
XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 404

 Towards the Definition of Domain-Specific Thresholds

Allan Mori1, Eduardo Figueiredo1, Elder Cirilo2

1Computer Science Department, Federal University of Minas, Brazil
2Computer Science Department, Federal University of São João Del Rei, Brazil

{allanmori,figueiredo}@dcc.ufmg.br, elder@ufsj.edu.br

ABSTRACT
Software metrics provide basic means to quantify several quality
aspects of information systems. However, the effectiveness of the
measurement process is directly dependent on the definition of
reliable thresholds. To define appropriate thresholds, we need to
consider characteristics of the information systems, such as their
size and domain. There are several studies to propose methods to
derive thresholds and evaluate them. However, we still lack
empirical knowledge about whether and how thresholds vary
across different information system domains. To tackle this
limitation, this paper investigates specific thresholds in four
information system domains: accounting, e-commerce, health, and
restaurant. Our study relies on 40 information systems to derive
domain-specific thresholds for 9 well-known software metrics.
Our results indicate that lower-bound thresholds (e.g., 15%
smaller classes) usually do not significantly vary across domains.
However, for all analyzed metrics, upper-bound thresholds (e.g.,
5% largest classes) are different in some domains. Moreover, our
study also suggests that domain-specific thresholds are more
appropriated than generic ones. For instance, we observed in our
analysis that the more appropriated threshold to select the 5%
largest classes is 290 LOC in health systems and 147 LOC in
accounting systems.

CCS Concepts
• Software and its engineering → Empirical software
validation

Keywords
Software Metrics; Thresholds; Software Domain

1. INTRODUCTION
Software metrics are the pragmatic means for assessing different
quality attributes of information systems, such as maintainability
and changeability [5]. Certain metric values can help to reveal
specific parts of the information system that should be closely
monitored [8]. For instance, measures can indicate whether a
critical anomaly is affecting the software structure of an
information system. This way, developers may suspect that
something is wrong in the system design or implementation.
Typical examples of anomalies include cases of large classes, long

methods, and long parameter lists [7].

Nevertheless, the effective measurement of information systems is
directly dependent on the definition of appropriate thresholds
[1][16]. Thresholds allow us to objectively characterize or classify
each class (or method) according to one of the quality metrics. We
argue in this paper that the definition of appropriate thresholds
needs to be tailored to each metric and characteristics of the
measured systems, such as their size and domain. For instance, a
health system might be more complex and, therefore, it may have
higher metric values, than an e-commence system.

In the past few years, thresholds were calculated based on
experience of software engineers or using a single system as
reference [5][11]. Recently, thresholds have been derived from a
set of similar systems, named benchmarks, and calculated based
on systematic methods [17]. A systematic method should provide
the same thresholds for a metric if the same input is used. The
idea behind the use of benchmarks is to use information from
similar systems to help derive meaningful thresholds.

In this paper, similar systems mean that they were developed in
the same programming language and that they belong to the same
domain, even though they might have been developed by different
people. The basic idea of using benchmark-based threshold
derivation is to get common characteristics of the majority of
components in a domain. Therefore, discrepant values might
indicate a problem in that specific domain. For instance, if almost
all classes in a set of e-commerce systems have less than 100 lines
of code (LOC), the minority of classes with more than 100 LOC
are outliers. On the other hand, this threshold might be 120 LOC
for a set of health systems, for instance.

This paper presents an empirical study to investigate the
hypothesis that thresholds vary among information systems of
different domains since these systems have different degrees of
complexity, cohesion, and size. To evaluate this hypothesis, we
rely on four benchmarks composed by 40 object-oriented
information systems. Each benchmark includes 10 information
systems in one of the following domains: accounting, e-
commerce, health, and restaurants. We apply a set of nine well-
known metrics [5] [8] [9] to each system, namely Lines of Code
(LOC), Number of Attributes (NOA), Number of Methods
(NOM), Weighted Method per Class (WMC), Coupling between
Objects (CBO), Lack of Cohesion in Methods (LCOM), McCabe
Cyclomatic Complexity (McCabe), Depth of Inheritance Tree
(DIT), and Number of Children (NOC). After aggregating metrics
per domain, we derived thresholds for each metric by using a
recently proposed systematic method [17].

