
Enhancing MIDAS towards a transparent interoperability
between SaaS and DaaS

Marcelo Aires Vieira, Elivaldo Lozer Fracalossi Ribeiro, Witã dos Santos Rocha,
Babacar Mane, Daniela Barreiro Claro, Joevan Santos de Oliveira and Edmilson Lima

FORMAS - Research Group on Formalisms and Semantic Applications
Institute of Mathematics, Federal University of Bahia

s/n, Adhemar de Barros Ave, Ondina, Zip Code: 40170-110, Salvador, Bahia, Brazil
mairesweb@gmail.com, elivaldolozerfr@gmail.com, witasrocha@gmail.com,

mbabacar@gmail.com, dclaro@ufba.br, joevansantos@hotmail.com,
edmilsons.s.lima@gmail.com

ABSTRACT
Over the years, Software as a Service (SaaS) has become
a common delivery model for many applications. In cloud
applications, a huge volume and variety of data can be gen-
erated and they can be available for consumption by DaaS
(Data as a Service). For this, the data provided by DaaS can
be stored in a non-structured (e.g. text), semi-structured
(e.g. XML, JSON) or structured format (e.g. Relational
Database). However, the access of that kind of DaaS, in a
transparent manner, needs substantial efforts due to the lack
of interoperability between SaaS and DaaS. In this paper, we
propose a new enhanced version of MIDAS, middleware to
provide seamlessly and independently interoperability be-
tween SaaS and DaaS. First, this new version of MIDAS
allows both semi-structure and structure data format from
SaaS. It mediates queries from NoSQL (e.g. MongoDB) and
SQL (MySQL) databases. Secondly, it was enhanced with
Join operations, both in SQL and in NOSQL statements.
And lastly, other formats were added for the DaaS to fit SaaS
requests, such as JSON, XML, and CSV formats. To eval-
uate this new version of our middleware, we provide three
types of experiments to cover critical issues such as execu-
tion time, the overhead of our approach, and scalability of
MIDAS. Our results show the effectiveness of our approach
to tackling interoperability issues in cloud computing envi-
ronments.

CCS Concepts
•Information systems→ Information integration; Mid-
dleware for databases; •Software and its engineering →

Software architectures;

Keywords
MIDAS, Cloud Computing, SaaS, DaaS, Interoperability.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SBSI 2017 June 5th – 8th, 2017, Lavras, Minas Gerais, Brazil
Copyright SBC 2017.

1. INTRODUCTION
Data in the digital universe will double every two years

until 2020, and it is estimated to achieve 40 trillion gigabytes
[4]. Data management have been facing some challenges to
handle this variety and large intensive data. Such data needs
to be stored, distributed, available and understandable both
to consumers and to organizations. The cloud computing
paradigm has emerged to fill some of these requirements.
By 2020, nearly 40% of the available data will be managed
and stored by a cloud computing provider [4].

Authors in [3] define cloud as the “data center for hard-
ware and software that provides services”. These services
are organized into levels and consumed on demand by users
in a scheme of pay-per-use. Software as a Service (SaaS)
and Data as a Service (DaaS) are instances of service types
organized in cloud levels. SaaS are cloud applications that
manage data and tackle with business processes. DaaS pro-
vides data on demand to a consumer through Application
Programming Interfaces (APIs). The emergence of Internet
of Things (IoT), social networks and the use of web-enabled
devices such as smartphones, laptops, and notebooks gen-
erate a huge volume and variety of these data. Thus, data
are stored in non-structured, semi-structured or structured
databases. Governments, Institutions, and Companies most
use DaaS as a way to make their data (expenses, budgets,
economic or census data) available to public or private users
across the Internet. However, to access DaaS in different
cloud providers, SaaS applications need, in most of the cases,
substantial efforts by providing a mechanism to get it. This
lock-in situation happens due to the lack of interoperability
between SaaS and DaaS. For instance, if demographic re-
searchers need to make studies about census data provided
by governments in different DaaS, they will face the difficult
to process these data due to the lack of standards and con-
sequently no interoperability between SaaS and DaaS. To
accomplish this interoperability issue, we propose a middle-
ware called MIDAS (Middleware for DaaS and SaaS).

