2008.

[18] C. Sca�di, B. Myers, and M. Shaw. Fast, Accurate
Creation of Data Validation Formats by End-User
Developers. 2009.