We finally compare the derived thresholds of each metric among
the four domains. In short, the results indicate that lower-bound
thresholds (e.g., 15% smaller classes) usually do not significantly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SBSI 2017, June 5th–8th, 2017, Lavras, Minas Gerais, Brazil.
Copyright SBC 2017.

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 405

 vary across domains. However, for all analyzed metrics, upper-
bound thresholds (e.g., 5% largest classes) are clear different in
some domains. For instance, we observed in our analysis that the
threshold to select the 5% largest classes is 290 LOC in health
systems and 147 LOC in accounting systems.

Finally, we compared the derived metrics with two others
benchmarks: (i) Qualitas Corpus [15] and SPL Benchmark [16].
The Qualitas Corpus is composed of more than a hundred real
object-oriented Java systems. The SPL Benchmark, on the other
hand, has 33 software product lines implemented in different
languages and technologies, namely: AHEAD [4] and Feature
House [3]. As a result, we observed that our derived thresholds
seem to be more equalized to the reality of each domain (account,
e-commerce, health, and restaurant) than to the general thresholds
derived from the others two benchmarks.

The remainder of this paper is organized as follows. Section 2
presents a background on metrics and threshold derivation.
Section 3 describes the study configuration and set up, including
our goal, research question, and the selection of systems and
domains. Section 4 presents and discusses the results of
measurements per domain. Section 5 show visualizations for the
thresholds found. Section 6 compares our results with other two
papers on threshold derivation. Section 7 correlates our study with
papers from the literature. Section 8 discusses threats to the study
validity. Finally, Section 9 concludes this paper and points out
directions for future work.

2. DERIVING THRESHOLDS FOR
SOFTWARE METRICS
In this section, we present 9 well-known software metrics
analyzed in the study (Section 2.1). We also provide some
background about methods to derive thresholds (Section 2.2),
including a short explanation of the Vale’s method used in our
work to derive domain-specific thresholds (Section 2.3).

2.1 Software Metrics
Software metrics are the pragmatic means for assessing different
quality attributes of information systems, such as maintainability
and changeability [5]. This study investigates domain-specific
thresholds for nine metrics: Lines of Code (LOC), Number of
Attributes (NOA), Number of Methods (NOM), Weighted
Method per Class (WMC), Coupling between Objects (CBO),
Lack of Cohesion in Methods (LCOM), McCabe Cyclomatic
Complexity (McCabe), Depth of Inheritance Tree (DIT), and
Number of Children (NOC). We choose these metrics because
they capture different attributes of information systems, such as
size, complexity, cohesion, and inheritance relationships. In
addition, they are well-known object-oriented software metrics
[5][8][9].

Size Metrics. Lines of Code (LOC) [9] measures the number of
lines of code per class. It counts neither comment lines nor blank
lines. The value of this metric indicates the size of a class.
Weighted Method per Class (WMC) [5] counts the number of
methods in a class weighting each method by its cyclomatic
complexity. Number of Methods (NOM) and Number of Attributes
(NOA) quantifies the number of methods/constructors and the
number of fields/class variables, respectively. These metrics are
mainly used to estimate the size of a class.

Coupling, Cohesion and Complexity Metrics. Coupling
between Objects (CBO) [5] counts the number of classes called by
a given class. CBO measures the degree of coupling among

classes based on method calls and attribute accesses. Lack of
Cohesion in Methods (LCOM) [5] computes the difference
between (i) the pairs of methods in a class that do not access any
attribute in common and (ii) the pairs of methods in a class that do
access attributes in common. This metric measures the cohesion
of methods of a class in terms of the frequency that they share
attributes. McCabe Cyclomatic Complexity (McCabe) [11] counts
the number of linearly independent paths through a program
source code. It is used to indicate the complexity of a program.