Although confusing, note that DaaS and DBaaS (database
as a service) are different concepts [6, 10]. DBaaS refers to
a complete database service, such as Oracle and MongoDB,
and it allows full manipulation of stored information. These
services can be in-memory, relational (traditional) or NoSQL
databases, and they are offered on demand and hosted on a
cloud. On the other hand, DaaS defines a dataset in a cloud
service and allows controlled access (usually read-only) to

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 348

that data.
MIDAS is responsible for mediating the communication

between different SaaS and DaaS providers, making possible
that SaaS applications retrieve data seamlessly from a DaaS
as it would be querying its datacenter. SaaS applications will
be able to get data from DaaS datasets by sending a query
to MIDAS and letting it mediate the communication and
returning results. Our first version of MIDAS [6] tackled a
mono data format. Data queries from SaaS were only made
from a relational database (e.g. MySQL). SaaS applications
got data from DaaS datasets by sending a query to MIDAS
and letting it mediate the communication and return from
DaaS providers.

We propose in this paper a new enhanced version of MI-
DAS with some significant concerns that were developed to
provide a transparent interoperability concern. Firstly, this
new version of MIDAS allows (i) both semi-structure and
structure data format from SaaS. It mediates queries from
NoSQL (e.g. MongoDB) and SQL (MySQL) databases. Sec-
ondly, (ii) it was enhanced with Join operations in SQL
statements. Thirdly, results from DaaS providers was ex-
tended to other formats to fit SaaS requests, such as JSON,
XML, and CSV formats. And lastly, two new scenarios were
described to clarify the relevance of MIDAS usage.

We performed some experiments to evaluate our novel ap-
proach, considering three important issues: execution time,
overhead and scalability. Our results demonstrated that our
middleware is effective and efficient, thus providing the cor-
rect results in an expected execution time.

The remainder of this paper is organized as follows: Sec-
tion 2 presents our most relevant related works; Section 3
describes our novel version of MIDAS. Section 4 provides
our experiments within two scenarios to clarify the MIDAS
usage. Section 5 discusses some results and, Section 6 con-
cludes with some envision work.

2. RELATED WORKS
Some important works have been proposed to provide in-

teroperability solutions, such as [1, 2, 5, 8].
The need to reduce the complexity of heterogeneous data

structures is a crucial aspect of Big Data analysis. Authors
in [5] state that the issue of interoperability in oil and gas
industry is a problem to be overcome since there is no stan-
dard. As a solution, authors presented a framework to solve
problems of formalization, implementation, and querying of
Big Data systems, in the oil and gas area. The proposal
was evaluated in a real case study: the OGI Pilot (Oil and
Gas Interoperability Pilot), project in the oil and gas do-
main. The goal of framework is to automate the transfer
of information between projects, identifying similarities and
differences. Different from our approach, they manipulate
data sources in isolation.

Authors in [8] present an initial effort to address interoper-
ability issues of dialysis data since there is a lack of commu-
nication between systems. For this, a Federated Database
System approach was proposed to build a shared repository.
Different from our approach, they do not consider interop-
erability from data in different formats and in addition, be-
cause they use proprietary software (MATrix LABoratory -
MATLAB), a lock-in problem may occur.

In the same domain, Cybernetic-Medical Physics Systems
(MCPS) are intelligent systems for monitoring and control-
ling various patient characteristics through embedded de-

vices. MCPS manipulate different types of data, collected
by different types of sensors, in order to evaluate the pa-
tient’s situation and make adequate treatment plan. With
the diversity of sensors and formats, the data generated is
not interoperable and accessible to all stakeholders, mak-
ing decisions difficult. For this, authors in [1] studies the
health data interoperability in cloud-based MCPS and pro-
pose a conceptual framework to provide data interoperabil-
ity. However, they retrieved data from only one location,
making it impossible to link more than one database.

