
XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 293

 A Risk-Based Approach for
Selecting Software Requirements

Aruan Amaral
Informatics Center (CI)

Federal University of Paraíba
João Pessoa - PB - Brazil

aruangalves@ppgi.ci.ufpb.br

Gledson Elias
Informatics Center (CI)

Federal University of Paraíba
João Pessoa - PB - Brazil
gledson@ci.ufpb.br

ABSTRACT
In incremental development approaches, there is a great interest in
delivering system releases on-time and on-budget, raising the
satisfaction level of the stakeholders involved in the development
process. Thus, the software requirements selection process has a
key role in identifying a good-enough or even an optimal subset of
candidate requirements, which can balance trade-offs among
critical aspects, such as project budget, requirements costs,
customers’ preferences and their importance. Despite relevant
contributions, current proposals do not address software risks
involved in the development process, which represents another key
aspect that can deeply impact on project cost and stakeholders’
satisfaction. In such a direction, this paper proposes a risk-based
approach for selecting software requirements, in which a risk
analysis is incorporated for estimating the impact of risks in the cost
of the next release requirements and stakeholders’ satisfaction.
Evaluation results based on a pilot use case reveal the potential
practical applicability of the proposed approach.

CCS Concepts
• Software and its engineering➝Requirements
analysis • Software and its engineering➝Risk management.

Keywords
Next release problem; software requirements; risk management.

1. INTRODUCTION
In the field of Software Engineering, it is not a recent idea the

adoption of incremental development processes based on iterative
system deliveries, in which each new release is enhanced with some
additional functionalities, mapped from a subset of candidate
requirements that hold some interest to the stakeholders involved
in the development process. Even in the 1970s and 1980s, decades
mostly dominated by waterfall development, great enthusiasts of
incremental approaches already existed. Indeed, although many
view iterative and incremental development as a modern practice,
its practiced and published roots go back decades [1]. However,
only more recently, enabled by the Internet, group facilitation and
distant coordination within open source software communities,
iterative and incremental processes have become mainstream in
software industry, providing a view of software development and

evolution that is incremental, iterative, ongoing, interactive, and
sensitive to social and organizational circumstances [2].

In such iterative and incremental processes, during the
requirements elicitation process, the needs and interests of every
stakeholder should be mapped into a set of candidate requirements
to be developed on the next iteration or in a later system release.
However, it is widely known that during a software process
iteration, schedule and budget limits exist and, ideally, such limits
should not be exceeded [2]. Thus, considering a scenario in which
the set of candidate requirements surpasses the budget available for
the next system release, the development team must face the
problem of deciding on which requirements should be prioritized
and selected to be delivered on the next release. Besides the
necessary effort on negotiating such requirements with the
stakeholders, the development team also find difficulty on selecting
an appropriate subset of candidate requirements, which can balance
trade-offs among critical aspects, such as project budget,
requirements costs, customers’ preferences and their importance,
keeping project costs under control and raising the satisfaction level
of the stakeholders involved in the software product.

In such a scenario, without the support of systematic decision-
making approaches, the software requirements selection process
becomes a complex, challenging and error-prone task. Therefore,
the adoption of manual, ad-hoc approaches are impractical for
selecting requirements that maximize stakeholder satisfaction and
minimize project costs. Such impracticability can be perceived by
the large amount of data and conflicts of interest among
stakeholders, imposing to the development team the responsibility
and the brutal effort to conciliate and balance the trade-offs during
the decision-making process, which turns out to be even harder
when the set of candidate requirements becomes larger and larger.

In order to alleviate the decision-making effort, information related
to candidate requirements must be measured and quantified for
making associated data computable. A notable approach on this
direction is the cost-importance model [3]. This model aims to
maximize software quality, perceived through the satisfaction level
of the stakeholders. Besides, it also attempts to minimize costs and
delivery time as much as possible. In such an approach, a
systematic requirements review process is conducted together with
stakeholders, collecting data and generating a two-dimensional
diagram that address requirements costs and importance from the
point of view of the stakeholders.

Later, in the early 2000s, the software requirements selection
process was defined and modeled as the Next Release Problem
(NRP) [4]. In the literature, many different proposals that
characterize and solve this problem from different and
complimentary points of view can be found [5] [6] [7] [8] [9].
Initially, the main advancements are represented by proposals that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SBSI 2017, June 5–8, 2017, Lavras, Minas Gerais, Brazil.
Copyright SBC 2017.
.

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 294

 focus on finding the better solution that keeps project budget under
control and raises the stakeholders’ satisfaction. Later, the concept
of a pre-allocated budget limit was discarded in favor of offering
not only a single solution but a set of good candidate solutions,
independent of budget limits, making more flexible and
customizable the decision-making process [5].

Despite relevant contributions, it can be noted that most of current
proposals mainly focus on the traditional model of evaluating
project budget, requirements costs, customers’ preferences and
their importance, ignoring other important aspects, such as software
risks, including those associated to software project, software
product and organization, which can deeply impact positively or
negatively on the requirements costs and stakeholders’ satisfaction
for the next release.

Consequently, the incorporation of a risk analysis in the modeling
of the next release problem seems to be an important contribution
and evolution. Such rationale can be reinforced by the fact that, on
the one hand, the adoption of a risk management process is a
significant reason related to software project success [10], and, on
the other hand, its absence is a significant reason associated to
software project failures [11], once it obstructs project managers
and their development teams from assessing the specific points of
failure in their respective software projects. For instance, a study
done on 50,000 completed software projects reveals that 53% of
these projects had some troubles on delivery, including an average
budget overrun of 56% [12]. Therefore, the requirements costs
must still be kept on the modeling of a next release planning. As a
consequence, requirements costs and risk management must be
considered simultaneously.