Inheritance Metrics. Depth of Inheritance Tree (DIT) [5] counts
the number of levels that a subclass inherits methods and
attributes from superclasses in the inheritance tree of the system.
This metric estimates the class complexity with respect to its
inheritance relationships. Number of Children (NOC) [5] counts
the number of direct subclasses of a given class. This metric
indicates software reuse by means of inheritance.

2.2 Methods to Derive Thresholds
The effective use of software metrics is dependent on the
definition of appropriate thresholds. Thresholds allow us to
objectively characterize or to classify each component according
to one of the quality metrics. In this paper, we aim to investigate if
the definition of appropriate thresholds should be tailored to the
characteristics of the measured system and its domain. In the past
few years, thresholds were calculated based on experience of
software engineers or using a single system as reference [5]. More
recently, thresholds have been derived from benchmarks and
calculated based on well-defined derivation methods.

For instance, Alves et al. [1] proposed a method that weights
software metrics by lines of code. The method aims at labeling
each entity of a system based on thresholds. Each label is based
on a fix and predetermined percentage of entities. Similarly,
Ferreira et al. [6] presented a simple method for calculating
thresholds. The method consists in grouping the extracted metrics
in a file and gets three groups, with high, medium, and low
frequency. The groups are called good, regular, and bad
measurements, respectively. In this paper, we rely on a recently
proposed method, called Vale’s Method (Section 2.3), to derive
thresholds [17]. We choose Vale’s Method because a software
tool that supports this method is available, making the threshold
derivation process easier.

2.3 Deriving Thresholds with Vale’s Method
Vale’s Method proposes the threshold derivation in five steps
[17], as illustrated in Figure 1. First, metrics have to be extracted
from a benchmark of software systems. In this step, we employed
two tools to measure the source code we used, namely Metrics
Plugin 1.3.61 and Code Pro Analytix 3.62. For each entity, the
method computes the weight percentage within the total number
of entities in the second step. Then, Vale’s Method sorts the
metric values in ascending order and takes the maximum metric
value that represents 1%, 2%, up to 100%, of the weight. In the
fourth step, it aggregates all entities per metric value. Finally, the
thresholds 3%, 15%, 90% and 95% are derived by choosing the
percentage of the overall metric values we want to represent.
Apart from the first step, all other steps are supported by a tool
called TDTool [19].

1 http://metrics.sourceforge.net/
2 https://marketplace.eclipse.org/content/codepro-analytix

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 406

Figure 1. Vale’s Threshold Derivation Method.

3. STUDY SETTINGS
In this section, we present the study settings. We present and
motivate our research questions (Section 3.1). We then detail how
we built the benchmark used in the study to derive domain-
specific thresholds (Section 3.2). This section also discusses the
main characteristics of each domain in terms of Lines of Code and
Number of Classes.

3.1 Goal and Research Questions
This study aims to investigate whether and how metric thresholds
vary across information systems of different domains. Therefore,
we design and execute an empirical study with 40 information
systems of four domains in order to answer the following research
questions (RQ).

RQ1. What are the thresholds for metrics in each specific domain?

RQ2. Which software attributes (size, complexity and cohesion)
benefit most from domain-specific thresholds?

RQ3 Is the Vale’s method, when applied to the studied domains
individually, able to generate more appropriate thresholds than
when applied to general systems?

3.2 Selected Systems and Domains
This study relies on information systems from four domains:
accounting, e-commerce, health, and restaurant. We choose such
domains for the following reasons. First, information systems
from these domains encompass several basic business
requirements (e.g., user and product management). Second, there
are a significant number of information systems in these domains
available for download in GitHub. Third, the four chosen domains
are well-defined in terms of requirements and, therefore, we
believe that their differences might reflect in varying thresholds
among systems of each domain.

We extracted information systems to compose our data set from
GitHub3 repositories. We performed the selection of systems in
May 2016. We selected the information systems based on the
ranking of the most starred systems and their length in terms of
lines of code. In GitHub, stars are a meaningful measure for
repository popularity among the platform users, and they may
support the selection of relevant systems for study.