Considering the Cloud domain and different DaaS provi-
ders, a middleware or API may be required [9].

In cloud computing, authors in [2] stated that interoper-
ability limits users’ actions. Thus, data migration between
cloud providers may require significant effort. This study
suggests a solution to interoperate different SaaS that would
act as a mediator between the layers, called Cloud Interoper-
ability Broker (CIB). The proposal was evaluated and tested
on a dataset of the actual enterprise application. Different
from our approach, they do not evaluate the performance
of the proposal and they not consider the interoperability
between SaaS data from different domains.

Park and Moon [7] suggest a solution for heterogeneous
DBaaS to share medical data between different institutions.
This system stores and shares medical information based on
the HL7 (Health Level Seven) standard. However, the au-
thors assume that databases can be manipulated by them-
selves (which is not our case). This is one of the reasons we
chose to interoperate SaaS with DaaS (and not with DBaaS).

The most close approach is MIDAS 1.0 [6]. This middle-
ware provides an interoperability between SaaS and DaaS.
However, MIDAS 1.0 has some limitations: (i) Query De-
composer recognizes only SaaS queries with select, from,
where, order by, and limit; (ii) Dataset Information Stor-
age (DIS) only uses a relational database to store informa-
tion about DaaS, and the information is filled in manually;
(iii) Result Formatter returns data only with JSON for-
mat; and (iv) middleware only recognizes structured queries.
Moreover, the authors do not evaluate the scalability through
the middleware.

Our proposal aims to provide interoperability between
SaaS and DaaS in a transparent way. Next section describe
our enhanced MIDAS in detail, explaining each module.

3. OUR ENHANCED MIDAS
Our enhanced MIDAS is versionned as MIDAS 1.6. This

middleware provides an improved version of MIDAS 1.0 in
four levels of functionality: (i) data returned; (ii) semi-
structured and structure queries, tackling with NoSQL and
SQL databases; (iii) lightweight DIS, removing the relational
database management system (RDBMS) from MIDAS; and
(iv) joined DaaS, executing different DaaS in a single query.

MIDAS 1.6 architecture is depicted in Figure 1. This novel
approach is composed of two modules: Request and Result.
As the names suggest, Request Module handles the incoming
SaaS query while Result Module process DaaS response.

The following subsections describe the whole architecture
in detail and identify news functionalities added to each
module.

3.1 SaaS Application
Queries sent to MIDAS are provided by consumers or

through applications at SaaS level. In MIDAS 1.6 it is pos-

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 349

Figure 1: MIDAS 1.6 architecture.

sible to perform either SQL or NoSQL queries considering
join and lookup clauses respectively.

3.2 MIDAS Middleware
MIDAS aims to provide a transparent communication be-

tween either different SaaS and DaaS providers, making pos-
sible that SaaS applications retrieve data seamlessly from a
DaaS as it would be querying a datacenter.

The Sequence Diagram in Figure 2 describes the interac-
tions among SaaS, MIDAS and DaaS providers. The SaaS
user clicks the search button that sends a query SQL or
NoSQL to MIDAS. MIDAS receives this query and does all
inner steps previewed and then sends the query to DaaS pro-
vider. The query is executed by each DaaS provider if there
is a join clause and returns the result to MIDAS. MIDAS
receives this query and does the inner steps previewed and
then sends the query to DaaS provider. The query is exe-
cuted by each DaaS provider if there is a join clause and
returns the result to MIDAS. MIDAS treats this result and
sends it in the appropriate manner to SaaS.

Our middleware is composed of four modules: Query De-
composer, Dataset Information Storage (DIS), Query Builder

and Result Formatter. Each module is deeply described in
the next subsections.