In such a direction, this paper proposes a risk-based approach for
selecting software requirements for the next software release, in
which a risk analysis is incorporated for estimating the impact of
risks in the costs of the selected requirements and stakeholders’
satisfaction. In the proposed approach, candidate requirements are
associated to identified software risks, which in turn are related to
risk mitigation techniques. Then, based on the probability and
severity of the identified risks, together with the cost of applying
each mitigation technique, the proposed approach estimates the
impact of the risks on both requirements costs and stakeholders’
satisfaction. Also, as a mean to conciliate and balance conflicts of
interest among stakeholders, as adopted in already existing
proposals, the proposed approach also considers customers’
preferences and their importance to the development organization.

The remainder of this paper is organized as follows. Section 2
presents the proposed approach in details. Section 3 discusses the
main related work, evincing the contribution of the proposed
approach. In Section 4, a pilot use case is presented in order to
evaluate the proposed approach and evaluation results reveal its
potential practical applicability. In conclusion, Section 5 discusses
some final considerations and future work.

2. RISK-BASED APPROACH
Initially, the scenario of the next release problem must be
characterized, making possible to be handled as a computable
model and to obtain quantified solutions that represent their quality.
In this sense, Figure 1 presents the main steps involved in the
proposed risk-based approach and, besides, illustrates the
information adopted as input and produced as output in each step.

Mitigation Techniques

Clients Importance

Integrated
Cost-Satisfaction

Evaluation

Requirements

Satisfaction
Level

Cost
Level

Recommended
Solutions

Cost
Evaluation

Requirements Cost
Risks Probability

Clients Preference Satisfaction
Evaluation

Techniques Cost

Risks

Clients

Risks Severity

Risks Traceability

Techniques Traceability

Figure 1. Steps of the proposed approach.
In the proposed approach, the clients are represented by the set U,
as indicated in Equation 1. On the next release, these clients have
interest on the set of candidate requirements, represented by the
set RQ and defined in Equation 2.

 𝑈 = {𝑢ଵ, 𝑢ଶ, … , 𝑢௣} (1)

 𝑅𝑄 = {𝑟𝑞ଵ, 𝑟𝑞ଶ, … , 𝑟𝑞௡} (2)

It is also known that just a subset of the candidate requirements RQ
will be selected for the next release. As such, in order to indicate
the selection of each requirement 𝑟𝑞௜, each possible recommended
solution is represented by the set X, as defined in Equation 3. Each
term 𝑥௜ assumes values 1 or 0 to denote that the corresponding
requirement 𝑟𝑞௜ has been selected or not, respectively.

 𝑋 = ቄ𝑥௜ ቚ ∃௥௤೔ 𝑟𝑞௜ ∈ 𝑅𝑄 ˄ 𝑥௜ ∈ {0, 1}ቅ (3)

Clients must define a set of requirements preferences, called clients
preference, assigning higher preferences to requirements of most
importance. Thus, for each client 𝑢௟, it defines a degree of
preference attributed for each requirement 𝑟𝑞௜. As indicated in
Equation 4, such a preference is represented by the relationship
𝑆௎,ோொ, composed by terms called 𝑠௟,௜, which assumes values in the
interval [0, 1] ∈ ℝ. Note that the value one indicates that client 𝑢௟
has the maximum interest on requirement 𝑟𝑞௜, while the value zero
denotes the complete lack of interest.

 𝑆௎,ோொ = ൛𝑠௟,௜ ห ∃௨೗ 𝑢௟ ∈ 𝑈 ˄ ∃௥௤೔ 𝑟𝑞௜ ∈ 𝑅𝑄 ˄ 𝑠௟,௜ ∈ [0, 1]ൟ (4)

Consequently, clients may have distinct or even conflicting
interests about the requirements to be selected in the next release.
To deal with such conflicts of interest, the organization responsible
by developing the software product must adopt a conciliating
strategy for balancing conflicting preferences. In the proposed
approach, such a strategy is based on the concept of clients
importance from the point of view of the development
organization, indicating how important each client 𝑢௟ is to its
business strategy. The clients importance is represented by the
set E, as shown in Equation 5, in which each term 𝑒௟ can assume
values in the interval (0, 1] ∈ ℝ, indicating the importance
associated to the respective client 𝑢௟. Differently from requirements
preferences, clients importance cannot be completely discarded and
so must be different from zero.

 𝐸 = ൛𝑒௟ ห ∃௨೗ 𝑢௟ ∈ 𝑈 ˄ 𝑒௟ ∈ (0, 1]ൟ (5)

In order to evaluate the next release cost, the requirements cost is
a set of values associated to each requirement 𝑟𝑞௜, which is

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 295

 represented by the set RQC in Equation 6. It is important to
highlight that the development team, based on some kind of cost
estimation method adopted during project planning, supplies the
requirements cost.

 𝑅𝑄𝐶 = ൛𝑟𝑞𝑐௜ ห ∃௥௤೔ 𝑟𝑞௜ ∈ 𝑅𝑄 ˄ 𝑟𝑞𝑐௜ > 0ൟ (6)

The information regarding requirements costs is not sufficient for
decision making about the best selection of requirements for the
next version of the system. There are other important factors that
define the degree of success of the subset of requirements delivered
on the next release [13]. Besides the cost estimation, other risk
factors associated to the requirements engineering process can arise
during the planning of the next system release. These factors can
represent the failure or success of the new release according to the
final users’ or clients’ view [13] [14].

In such a direction, the proposed approach deals with risks
associated with software requirements. As an example of software
risk, it can be indicated requirements changes as inevitable in all
large software projects due to constant evolution in the clients’
business interest. Besides, as an additional example, it can be
signalized the lack of comprehension on the requirements
definition, including a misunderstanding of the stakeholders’ real
interests or even an omission of important features or constraints
associated to requirements. This lack of comprehension or
incompleteness can be related to a specific context, where the
chosen language to define the requirements has a special meaning
in the client’s business domain. Besides that, the software product
can experience an uncontrolled growth due to problems during the
definition of its constraints and scope. This can be a result of vague
or abstract requirements descriptions, sometimes deliberately
produced in order to find a common ground among stakeholders
with conflicting views [15] [16] [17].