3 https://github.com/

To minimize the risk of biasing our results we applied a strict set
of criteria. First, we collected 400 Java systems from GitHub, 100
for each domain in the descending order of stars. Then, we
discarded non-Java information systems, since GitHub does not
automatically verify the main programming language of each
result. For instance, we removed Java projects developed for
Android, because these systems tend to have a different
architectural design. Finally, we excluded systems with less than
300 lines of code (LOC) because we considered them simple toy
examples. Finally, to balance our data set, we randomly select 10
information systems of each domain. Therefore, our final dataset
includes 40 information systems; i.e., 10 systems of each domain.

Table 1. Descriptive Statistics of Lines of Code per Domain

 Min Max Mean Std. Dev.
Accounting 380 6,396 1,361.7 1,756.7
ECommerce 330 2,867 991.4 897.0
Health 636 12,046 2,825.2 3,526.6
Restaurant 354 3,967 2,103.0 1,439.4

Table 1 summarizes the descriptive statistics of the 40 selected
information systems, in terms of lines of code. As we can see, the
number of lines of code diverges largely across information
systems. For example, the smallest one has only 330 LOC, while
the biggest system has 12,046 LOC. In the same way, we can
observe a considerable discrepancy in terms of lines of code
among the studied domains. E-commerce information systems, on
average, have near 70% less lines of code than health systems.
This considerable difference corroborates with our hypothesis that
health systems might be more complex and, therefore, it may
present higher metric values. In summary, we consider that all
means are representative of medium scale information systems.

We also investigated the distribution of the number of classes over
the 40 selected information systems. Table 2 shows the obtained
data. In terms of means, we can observe that there is no
substantial difference among the studied domains. However, in
the same way as LOC, the health information systems were the
ones that presented the largest number of classes, followed by
restaurant, accounting, and e-commerce. Therefore, it is possible
to assume that there exists a uniform variation among the domains
characteristics, which can be reflected in the other software
metrics and their thresholds.

Table 2. Statistics of Number of Classes per Domain

 Min Max Mean Std. Dev.
Accounting 2 101 24,6 27,9
E-Commerce 2 55 15,9 15,7
Health 9 133 32,7 34,4
Restaurant 5 62 29,7 17,0

4. RESULTS AND ANALYSIS
To answer our RQ1 and RQ2 research questions, we
independently analyzed whether and how the derived thresholds
vary in terms of size (Section 4.1), inheritance (Section 4.2) and
other metrics (Section 4.3). We obtained the thresholds in
conformance with Vale’s Method by using the TDTool [19].

4.1 Thresholds for Size Metrics
Table 3 presents the thresholds derived for the size metrics: Lines
of Code (LOC), Weighted Methods per Class (WMC), Number of
Attributes (NOA), and Number of Methods (NOM). The first two

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 407

 columns present the metrics name and the Vale’s Method
thresholds distribution (3%, 15%, 90%, and 95%). The others
columns show the respective derived thresholds for each domain.
For instance, 90% of classes in the accounting domain have no
more than 121 lines of code.

Table 3. Thresholds for Size Metrics

 Account ECom Health Restaurant
 3% 3 4 3 3
LOC 15% 4 4 5 5
 90% 121 164 231 172
 95% 147 264 290 238

 3% 0 0 0 0
WMC 15% 1 0 0 1
 90% 21 27 24 24
 95% 31 50 30 30

 3% 0 0 0 0
NOA 15% 0 0 0 0
 90% 9 9 23 9
 95% 15 11 30 15

 3% 0 0 0 0
NOM 15% 0 0 0 0
 90% 14 10 12 12
 95% 22 17 16 16

The results, as presented in Table 3, show no relevant difference
across domains for size metrics in the lower-bound thresholds
(i.e., 3% and 15%). This result is somehow expected since many
classes of these systems are small. For instance, at least 15% of
the classes have no more than five lines of code in all domains.
One reason for this large number of small classes might be that
some systems are under development. Therefore, their classes are
empty or with just stub code.

On the other hand, we can observe a substantial variation on the
95% upper-bound thresholds. The classes in health information
systems have highest thresholds for LOC and NOA than
information systems from other domains. For example, comparing
with the accounting information systems, the largest classes in
health systems have about twice more lines of code (147 vs. 290)
and attributes (15 vs. 30). Therefore, these results suggest that the
largest classes in health systems are more complex than the largest
one in other domains, such as accounting and restaurant. We can
also observe in Table 3 that LOC and NOA are two metrics that
might benefits from domain-specific metrics, while NOM seems
to not vary largely across domains.