3.2.1 Query Decomposer
Query Decomposer is responsible for breaking the struc-

ture of a query into arrays by mapping the contents of each
query statement. For instance, to break a SQL structure like
SELECT name1, name2 FROM table, the Query Decomposer
creates two arrays: one for select clauses and the other
for from clauses. Additionally, it recognizes and breaks a
NoSQL query, creating an output equivalent to a structured
query. The equivalence between SQL and NOSQL queries
can be seen in Figure 3. This format ensures that the Query
Builder can build the DaaS request independently of their
API.

The Query Decomposer module takes the query as a pa-
rameter and creates an array, which collects the first index
of each term of the SQL syntax. They are: from, where,
order by, limit, inner join, and on. The term select is
assumed as the first index since it has to head the query in
SQL. Next, we store the query columns, the ones between
select and from in the query, as an array inside our inde-

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 350

Figure 2: MIDAS sequence diagram.

Figure 3: Equivalence between SQL and NOSQL
(e.g. MongoDB) queries.

pendent format array in the position fields. The dataset
key relates to the value passed in the from clause. This is
the dataset ‘id’ of DaaS provider. This means that the SaaS
application queries the dataset as it queries a relational ta-
ble. The ‘filters’ key maps the where clause , ‘order’ maps
order by, the ‘limit’ key maps the limit clause, and inner
join refers to get data from different tables, and on maps
the join comparative attributes.

On the other hand to NoSQL (e.g. MongoDB) queries,
and the Query Decomposer module also takes the query as
a parameter and collects the first index of each syntax term:
db, collection, find, limit, sort, and lookup, without

an index 0. Next, we store the query columns, the ones
between db and collection in the query, as an array in
the position — fields. The ‘dataset’ key relates to the value
passed in the find clause, this will be the dataset “id” of the
DaaS provider. This means that the SaaS application either
queries the dataset as it queries a document. The ‘filters’
key maps the limit, ‘order’ maps sort, the ‘limit’ key maps
the limit clause and the ‘lookup’ key maps the join clause.

3.2.2 Query Builder
The Query Builder was enhanced with the join clause. If

the query does not contain a join, the process performed is
similar to MIDAS 1.0: Query Builder receives the decom-
posed query, transforms the SaaS query into a DaaS request,
and sends the query to the particular DaaS. On the other
hand, if the query contains the join clause (one or more),
Query Builder must recognize in the array sent by the Query
Builder, all differents DaaS that should be consulted and
then it sends the queries to each respective DaaS (see Fig-
ure 1). In both cases, the Query Builder needs to access the
DIS to get information about the provider dataset. DIS in-
formation guides the Query Builder to match the right fields
it has received from the Query Decomposer, including the
parameters that compose the DaaS provider request. After
matching, the Query Builder sends the query to the DaaS
provider to be executed.

3.2.3 Dataset Information Storage
Dataset Information Storage (DIS) persists the informa-

tion about DaaS providers’ datasets and their APIs. In this
new version, we changed the use of an RDBMS into a JSON
file. This procedure enables to lightweight DIS and as a con-
sequence, our novel MIDAS approach. Thereby, our novel
MIDAS stays independent of any database, avoiding future
lock-in. An example of DIS by the use of the JSON file can
be seen in Figure 4. Since there is no way to get informa-
tion about DaaS providers’ automatically yet, the task to
add new providers and to maintain them up to date must
be still done manually. The DIS is composed of the following
providers information:

• dataset: is a name that uniquely identifies the dataset
among the providers;

• domain: is the first part of DaaS request URL built by
the Query Builder;

• search_path: represents the piece of string in the DaaS
request that concatenates to the provider domain and
gives the path to access the API;

• dataset_param, query_param, sort_param, limit_param
and format_param: they represent respectively the API
parameter names to inform dataset, query filters, or-
dering field, the number of rows and return format in
the result.

Each DaaS provider needs to store the relevant informa-
tion manually, since our crawler is not running yet to obtain
the information automatically.

3.2.4 Result Formatter
The Result Formatter added two news functionalities. In

our previous version, the only data format to return from
DaaS to Result Formatter was JSON. In this novel approach,

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 351

Figure 4: Example of DIS within JSON file.