The requirements elicitation should not be very ambitious, but must
be done in a realistic and achievable way. Also, a lack of
traceability during the requirements validation stage can also
become a risk factor. From the final users’ point of view, they might
also reject the software product when they are not appropriately
involved during the software development process, generating a
resistance to changes. Indeed, several other more specific risk
factors can be considered. Such risks generate a series of possible
undesirable events that can impact the satisfaction level perceived
by clients and the final cost of the delivered next release, all of them
related to an inadequate selection of requirements [18].

Consequently, taking into account the changeable context related
to software development processes, numerous features and
constraints related to software project, software product,
development environment, deployment hardware and software
platforms, as well as development team skills and availability, and
finally managerial and organizational aspects [17], have the
potential to direct or indirectly affect the candidate software
requirements [14].

Usually, a risk is defined as a material or financial loss, or any other
event that must be avoided in a risk management process [13] [19]
[20]. Every risk is associated with a severity value, which indicates
the consequences of the risk event and its associated loss or impact
[19] [20]. Besides, every risk also has a probability value, which
indicates how likely this undesirable event could happen.

In the proposed approach, the risks are defined by the set RK, as
indicated in Equation 7. As mentioned, each risk 𝑟𝑘௝ has associated
probability and severity values. However, given the difficulty of
associating accurate values to probability and severity, in the

proposed approach, a fuzzy-driven representation is adopted, in
which textual terms are employed to classify probability and
severity as discrete values represented in Table 1.

 𝑅𝐾 = {𝑟𝑘ଵ, 𝑟𝑘ଶ, … , 𝑟𝑘௠} (7)

Table 1. Risk probability and severity values.

Class Very Low Low Medium High Very high
Value 0.05 0.25 0.50 0.75 0.95

As can be noticed in Table 1, a five-point value Likert scale has
been adopted because it has been a common measure used on the
literature [21]. Thus, the values assigned to risk probability and
severity can only assume values in the set FT, defined in
Equation 8.

 𝐹𝑇 = {0.05, 0.25, 0.50, 0.75, 0.95} (8)

In the proposed approach, the risks probability and risks severity
are defined respectively by the sets RKP and RKS, as represented
in Equations 9 and 10. Note that the corresponding terms 𝑟𝑘𝑝௝ and
𝑟𝑘𝑠௝ can only assume values represented by the fuzzy-terms in
Table 1 and formalized by the set FT in Equation 8.

 𝑅𝐾𝑃 = ቄ𝑟𝑘𝑝௝ ቚ ∃௥௞ೕ 𝑟𝑘௝ ∈ 𝑅𝐾 ˄ 𝑟𝑘𝑝௝ ∈ 𝐹𝑇ቅ (9)

 𝑅𝐾𝑆 = ቄ𝑟𝑘𝑠௝ ቚ ∃௥௞ೕ 𝑟𝑘௝ ∈ 𝑅𝐾 ˄ 𝑟𝑘𝑠௝ ∈ 𝐹𝑇ቅ (10)

As a mean to represent the traceability among requirements and
software risks, called in the proposed approach as risks
traceability, each requirement 𝑟𝑞௜ might be associated with one or
more software risks 𝑟𝑘௝ . Therefore, as indicated in Equation 11, the
relationship RTRQ,RK is adopted to represent such a traceability, in
which the term 𝑟𝑡௜,௝ denotes the traceability between the
requirement 𝑟𝑞௜ and the risk 𝑟𝑘௝ , assuming a value equal to one or
zero to indicate its existence or not.

𝑅𝑇ோொ,ோ௄ = ൜𝑟𝑡௜,௝ ฬ ∃௥௤೔ 𝑟𝑞௜ ∈ 𝑅𝑄 ˄ ∃௥௞ೕ 𝑟𝑘௝ ∈ 𝑅𝐾 ˄ 𝑟𝑡௜,௝ ∈ {0, 1}ൠ (11)

In a risk management process, in the case of a risk occurrence, it
ought to be adopted mitigation techniques [20] to reduce or
eliminate the consequences of the risk. In the proposed approach,
mitigation techniques are defined by the set T, defined in
Equation 12.

 𝑇 = {𝑡ଵ, 𝑡ଶ, … , 𝑡௤} (12)

Mitigation techniques have associated costs related to their
adoption as defined in Equation 13 by the set TC, called in the
proposed model as techniques cost. It is important to emphasize
that, based on some kind of cost estimation method adopted during
project planning, the development team ought to provide the cost
value 𝑡𝑐௞ associated to each mitigation technique 𝑡௞.

 𝑇𝐶 = ൛𝑡𝑐௞ ห ∃௧ೖ 𝑡௞ ∈ 𝑇 ˄ 𝑡𝑐௞ > 0ൟ (13)

During the development process, each mitigation technique can
help in mitigating one or more risks. As a mean to represent the
traceability among risks and mitigation techniques, as formalized
in Equation 14, it is also necessary to define the relationship TTRK,T,
called techniques traceability, in which each term 𝑡𝑡௝,௞ associates
the risk 𝑟𝑘௝ to the mitigation technique 𝑡௞, assuming values equal
to one or zero to indicate the presence or absence of the association,
respectively.

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 296

 𝑇𝑇ோ௄,் = ൜𝑡𝑡௝,௞ ฬ ∃௥௞ೕ 𝑟𝑘௝ ∈ 𝑅𝐾 ˄ ∃௧ೖ 𝑡௞ ∈ 𝑇 ˄ 𝑡𝑡௝,௞ ∈ {0, 1}ൠ (14)

Generally, in risk management processes, mitigation techniques are
classified in two different types:

x Preventive: attempts to avoid the risk occurrence. It is applied
during the whole release implementation, regardless of the risk
event happens or not.

x Corrective: attempts to mitigate or even eliminate the risk
consequence. It is applied after occurring the risk event, during
a state of emergency, allowing the software project to return to
the expected state, and so eliminating or reducing the
consequences associated to one or more risks.