Indeed, accounting seems to contain a small number of classes
with a large number of lines of code. That is, 95% of classes in
this domain have no more than 147 lines of code. Despite of this
low threshold value for LOC, large classes in the accounting
domain have many methods compared to the other domains. Table
3 shows that for both 90% and 95% thresholds, accounting has the
highest values for NOM (14 and 22 methods per class,
respectively) among the analyzed domains.

4.2 Thresholds for Inheritance Metrics
Table 4 presents the derived thresholds for two inheritance
metrics, named Depth of Inheritance Tree (DIT) and Number of
Children (NOC). The results reveal no considerable difference
across domains considering the lower-bound thresholds (3% and
15%). Therefore, in addition to be small, at least 15% of classes in
all analyzed domains do not use inheritance relationships.

Table 4. Thresholds for Complexity and Inheritance Metrics

 Account ECom Health Restaurant

 3% 1 1 1 1
DIT 15% 1 1 1 1
 90% 8 4 13 8
 95% 10 4 21 12

 3% 0 0 0 0
NOC 15% 0 0 0 0
 90% 1 1 0 1
 95% 2 4 1 1

It is worth to note that the e-commerce and health systems have
opposite results considering inheritance metrics (DIT and NOC).
The health systems have deeper inheritance trees and a low
number of children, while classes in e-commerce systems have
many subclasses with flat inheritance tree. Accounting and
restaurant information systems have very similar thresholds for
DIT and NOC. Therefore, we can conclude that domain-specific
thresholds might corroborate to more precise analysis of DIT and
NOC only in some domains, such as e-commerce and health
systems.

4.3 Thresholds for Coupling, Cohesion and
Complexity Metrics
Table 5 presents the derived thresholds for three metrics:
Coupling between Objects (CBO), Lack of Cohesion of Methods
(LCOM), and McCabe Cyclomatic Complexity (McCabe).
Considering the CBO metric, we can observe that the accounting
domain has the lowest thresholds for both 95% and 90%
percentiles. Also, the e-commerce and health domains present the
highest thresholds for the 95% percentile which corroborates with
our claim that health is a more complex domain. In the same way,
as we can observe in Table 5, accounting and health are the two
domains with the more discrepant values for LCOM. That is, they
have more non-cohesive classes than the other domains. On the
other hand, the McCabe complexity metric does not vary largely
across domains. Therefore, CBO and LCOM, in contrast to
McCabe, seem to be metrics that could benefits from domain
specific thresholds. In general, considering the LCOM and
McCabe metrics, we can hypothesize that the restaurant domain
has, in general, more cohesive and simple classes than the other
domains, which illustrate the need for specific thresholds for
classes across domains.

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 408

 Table 5. Thresholds for Coupling, Cohesion, and Complexity

 Account ECom Health Restaurant

 3% 0 0 0 0
CBO 15% 0 0 1 0
 90% 6 10 11 9
 95% 8 14 14 10

 3% 0 0 0 0
LCOM 15% 0 0 0 1
 90% 55 28 36 35
 95% 207 71 72 63

 3% 0 0 0 0
McCabe 15% 1 0 0 1
 90% 7 12 8 7
 95% 11 20 10 11

5. ANALYSIS OF THRESHOLDS
After visualizing the calculated results using the Vale method, in
this section some figures will help to better understand the
significance of the obtained values for three metrics, CBO, DIT
LOC. To conduct this visualization, the following figures show
the values obtained for the metrics and their percentage of
representativeness, for each domain and also for the combined
domains. In Figure 1 the domains are represented by colors, as in
the next figures. It is worth mentioning that the analysis is
performed on the classes present in the systems within a domain,
and there may be equal values, which in the graph would occupy
the same space.