JSON, CSV, and XML are also enabled as possible formats.
Considering queries with join clause, the Result Formatter
must be able to tackle with different DaaS objects. Each
return could be in a different format (JSON, CSV or XML).
In particular cases, some DaaS have a restriction to project
their attributes. This provides an extra overhead to the
Result Formatter because it needs to gather the SaaS request
to return the same attributes required.

3.3 DaaS Provider
MIDAS supports DaaS providers that return data in XML,

JSON, or CSV format. Thereby, the DaaS provider does not
have to make any changes in its DaaS service. Thus, the pro-
vider will receive the request sent by MIDAS and process
into the dataset. After gathering all the data requested, the
provider will return the information to MIDAS. The number
of DaaS providers is obtained in the SaaS request. As the
number of DaaS is different from one, an iteration allows to
query each respective DaaS provider.

4. TEST SETS
To evaluate our middleware, we performed two experi-

ments by executing a query firstly without join statement
and secondly with join clause. These two phases determine
the relationship type between SaaS and DaaS level. A query
provided with join statement allows SaaS level to relate to
more than one DaaS providers. The number of DaaS de-
pends on how many datasets specified in the join clause.
A query without join statement connects one SaaS to only
one DaaS provider.

Three measures are used during our evaluation process:
execution time, the overhead caused by MIDAS and scala-
bility.

4.1 Our Case Study
Our middleware MIDAS is being developed in Heroku

Cloud. Three mains reasons motivated it: (i) Heroku is an
Open Cloud; (ii) it is considered as a complete PaaS plat-
form (support different types of development environment);

and finally (iii) Heroku provides enough storage space for
our project.

To simulate a SaaS provider, we develop a tourism agency
web application based on HTML5 + CSS3 + JavaScript
frontend (Bootstrap and jQuery), PHP 5.6 backend and
framework Laravel 5.3. This web application is hosted in
the Heroku SaaS public instance and it can be accessed at
https://midas-saas.herokuapp.com/.

Heroku cloud provides the DaaS service level by offer-
ing MySQL and MongoDB NoSQL database. The choice
of MongoDB database was motivated as it is a native sup-
port by Heroku and also one of the most used by NoSQL
community.

4.2 Our DaaS instances
Three different DaaS providers are used to perform our

tests:

• DaaS1
1: Times Square Hotels, with 41 instances and 4

attributes;

• Daas2
2: Health and Hospitals Corporation (HHC) Fa-

cilities, with 78 instances and 6 attributes;

• DaaS3
3: Borough Enrollment Offices, with 13 instances

and 6 attributes.

4.3 Experiments
We performed two different experiments to evaluate our

approach. The first experiment measures the MIDAS with-
out join clause and secondly, we evaluate our MIDAS deal-
ing with the join clauses. For each experiment, we measure
execution time, overhead of MIDAS, scalability and the ef-
fectiveness of our approach by performing 20 queries succes-
sively to retrieve 10, 100 and 1000 data records. The average
time of each these tasks are registered by Hurl4 tool.

4.4 Experiment 1: Performing queries with-
out join

In this experiment we perform three tasks:

• 20 SQL queries are submitted directly to DaaS provi-
der;

• 20 SQL queries are performing to DaaS provider through
MIDAS; and

• 20 queries of MongoDB statement are executed to DaaS
provider through MIDAS.

A DaaS provider we use in this experiment provides a
list of hotels in the New York City metropolitan region (in
NYCOpenData). The aim of this experiment is to evaluate the
communication between a SaaS and DaaS provider through
MIDAS and analyze the overhead caused by our middleware.

1https://data.cityofnewyork.us/Business/Times-
Square-Hotels/v8qe-fx6p
2https://data.cityofnewyork.us/Health/Health-and-
Hospitals-Corporation-HHC-Facilities/f7b6-v6v3
3https://data.cityofnewyork.us/Education/Borough-
Enrollment-Offices/vz8c-29aj
4https://www.hurl.it

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 352

4.5 Experiment 2: Performing queries with
join

In this second experiment, two activities are executed:

• 20 SQL queries with join statement are submitted to
two DaaS providers through MIDAS; and

• 20 queries of MongoDB with join statement are exe-
cuted to two DaaS providers through MIDAS.