2.1 Satisfaction evaluation
After the definition of every concept related to the risk-based next
release problem, the satisfaction level can be defined in
Equation 15. It indicates the satisfaction perceived by clients,
taking into account the subset of selected requirements. Note that
the satisfaction level is modeled by the total sum for each client 𝑢௟
and requirement 𝑟𝑞௜, considering the product among the following
terms: (i) the preference level 𝑠௟,௜ that client 𝑢௟ has in relation to
requirement 𝑟𝑞௜; (ii) the importance level 𝑒௟ that the development
organization assigned to the client 𝑢௟; (iii) the severity-based
software risks measure 𝑖𝑚𝑝௜ associated to requirement 𝑟𝑞௜, which
is discussed in the next paragraph; and (iv) the selector 𝑥௜ that
represents the selection or not of the requirement 𝑟𝑞௜ in the
evaluated solution.

𝑆 = ෍ ෍ 𝑠௟,௜ ∙ 𝑒௟ ∙ 𝑖𝑚𝑝௜ ∙ 𝑥௜
௥௤೔ ∈ ோொ௨೗ ∈ ௎

 (15)

Taking into account the severity-based software risks measure
associated to requirement 𝑟𝑞௜, represented in Equation 15 by the
term 𝑖𝑚𝑝௜, its value is calculated based on Equation 16, which
establishes the relation among the following terms: (i) the
traceability 𝑟𝑡௜,௝ among the requirement 𝑟𝑞௜ and its associated
software risk 𝑟𝑘௝; and (ii) the risk severity (𝑟𝑘𝑠௝) associated to
risk 𝑟𝑘௝ .

𝑖𝑚𝑝௜ = ෍ 𝑟𝑘𝑠௝ ∙ 𝑟𝑡௜,௝
௥௞ೕ ∈ ோ௄

 (16)

Note that the proposed approach adopts the premise that software
processes must first deal with the most critical risks as a mean to
maximize the chances of the software project be successful, leading
to better satisfaction levels. In such a direction, the proposed
approach favors the selection of requirements associated to more
severe risks, and, inversely, penalizes the selection of requirements
associated to less severe risks. Indeed, usually, risk management
processes focus on critical risks, mitigating or avoiding the
occurrence of undesirable events that might compromise the
clients’ satisfaction [10].

2.2 Cost evaluation
In order to represent the cost level, Equation 17 is defined by the
total sum among the development cost (𝑟𝑞𝑐௜) together with the
additional risk management cost (𝑟𝑘𝑐௜) for each requirement 𝑟𝑞௜.
As defined, the risk management cost represents a penalty in the
total cost of the next release, which is an usual strategy in real
software projects dealing with risks as an additional cost [21]. As
can be noticed, development and risk management costs associated
to a given requirement 𝑟𝑞௜ are only considered if the requirement is

selected for the next release, which is represented in Equation 17
by the term 𝑥௜.

𝐶 = ෍ (𝑟𝑞𝑐௜ + 𝑟𝑘𝑐௜) ∙ 𝑥𝑖
௥௤೔ ∈ ோொ

 (17)

The risk management cost 𝑟𝑘𝑐௜ for a given requirement 𝑟𝑞௜ can be
defined by Equation 18. As can be noticed, it is modeled by the
total sum of the risk management cost 𝑟𝑘𝑐௜,௝ for each particular risk
𝑟𝑘௝ associated to requirement 𝑟𝑞௜.

𝑟𝑘𝑐௜ = ෍ 𝑟𝑘𝑐௜,௝
௥௞ೕ ∈ ோ௄

 (18)

It is important to remember that a given risk mitigation technique
𝑡௞ might be associated to one or more risks 𝑟𝑘௝ . Thus, it is
reasonable to adopt the premise that the cost 𝑡𝑐௞ of applying a given
technique 𝑡௞ can be divided among all risks 𝑟𝑘௝ that make use of
the technique. Besides, it is also defined that each requirement 𝑟𝑞௜
can be associated to one or more risks 𝑟𝑘௝ , which in turn might be
associated to one or more mitigation techniques 𝑡௞. This
relationship information is broken down into a new term called
𝑡𝑐௜,௝,௞. Now, as illustrated in Equation 19, the risk management cost
𝑟𝑘𝑐௜,௝ for each particular risk 𝑟𝑘௝ associated to requirement 𝑟𝑞௜ is
defined by the ratio between the following terms: (i) the total sum
of the costs 𝑡𝑐௜,௝,௞ of applying each technique 𝑡௞ related to the given
risk 𝑟𝑘௝ and requirement 𝑟𝑞௜, introduced later in Equation 20; and
(ii) the number of times 𝑡𝑎௞ that technique 𝑡௞ is applied in all
requirements 𝑟𝑞௜ and risks 𝑟𝑘௝ , discussed later in Equation 22.

𝑟𝑘𝑐௜,௝ = ෍ 𝑡𝑐௜,௝,௞
𝑡𝑎௞௧ೖ ∈ ்

 (19)

As cited, the term 𝑡𝑐௜,௝,௞ represents the cost of applying a given
technique 𝑡௞ related to a given risk 𝑟𝑘௝ and requirement 𝑟𝑞௜. In
Equation 20, if exists the relationship among requirement and risk
(𝑟𝑡௜,௝) and also among risk and technique (𝑡𝑡௝,௞), the term 𝑡𝑐௜,௝,௞ is
defined based on the cost of the technique 𝑡𝑐௞ and the probability
𝑡𝑝௝,௞ of applying the technique 𝑡௞ to the risk 𝑟𝑘௝ .

 𝑡𝑐௜,௝,௞ = 𝑡𝑝௝,௞ ∙ 𝑟𝑡௜,௝ ∙ 𝑡𝑡௝,௞ ∙ 𝑡𝑐௞ (20)

In turn, the term 𝑡𝑝௝,௞ is given by Equation 21, differentiating
technique types. The cost for preventive techniques is integrally
considered as they are applied regardless of risk events happen or
not. In contrast, the cost for corrective techniques depends on risk
probabilities (𝑟𝑘𝑝௝) as they are not applied until the occurrence of
risk events, which are uncertain during development processes.
Thus, the cost of corrective techniques is defined as an estimation.
Risk probability and severity are separately considered as risk
mitigation techniques are also considered herein, meaning that risk
events do not necessarily cause expected consequences, which are
reduced or eliminated with the use of mitigation techniques [22].