Figure 1. Thresholds for Coupling between Objects

In view of the previous figure, we note that the trend line is the
need for different values of thresholds, being a unique value far
from ideal, as represented by the orange color in accounting. An
interesting point is that the lines point to a similar distribution in
the accounting and ecommerce domains, but very different for
health and restaurant.

Figure 2. Thresholds for Depth Inheritance Tree

In Figure 2 it is possible to see the existence of a cluster of points
in the initial region of the graph, showing that the inheritance trees
are concentrated in smaller numbers, but also a different
distribution in restaurant.

Figure 3. Thresholds for Lines of Code

For Figure 3, what stands out is the distribution of the points
showing that there are many classes with a smaller size of lines of
code, but the distribution helps to visualize that the distributions
for each domain follow different, which justifies the different
representative thresholds presented In the previous tables.

Considering the presented figures it is observed that when Vale
method is applied on software systems domains the value of
thresholds obtained are more accurate, varying for different
metrics and systems modalities, being more appropriate for uses
in other contexts, as in the search for Anomalies in codes,
answering the third research question.

6. ANALYSIS OF OTHER BENCHMARKS
The previous section analyzed thresholds taking into account four
benchmarks of systems that we mined from GitHub; one for each
selected domain. In this section, we analyzed and compared our
results with two other benchmarks from the literature, namely
Qualitas Corpus [15] and Software Product Lines [16] (SPL
Benchmark, for short). Section 5.1 analyzes thresholds for
Qualitas Corpus, while Section 5.2 discusses the SPL Benchmark.

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 409

 6.1 Comparison with Thresholds for Qualitas
Corpus
In previous work [18], Vale’s Method has been applied to the
Qualitas Corpus benchmark. Since in this paper we used the same
method to derive domain-specific thresholds, it is expected a
comparison between ours and Vale’s results [18]. The Qualitas
Corpus benchmark is composed of industry-strengths information
systems. It has more than a hundred systems and most of these
systems are larger and more complex than the ones we mined
from GitHub (used in Section 4). Similar to our benchmarks, all
systems in Qualitas Corpus were developed in Java programming
language.

Data in this section rely on the 20101126 release of Qualitas
Corpus, composed by 106 open source Java software systems. For
each system, the corpus presents a set of 21 software metrics.
However, three systems, namely Eclipse 3.7.1, JRE 1.6.0, and
Netbeans 7.3, do not have all metrics computed. Vale [18] then
derived thresholds for a subset of seven metrics for 103 systems,
but only four of these metrics (LOC, WMC, DIT, and NOC) are
the same in this study.

Table 6 shows the obtained threshold values for these four metrics
in Qualitas Corpus. For example, for LOC the derived thresholds
are 3, 11, 308, and 510 for 3%, 5%, 90%, and 95%, respectively.
Taking into account the inheritance metrics (DIT and NOC), we
could not see significant difference between thresholds for
specific domains and for general systems. That is, thresholds in
Tables 4 and 5 for DIT and NOC are similar.

On the other hand, we observe that domain-specific thresholds for
size metrics (Tables 3) are lower when compared with general
thresholds (Table 5). With respect to LOC and WMC, thresholds
for Qualitas Corpus are always higher than for any of our four
benchmarks. For instance, in the 95% label, the highest domain-
specific threshold is 290 LOC (health), against 510 LOC for
Qualitas Corpus. A possible explanation is that, in general,
systems in Qualitas Corpus are larger than systems in our
benchmarks. Therefore, our conclusion is that, in addition to
domain, thresholds also vary depending on the size of the systems
in the benchmark.

Table 6. Thresholds of Qualitas Corpus

 LOC WMC DIT NOC
3% 3 1 1 0
15% 11 2 1 0
90% 308 42 4 1
95% 510 70 5 2

6.2 Comparison with Thresholds for Software
Product Lines
This section presents and discusses thresholds derived for a
benchmark of 33 Software Product Lines (SPL Benchmark) [16].
An SPL is a configurable set of systems that shares a common,
managed set of features in a particular market segment [13].
Features can be defined as modules of an application with
consistent, well-defined, independent, and combinable functions
[2]. The SPL Benchmark was built in previous work [2] because
SPLs have been increasingly adopted in software industry to
support coarse-grained reuse of software assets. This benchmark
only includes software product lines developed using feature-

oriented programming (FOP). In this study, we only considered
software product lines implemented in AHEAD [4] and Feature
House [3] because these programming languages extends Java.