In this case, we use two DaaS providers: one provides
service about hospitals and the another about offices (both
in NYCOpenData).

The objective of this experiment is to evaluate the per-
formance of MIDAs when it relates one SaaS provider with
two DaaS provider to perform SQL or MongoDB queries
with join statement.

5. RESULTS AND DISCUSSION
In this section, we present our results per experiments and

make analyses on each one.

5.1 Results from Experiment 1
Results obtained in this experiment are classified based on

the value assigned to the limit clause of SQL and NoSQL
query performed in this test. This value define the number
of data records that the query is enable to retrieve. Three
categories are specified for our experiment: 10, 100 and 1000
data records.

Firstly, We consider the situation where the 20 queries
executed successively return 10 data records. In this case,
we have the following results about averages of execution
times:

• 236.5 ± 29.98 ms for queries without MIDAS;

• 262.25 ± 35.19 ms for SQL queries through MIDAS;
and

• 248.00 ± 30.30 ms for MongoDB queries through MI-
DAS.

Figure 5: Return time (in ms) for each of the 20
queries submitted with a limit of 10 records.

Secondly for queries with 100 records returned we have
the following averages of execution times:

• 269.40 ± 38.96 ms for direct queries to the datasource
(without MIDAS);

• 507.88 ± 50.95 ms for SQL queries through MIDAS;
and

Figure 6: Return time (in ms) for each of the 20
queries submitted with a limit of 100 records.

• 475.65 ± 48.94 ms for MongoDB queries through MI-
DAS.

Finally, queries of 1000 records present the follow averages
of execution times:

• 465.6 ± 65.77 ms for queries without MIDAS;

• 1087.75± 126.58 ms for SQL queries through MIDAS;
and

• 1010.50±134.53 ms for MongoDB queries through MI-
DAS.

Figure 7: Return time (in ms) for each of the 20
queries submitted with a limit of 1000 records.

The return time of each query can be visualized in figures
5 (limit 10), 6 (limit 100), and 7 (limit 1000).

As expected, overhead is caused by the presence of our
middleware - MIDAS. The reasons of this overhead can be
distributed between the two components of our MIDAS:
Query Decomposer and the Result Formatter.

As describe in this work, the Query Decomposer is consid-
ered as one of the most critical components in our middle-
ware. It is responsible for preparing users queries to be built
into a URL for executing by a DaaS provider. Therefore, this
stage of processing requires a certain amount of time to be
performed. Figure 8 shows the importance of Query Decom-
poser component in the process of treatment of queries in
MIDAS. Its responsibility is to transform regardless of the
nature and type of query (SQL or MongoDB) sent by the
user, in a single format for the query builder component.

The result Formatter also need time processing to organize
the results into a different data format (XML, JSON, and
CSV) for users.

In short, there is no significant difference in term of re-
sults in the three experimental situations considering only

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 353

the execution of queries intermediate by the MIDAS. The
largest variation occurred in the return of 100 records with
MongoDB queries: 8.38% faster than SQL queries. We can
conclude that MIDAS is scalable through an increasing num-
ber of queries.

Figure 8: Steps of MIDAS.

5.2 Results from Experiment 2
In this experiment, we performed a query with join state-

ments that allow accessing two different DaaS providers (En-
rollment Offices and Hospitals).

As presented in Figure 9, the averages of execution times
are:

• 201.36 ± 26 ms for SQL query; and

• 240.7 ± 31.36 ms for MongoDB query.

These two experiments allow us to evaluate and analyze
the effectiveness, scalability, overhead, and execution times
of our middleware MIDAS to ensure interoperability be-
tween SaaS and DaaS providers. Concerning the measures
obtained, we found that the differences obtained in perform-
ing the queries are not perceptible from the users. A proper
evaluation of MIDAS scalability characteristics allows us to
suggest in the future integration of our middleware to Big
Data solutions. These observations will be considered for
next improvement of our middleware.