 𝑡𝑝௝,௞ = ൜ 1 𝑖𝑓 𝒑𝒓𝒆𝒗𝒆𝒏𝒕𝒊𝒗𝒆 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒,
𝑟𝑘𝑝௝ 𝑖𝑓 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒊𝒗𝒆 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒 (21)

Now, returning to term 𝑡𝑎௞, defined in Equation 22, it denotes the
number of times that technique 𝑡௞ is applied in all combinations
among requirements and risks (𝑟𝑡௜,௝) and also among such risks the
technique in question (𝑡𝑡௝,௞).

𝑡𝑎௞ = ෍ ෍ 𝑥௜ ∙ 𝑟𝑡௜,௝ ∙ 𝑡𝑡௝,௞
௥௞ೕ ∈ ோ௄௥௤೔ ∈ ோொ

 (22)

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 297

 At this point, the risk management cost 𝑟𝑘𝑐௜ is completely defined
spreading the cost of each technique 𝑡௞ among every risk that
makes use of the technique. To make clear this strategy, consider
the following example, based on the traceability between
requirements, risks and mitigation technique illustrated in Figure 2.

Risks
Traceability

rk1

rk2

Techniques
Traceability

rq1

rq2

t1

Figure 2. Traceability of risks and mitigation techniques.

Let be two requirements 𝑟𝑞ଵ and 𝑟𝑞ଶ. Consider that requirement
𝑟𝑞ଵ is associated to risk 𝑟𝑘ଵ, while requirement 𝑟𝑞ଶ is associated to
both risks 𝑟𝑘ଵ and 𝑟𝑘ଶ. Also, consider that both risks are dealt by
technique 𝑡ଵ. If both requirements are selected, the cost of the
technique 𝑡ଵ is disproportionally partitioned among the
requirements, being one third for requirement 𝑟𝑞ଵ and two thirds
for requirement 𝑟𝑞ଶ. This occurs because there are three paths from
the requirements 𝑟𝑞ଵ and 𝑟𝑞ଶ in direction to the mitigation
technique 𝑡ଵ, one from requirement 𝑟𝑞ଵ and two from requirement
𝑟𝑞ଶ. Thus, the risk management cost 𝑟𝑘𝑐௜ for each requirement 𝑟𝑞௜
is calculated as defined in Equation 23 and 24, in which the terms
𝑡𝑝௝,௞ represent the probability of applying the technique 𝑡௞ to the
risk 𝑟𝑘௝ (Equation 21) and the terms 𝑡𝑐௞ represent the cost of
applying technique 𝑡௞.

 𝑟𝑘𝑐ଵ = 𝑡𝑝ଵ,ଵ ∙ (𝑡𝑐ଵ 3⁄) (23)

 𝑟𝑘𝑐ଶ = 𝑡𝑝ଵ,ଵ ∙ (𝑡𝑐ଵ 3⁄) + 𝑡𝑝ଶ,ଵ ∙ (𝑡𝑐ଵ 3⁄) (24)

Based on an integrated cost-satisfaction evaluation, recommended
in the proposed approach, note that the requirements subset is
considered an adequate solution when it maximizes the satisfaction
function 𝑆 (Equation 15) and minimizes the cost function 𝐶
(Equation 17). The results obtained from both functions allow the
cost-satisfaction evaluation, in which an exhaustive or
metaheuristic-based algorithm can evaluate and recommend good-
enough or even optimal solutions.

3. RELATED WORK
Among the related work, the Bagnall et al. proposal [4] is a
noteworthy one because it introduces the next release problem and
besides, it also introduces the concept of requirements
dependencies as an acyclic graph, denoting the requirements and
their prerequisites. This dependency relation is defined as
transitive. In other words, if a requirement 𝑟𝑞௔ is dependent on
another 𝑟𝑞௕, which in turn is dependent on another 𝑟𝑞௖, then 𝑟𝑞௔ is
also dependent on 𝑟𝑞௖. Despite the importance of requirement
dependencies, the approach proposed herein focuses mainly on
incorporating a risk-based analysis. However, considering existing
proposals that regard dependencies [4] [5], it is not difficult to
evolve the proposed approach for including requirements
dependencies as part of the evaluation of the requirements costs and
clients’ satisfaction.

On the same direction of the proposed approach, Ruhe and Greer
[6] introduce an iterative model dealing with software risks, in
which a set of various releases m is recommended. However, in a

way different from the proposed approach, this proposal deals with
risks as a constraint, defining a limit level that should not be
exceeded, as indicated in Equation 25. Thus, unlike the approach
proposed herein, risks in this proposal do not impact directly on
requirements costs or clients’ satisfaction.

෍ 𝑟𝑖𝑠𝑘(𝑟௜, 𝑅௠) ≤ 𝑅𝑖𝑠𝑘௠

௥(௜) ∈ ூ௡௖(௠)
 (25)

In [8], an iterative risk analysis approach for the next release
problem is also presented. In this proposal, it assumes that the most
critical risks should be delivered on the earlier releases of the
software product, but it does not go into detail regarding the values
calculated for risks. Each risk is represented in the interval
[1, 5] ∈ ℕ. A penalty is applied when critical risks are selected in
later iterations as seen in Equation 26. It defines the term 𝑟𝑖𝑠𝑘௥ for
representing the risk associated to requirement 𝑟, and the term 𝑥௜
for representing the iteration number of the release, which can
assume values in the interval [1, 𝑛] ∈ ℕ. Therefore, similar to the
proposed approach, if a critical-risk requirement is selected on a
later version, its evaluation becomes progressively worse.
However, differently, it deals with risks as a constraint, but not as
a factor that impacts on costs and satisfaction.