Table 7 shows the threshold values for two metrics (LOC and
WMC) for the SPL Benchmark. We focus only on these two
metrics because they are the same in both studies, Vale et al. [16]
and ours. Data in Table 3 shows that domain-specific thresholds
for size metrics are usually higher than thresholds for software
product lines (Table 7). For instance, considering the 95%
percentage, the highest values are 139 and 32 for LOC and WMC,
respectively, derived from the SPL Benchmark. For domain-
specific thresholds, however, the lowest values are 147 for LOC
(accounting) and 30 for WMC (health and restaurant). That is, the
lowest domain-specific thresholds are higher than thresholds for
software product lines, considering the 95% upper limit. This
result confirms that thresholds depend on the used implementation
technology (OOP vs. FOP) and programming languages (Java vs.
AHEAD and FeatureHouse).

Table 7. Thresholds of Software Product Lines Benchmark

Benchmark % LOC WMC
 3% 3 1

1 15% 5 2
 90% 78 18
 95% 139 32

7. RELATED WORK
Alves et. al. [1] proposed a threshold derivation methodology
designed according to three requirements. First, it should respect
the statistical properties of the metric, such as scale and
distribution. Second, it should be based on data analysis from a
representative set of systems (benchmark). Third, it should be
repeatable, transparent and straightforward to execute. The
authors applied the proposed method to a benchmark of 100
object-oriented information systems (C# and Java), both
proprietary and open-source, to derive thresholds for metrics
included in the SIG maintainability model (Unit Complexity, Unit
Size, Module Inward Coupling, Module Interface Size). As a
result, they observe that the derived thresholds are representative
of the selected quantiles: low risk (between 0 – 70%), moderate
risk (70 – 80%), high risk (80 – 90%) and very-high risk (> 90%).

Ferreira et. al. [6] presents the results of a study based on a
collection of open-source software programs written in Java. The
study aimed to establish thresholds for a set of metrics (LCOM,
DIT, coupling factor, afferent couplings, number of public
methods, and number of public fields). Based on the most
commonly values, they were able to derive general thresholds for
object-oriented software metrics, and thresholds by size and type
(tool, library and framework). As Ferreira et. al. [6] did not find
relevant difference among thresholds, they conclude that the
general thresholds can be applied to object-oriented software in
general.

Oliveira et. al. [12] propose the concept of relative thresholds for
evaluating metrics data following heavy-tailed distributions. The
proposed thresholds are relative because they assume that metric
thresholds should be followed by most source code entities, but
that it is also natural to have a number of entities in the “long-tail”
that do not follow the defined limits. They report a study of

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 410

 applying this method to the Qualitas Corpus with 106 systems.
Based on the results, they argue that the proposed thresholds
express a balance between real and idealized design practices. The
authors also report the results of a study conducted to validate the
method that extracts relative metric thresholds from benchmark
data. They used this method to extract thresholds from a
benchmark of 79 Pharo/Smalltalk software systems, which were
validated with five experts and 25 developers. The results indicate
that good quality software systems respect metric thresholds,
while noncompliant ones are not largely viewed as requiring more
effort to be maintained.

Silva et. al. [14] conducted an industry multi-project study to
evaluate the reusability of detection strategies in a critical domain.
They assessed the degree of accurate reuse of anomalies detection
strategies based on the judgment of domain specialists. The study
revealed that even though the reuse of strategies in a specific
domain should be encouraged, their accuracy is still limited when
holistically applied to all the modules of a program. However, the
accuracy and reuse were both significantly improved when the
metrics, thresholds and logical operators were tailored to each
recurring concern of the domain.

8. THREATS TO VALIDITY
The focus on this work was to obtain thresholds for metrics of
classes contained in selected domains, in order to compare and
verify the consistency of the resulting values. Throughout the
process, some concerns with validity have emerged. The main
concerns that threaten the validity of this work are presented and
discussed below.