Figure 9: Return time (in ms) for each of the 20
queries with join submitted.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed a new version of MIDAS whose

purpose was to address important issues left open in the first
version. These requirements were presented in four new
types of functionalities: (i) more robust support to SQL
Standard queries by adding join statement; (ii) returned
data in different formats from DaaS to Result Formatter
of MIDAS; (iii) recognized a simple queries to a MongoDB
NoSQL database; and (iv) changed the DIS from relational
database (MySQL) to JSON file to lightweight our MIDAS
and to avoid lock-in future problems. Within this new ver-
sion of MIDAS, SaaS applications continue to query DaaS
datasets transparently as it is querying a database with a
minimal adaptation for SaaS and DaaS providers.

Our results show the effectiveness of our approach to tack-
ling interoperability issues in Cloud Computing environments.

In future work, we intend to continue improving MIDAS
by adding news characteristics such as (i) recognizes queries
in SPARQL and other NoSQL; (ii) returns data in XML,
JSON, and CSV formats by Result Formatter to SaaS ap-
plications or users; and (iii) develop a crawler to automate
the search of DIS information.

7. ACKNOWLEDGMENTS
The authors would like to thank FAPESB (Foundation

for Research Support of the State of Bahia) and CNPq (Na-
tional Counsel of Technological and Scientific Development)
for financial support.

8. REFERENCES
[1] M. A. Alhumud, M. A. Hossain, and M. Masud.

Perspective of health data interoperability on
cloud-based medical cyber-physical systems. In
Multimedia & Expo Workshops (ICMEW), 2016 IEEE
International Conference on, pages 1–6. IEEE, 2016.

[2] H. Ali, R. Moawad, and A. A. F. Hosni. A cloud
interoperability broker (cib) for data migration in
saas. In Cloud Computing and Big Data Analysis
(ICCCBDA), 2016 IEEE International Conference on,
pages 250–256. IEEE, 2016.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, et al. A view of cloud computing.
Communications of the ACM, 53(4):50–58, 2010.

[4] J. Gantz and D. Reinsel. The digital universe in 2020:
Big data, bigger digital shadows, and biggest growth
in the far east. IDC iView: IDC Analyze the future,
2007(2012):1–16, 2012.

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 354

[5] M. Igamberdiev, G. Grossmann, M. Selway, and
M. Stumptner. An integrated multi-level modeling
approach for industrial-scale data interoperability.
Software & Systems Modeling, pages 1–26, 2016.

[6] T. Marinho, V. Cidreira, D. B. Claro, and B. Mane.
Midas: A middleware to provide interoperability
between saas and daas. In Proceedings of the XII
Brazilian Symposium on Information Systems on
Brazilian Symposium on Information Systems:
Information Systems in the Cloud Computing
Era-Volume 1, page 53. Brazilian Computer Society,
2016.

[7] H.-K. Park and S.-J. Moon. Dbaas using hl7 based on
xmdr-dai for medical information sharing in cloud.
International Journal of Multimedia and Ubiquitous
Engineering, 10(9):111–120, 2015.

[8] D. Vito, G. Casagrande, C. Bianchi, and M. L.
Costantino. An interoperable common storage system
for shared dialysis clinical data. In Student Conference
(ISC), 2016 IEEE EMBS International, pages 1–4.
IEEE, 2016.

[9] Z. Zhang, C. Wu, and D. W. Cheung. A survey on
cloud interoperability: taxonomies, standards, and
practice. ACM SIGMETRICS Performance
Evaluation Review, 40(4):13–22, 2013.

[10] Z. Zheng, J. Zhu, and M. R. Lyu. Service-generated
big data and big data-as-a-service: An overview. In
2013 IEEE International Congress on Big Data, pages
403–410, June 2013.

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 355