෍ (𝑟𝑖𝑠𝑘௥ ∙ 𝑥௜)
௥ ∈ ோ

 (26)

In Li et al. proposal [7], risk is dealt as a probability of exceeding
the budget by a defined margin, with values inversely proportional
to the total cost. Differently, in the approach proposed herein, the
risk management costs are more accurately obtained from the risk
planning stage, in which the costs associated to mitigation
techniques must be estimated by the development team.

Yang, Jones and Yang [19] integrates a set of pre-existing software
components in a single system. The main challenge is to define the
components that provide the lowest risk levels, but provide the best
performance for each expected functionality of the software
product. It defines the risk level as the product between risk
probability and severity. Considering that components are already
implemented, risk probability and severity are estimated in a vague
way based on code inspection and application context, instead of
during the risk planning stage, as proposed herein.

Some traditional requirements prioritization techniques [23] [24]
can also be contrasted against the proposed approach. On the one
hand, for instance, analytical hierarchical processes evaluate each
pair of requirements in order to set the relative importance between
each requirement in comparison to other ones. In such approaches,
the main disadvantage is the increase in the number of paired
evaluations, which have an exponential growth in relation to the
number of requirements.

Simpler methods, such as ranking or grouping requirements in
different categories according to its importance, can be used in
scenarios with a larger number of requirements without too much
effort. However, in such cases, the accuracy of data could be
hindered. Besides, client prioritization based on traditional
negotiation also implies on the adoption of either consensus or vote
by majority. The first one comes with the disadvantage of becoming
progressively harder as the number of involved requirements and
stakeholders increases. The second one can possibly segregate a
considerable number of stakeholders, impacting in their satisfaction
level in relation to the software product under development.

On the other hand, the approach proposed herein takes in
consideration the evaluation of requirements for all clients, in

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 298

0 requirement
3 requirements

1 requirement
4 requirements

2 requirements
5 requirements

which their relative importance can be adjusted by the project
manager or development team, but never completely discarded,
once it does not make sense a client to be disregarded.

4. A PILOT USE CASE
In order to evaluate the applicability of the proposed approach, a
prototype implementation has been developed in Java as an
exhaustive search algorithm, which assesses all possible solutions
defined by all candidate requirements. Note that the search space
has an exponential growth, that is, considering a set of n candidate
requirements, the search space has 2n solutions.

The prototype implementation has been adopted for conducting an
evaluation with a pilot use case, composed by a reduced subset of
requirements from a Motorola project [9]. Originally, the project
dataset provides 35 requirements, each one with an associated cost.
However, considering that 35 requirements defines a large search
space that has around 34 billion (235) candidate solutions, the
prototype implementation would take around 1165 days to
completely evaluate all those solutions. Thus, for simplicity, the
pilot use case is based on two experiments, which adopt 5 and 10
requirements from the original project, defining a small and
medium search spaces with 32 and 1024 solutions, respectively.
Due to space limits, only input data for the small experiment is
detailed, but those for the other one can be supposed by analogy.

Table 2 displays the subset of 5 requirements together with their
associated costs and risks. Note that, for each identified
requirement, the set of associated risks represents in the proposed
approach the term 𝑟𝑡௜,௝, which denotes the traceability between the
requirement 𝑟𝑞௜ and the risk 𝑟𝑘௝ , as defined in Equation 11.

Table 2. Candidate requirements.

Requirement
(rqi) rq1 rq2 rq3 rq4 rq5

Requirement cost
(rqci) 10 40 80 400 1100

Associated risks
(rti,j)

rk1,
rk2 rk2 rk1,

rk3
rk2,
rk4

rk1, rk3,
rk5

For all identified risks, as illustrated in Table 3, it is required to
define their respective probability and severity, as well as their
associated mitigation techniques. Again, note that, for each
identified risk, the set of associated mitigation techniques
represents in the proposed approach the term 𝑡𝑡௝,௞, which denotes
the traceability between the risk 𝑟𝑘௝ and the mitigation technique
𝑡௞, as defined in Equation 14. Although the adopted dataset does
not contain risks, a survey that include such information was used
as a guideline [25] in order to estimate synthetic data.

Table 3. Software risks and associated techniques.

Risk
(rkj)

Risk
Probability

(rkpj)

Risk
Severity

(rksj)

Associated
Mitigation Techniques

(ttj,k)
rk1 Low Low t1, t6

rk2 Low Medium t2, t3

rk3 Medium High t2, t5

rk4 High High t1, t2, t4

rk5 Very high Very high t1, t2, t5

Thereafter, for all identified mitigation techniques, as illustrated in
Table 4, it is necessary to provide their associated costs, together
with classifications as preventive or corrective techniques.

Table 4. Risk mitigation techniques.

Mitigation Technique
(tk) t1 t2 t3 t4 t5 t6

Technique Cost
(tck) 10 30 230 15 50 180

Preventive x x x

Corrective x x x

Besides that, the proposed approach also requires the development
team to gather information regarding clients preferences on
candidate requirements and their importance from the point of view
of the development organization. Table 5 provides such
information for all clients and requirements. Note that, although the
adopted dataset contains some kind of preference on requirements,
such an information is not decomposed into preferences related to
individual clients. Due to that, other datasets that include such data
were used as a template [26].

Table 5. Clients preferences and importance.

Client
(ul)

Importance
(el)

Client Preference (sl,i)
rq1 rq2 rq3 rq4 rq5

u1 1.0 0.2 0.4 0.8 0.4 1.0

u2 0.7 0.1 0.5 0.2 0.9 0.4

u3 0.5 0.3 0.3 1.0 0.6 0.6

u4 0.3 0.8 0.6 0.4 0.4 0.3

From every collected data, it is now possible to apply the proposed
approach in order to evaluate the cost and satisfaction levels for
each possible subset of selected requirements. The evaluation
results for both experiments (5 and 10 candidate requirements) are
depicted in Figure 3 and Figure 4. It is important to emphasize that
such results simulate an exhaustive search with every possible
combination for the set of 5 and 10 candidate requirements.

0

250

500

750

1000

1250

1500

1750

2000

0 1 2 3 4 5 6 7 8

C
os

t

Satisfaction

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 299

0 requirement
5-6 requirements

1-2 requirement
7-8 requirements

3-4 requirements
9-10 requirements

Figure 3. Cost-satisfaction evaluation for 5 requirements.

Figure 4. Cost-satisfaction evaluation for 10 requirements.
Based on such pilot results, it was possible to evaluate the
applicability of the proposed approach, concluding that all inputs
required by the proposed approach are not difficult to obtain from
requirements engineering and risk management processes. Besides,
the results allow to evaluate whether or not the proposed approach
acts according to the expected behavior.

Results in both experiments evince that, as more requirements are
progressively selected, there is a stronger tendency for sharing risks
among requirements, alleviating the costs penalties introduced by
risk mitigation techniques. Such a behavior has the potential to
make progressively cheaper the individual cost for each
requirement. For instance, consider a solution that selects only the
requirement 𝑟𝑞ଵ, associated with risks 𝑟𝑘ଵ and 𝑟𝑘ଶ, which in turn
together are associated with mitigation techniques 𝑡ଵ, 𝑡ଶ, 𝑡ଷ and 𝑡଺.
In this case, individually, 𝑟𝑞ଵ has a cost level of 257.5, as the costs
of the mitigation techniques 𝑡ଵ, 𝑡ଶ, 𝑡ଷ and 𝑡଺ are integrally
incorporated in the cost level of the solution. Now, as another
example, consider a solution that selects all requirements, which is
associated with all risks and so all mitigation techniques. In this
case, 𝑟𝑞ଵ contributes with a reduced cost level of 90.738. This
reduction occurs because the other requirements also share the risks
𝑟𝑘ଵ and 𝑟𝑘ଶ, and so also share the mitigation techniques 𝑡ଵ, 𝑡ଶ, 𝑡ଷ
and 𝑡଺. Consequently, the costs of the mitigation techniques are
shared among all requirements, expressively reducing the
contribution of 𝑟𝑞ଵin the total cost level of the solution.

As an additional outcome, results show that, in recommended
solutions that have requirements with associated higher risk
severity, the impact of such risks in the clients’ satisfaction is more
intense. For instance, consider the requirement 𝑟𝑞ଶ, which is only
associated with risk 𝑟𝑘ଶ that has a medium severity. In this case,
based in the clients preference only, the satisfaction level is 1.08.
However, including risks severity, the final satisfaction level
decays to just 0.54. Now, as another example, consider the
requirement 𝑟𝑞ହ, which is associated with risks 𝑟𝑘ଵ, 𝑟𝑘ଷ and 𝑟𝑘ହ
that have low, high and very high severities, respectively. In this
case, based in the clients preference only, the satisfaction level is
1.67. However, including risks severity, the final satisfaction level
rises to 3.2565.

Another interesting observed outcome that can be noted is that, if
selected requirements possess a low implementation cost, the final
cost function could still suffer a considerable penalty if such
requirements also possesses a great associated risk probability.

The set of obtained results are subject to final evaluation and
selection by the project manager. Note that, while in other
approaches, such as [9], the development team estimates the cost
for each requirement, but the main challenge is to conciliate cost
and satisfaction, constrained by a given budget limit per release,
avoiding a few critical high-cost requirements or a lot of trivial low-
cost requirements that could be crucial to the success of the project.
Note that the proposed approach is not constrained by a budget
limit. Thus, the approach allows the project manager to analyze
how high-cost requirements, such as 𝑟𝑞ସ and 𝑟𝑞ହ in Table 2, behave
in a cost-satisfaction analysis in the solution space.

In summary, the pilot outcomes also reveal that it sounds interesting
the concept of introducing risk analysis in requirements costs and
clients’ satisfaction. For instance, on the one hand, in traditional
approaches that do not consider risk analysis, the total cost of
selecting all candidate requirements is 1630. On the other hand, in
the proposed approach, such a total cost is around 1952, which is
more precise and realistic due the inclusion of the costs related to
the adoption of a risk management process.

5. CONCLUDING REMARKS
Comparing the proposed approach against related work, it has been
characterized that the main contribution of the approach proposed
herein is to deal with risk analysis as a measure that impacts on
requirements costs and clients’ satisfaction, capable of offering
value-added information to decision makers. Differently, related
work deals with risk analysis as an additional constraint, defining
risks as a limit level that should not be exceeded or another
evaluation function derived from requirements costs.

The main threats to validity are related to the subjectivity of the
input data due to human evaluation. However, such a bias is a usual
practice in real projects. As another threat, it can be appointed the
unavailability of a real dataset that provides all input data. This
could improve the confidence in results.

Despite the relevant contribution and interesting outcomes, the
proposed approach needs to be more intensively evaluated. In such
a direction, in a first future work, the entire Motorola dataset with
all 35 requirements [9] will be evaluated. Complementarily, it is
important to identify and evaluate more complex software projects
with bigger datasets, such as large-scale free software projects.

Besides, the proposed approach also ought to be adapted to a two-
objective metaheuristic-based approach, incorporating the Pareto
optimality evaluation [5]. In such a direction, the proposed
approach will be capable of offering a set of recommended
solutions delimited within a Pareto front, instead of providing all
possible solutions, turning easier and faster the decision-making
process. In an initial study, it has been identified a different number
of metaheuristics algorithms, including NSGA-II [27], SPEA2 [28]
and MOEA/D [29]. Such metaheuristic search is required to
evaluate a dataset with a colossal number of requirements, which
increases computational complexity for finding good enough
solutions in large, complex search spaces.

6. REFERENCES
[1] C. Larman and V. R. Basili, "Iterative and incremental

developments. a brief history," Computer, vol. 36, no. 6, p.
10, June 2003.

[2] W. Scacchi, "Process Models in Software Engineering," in
Encyclopedia of Software Engineering., 2002, p. 24.

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16 18

C
os

t

Satisfaction

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 300

 [3] Joachim Karlsson and Kevin Ryan, "A Cost-Value Approach
for Prioritizing Requirements," IEEE Software, vol. 14, no.
5, pp. 67-74, Sep. 1997.

[4] A. J. Bagnall, V. J. Rayward-Smith, and I. M. Whittley, "The
next release problem," Information and Software
Technology, vol. 43, no. 14, pp. 883-890, 2001.

[5] J. J. Durillo, Y. Zhang, E. Alba, M. Harman, and A. Nebro,
"A study of the bi-objective next release problem," Empirical
Software Engineering, vol. 16, no. 1, pp. 29-60, 2011.

[6] G. Ruhe and D. Greer, "Quantitative studies in software
release planning under risk and resource constraints," in
Proceedings of the 2003 International Symposium on
Empirical Software Engineering, Washington, DC, USA,
2003, pp. 262-.

[7] L. Li, M. Harman, E. Letier, and Y. Zhang, "Robust next
release problem: Handling uncertainty during optimization,"
in Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation, New York, NY, USA, 2014,
pp. 1247-1254.

[8] F. Colares, J. Souza, R. Carmo, C. Pádua, and G. R. Mateus,
"A new approach to the software release planning," in
Software Engineering, 2009. SBES ’09. XXIII Brazilian
Symposium, Out. 2009, pp. 207-215.

[9] P. Baker, M. Harman, K. Steinhofel, and A. Skaliotis,
"Search based approaches to component selection and
prioritization for the next release problem," in Software
Maintenance, 2006. ICSM ’06. 22nd IEEE International
Conference, Set. 2006.

[10] Imran Alam, "Role of Software Metrices in identifying the
risk of project," International Journal of Advancement in
Engineering Technology, Management & Applied Science,
vol. 1, no. 1, p. 7, June 2014.

[11] J. Verner, J. Sampson, and N. Cerpa, "What factors lead to
software project failure?," in Research Challenges in
Information Science, 2008. RCIS 2008. Second International
Conference, Junho 2008, pp. 71-80.

[12] S.P. Masticola, "A simple estimate of the cost of software
project failures and the breakeven effectiveness of project
risk management," in Proceedings of the First International
Workshop on The Economics of Software and Computation,
ESC ’07, Washington, DC, USA, 2007, pp. 6--.

[13] B. W. Boehm, "Software risk management: principles and
practices," IEEE Software, vol. 8, no. 1, pp. 32-41, Jan. 1991.

[14] S. Islam and S. H. Houmb, "Integrating risk management
activities into requirements engineering," in Research
Challenges in Information Science (RCIS), 2010 Fourth
International Conference on, Nice, France, 2010, pp. 299-
310.

[15] Prasad Rajagopal , Roger Lee , Thomas Ahlswede, Chia-Chu
Chiang, and Dale Karolak, "A New Approach for Software
Requirements Elicitation," in Sixth International Conference
on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing, 2005.

[16] Tharwon Arnuphaptrairong, "Top Ten Lists of Software
Project Risks: Evidence from the Literature Survey," in

International MultiConference of Engineers and Computer
Scientists (IMECS 2011), vol. I, Hong Kong, 2011.

[17] Tom DeMarco and Tim Lister, "Risk Management during
Requirements," IEEE Software, vol. 20, no. 5, pp. 99-101,
Oct. 2003.

[18] Mohd Huma Hayat Khan and Suriayati bt Chuprat Naz’ri bin
Mahrin, "Factors Generating Risks during Requirement
Engineering Process in Global Software Development
Environment," International Journal of Digital Information
and Wireless Communications (IJDIWC), vol. I, no. 4, pp.
63-78, 2014.

[19] L. Yang, B. Jones, and S. Yang, "Genetic algorithm based
software integration with minimum software risk,"
Information and Software Technology, vol. 48, no. 3, pp.
133-141, 2006.

[20] M. S. Feather and S. L. Cornford, "Quantitative risk-based
requirements reasoning," Requir. Eng., vol. 8, pp. 248-265,
Nov. 2003.

[21] Paul L. Bannerman, "Risk and risk management in software
projects: A reassessment," Journal of Systems and Software,
vol. 81, no. 12, pp. 2118-2133, Dec. 2008.

[22] Hongliang Zhang, "A redefinition of the project risk process:
Using vulnerability to open up the event-consequence link,"
International Journal of Project Management, vol. 25, no. 7,
pp. 694-701, Oct. 2007.

[23] Patrik Berander and Anneliese Andrews, "Requirements
Prioritization," in Engineering and Managing Software
Requirements. Berlin, Germany: Springer, 2005, ch. 4, pp.
69-94.

[24] J. M. Fernandes and R.J. Machado, "Requirements
Negotiation and Prioritisation," in Requirements in
Engineering Projects. Switzerland: Springer, 2016, ch. 6, pp.
119-134.

[25] S. M. Neves, C. E. S. da Silva, V. A. P. Salomon, A. F. da
Silva, and B. E. P. Sotomonte, "Risk management in software
projects through Knowledge Management techniques: Cases
in Brazilian Incubated Technology-Based Firms,"
International Journal of Project Management, vol. 32, no. 1,
pp. 125-138, 2014.

[26] M. R. Karim and G. Ruhe, "Bi-objective Genetic Search for
Release Planning in Support of Themes," in International
Symposium on Search Based Software Engineering (SSBSE
2014), Fortaleza, Brazil, 2014, pp. 123-137.

[27] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast
and elitist multiobjective genetic algorithm: Nsga-ii," Trans.
Evol. Comp, vol. 6, pp. 182-197, Apr. 2002.

[28] E. Zitzler, M. Laumanns, and L. Thiele, "Spea2: Improving
the strength pareto evolutionary algorithm," 2001.

[29] Q. Zhang and H. Li, "Moea/d: A multiobjective evolutionary
algorithm based on decomposition," IEEE Transactions on
Evolutionary Computation, vol. 11, pp. 712-731, Dec. 2007.