Internal Validity. We identified the following threats to the
construct validity: selected domains and key word search strings.
We argue that the selected domains (accounting, e-commerce,
health, and restaurant) are representative, given that they are well-
defined in terms of a diversity of recurrent requirements (e.g., user
and product management). Therefore, we believe that differences
in implementation might reflect in valid varying thresholds among
systems of distinctive domains. Another threat is the reliance on
the key word search string for selecting the initial set of systems.
We cannot ensure that the GitHub search facilities return all
relevant systems of each domains. However, we could observe
that the search process was able to return systems that we consider
as relevant to our research questions (high starred).

Construction and Conclusion Validity. Threats to the validity
also reside on how we have interpreted and implemented the
software metrics. From the perspective of the application of the
results, different interpretations of the software metrics represent a
threat to the conclusion validity of the study. To avoid this
problem, the tool-supported method [17] [19] to derive threshold
was used to derive the thresholds. It makes the derivation process
easy and repeatable.

External Validity. The major risk here is related to the limitation
on selected systems. First, it is not possible to ensure that they
reflect the best samples of the recurrent practice. To reduce this
risk, we proceed by selecting systems from GitHub based on the
ranking of starred systems. As mentioned, in GitHub, stars are a
meaningful measure for repository popularity, and they may
support the selection of relevant and high-quality systems for
study. We also excluded systems with less than 300 lines of code
(LOC) because we considered them simple toy examples. Second,
the sample size might be itself another threat to the validity of the
study. We have selected forty systems from different domains.

However, this decision allowed us to obtain more consistent
results that could be interpreted in this specific context.
Nevertheless, additional replications are necessary to determine if
our findings can be generalized to other domains and systems.

9. CONCLUSIONS AND FUTURE WORK
This paper presented an empirical study to investigate the
hypothesis that thresholds vary among systems of different
domains, since these systems have different degrees of complexity
and size. To perform this study, it was necessary to collect metrics
of the systems contained in the domains, and using tools.
Thresholds were calculated and then compared (Section 4 and 5).

To evaluate our hypothesis, we relied on a benchmark composed
by 40 object-oriented Java systems of four domains: accounting,
e-commerce, health and restaurants. We applied a set of eight
well-known metrics to each system, namely Lines of Code (LOC),
Number of Attributes (NOA), Number of Methods (NOM),
Weighted Method per Class (WMC), Lack of Cohesion in
Methods (LCOM), McCabe Cyclomatic Complexity (McCabe),
Depth of Inheritance Tree (DIT) and Number of Children (NOC).
After aggregating metrics per domain, we derived thresholds for
each metric by using a Vale’s Method and its supporting tool
called TDTool.

We finally compared the derived thresholds of each metric among
the four domains. The results indicate that lower-bound thresholds
(e.g., 15% smaller classes) usually do not significantly vary across
domains. However, for all analyzed metrics, upper-bound
thresholds (i.e., 90% and 95%) are visible different in some
domains. In addition to obtaining the results, they were also used
in a comparison with Qualitas Corpus and SPL-Benchmark. As a
result, we observed that our derived thresholds seems to be more
equalized to the reality of each domain (health, e-commerce,
restaurant and account) than the general thresholds derived from
the others two benchmarks.

For future work, others could use the presented data to compare
with data obtained for a number of systems per domain.
Following this idea, it would be possible to increase the number of
domains and verify the variation behavior of the values. In
addition, future work may apply a varied group of techniques to
validate the thresholds for smaller groups within the same domain
and to compare with other domains of systems. These further
replications would verify the representativeness and reliability of
the calculated values. This study was carried out on systems
collected from GitHub, so a case study could be elaborated to
compare with thresholds obtained from systems collected from
companies. In addition to the highlights, it would be possible to
use other metrics to analyze and compare with other studies and to
be able to verify the validity of the thresholds found in the
industry context.

10. ACKNOWLEDGMENTS
This work was partially supported by CAPES, CNPq (grant
424340/2016-0), and FAPEMIG (grant PPM-00382-14).

11. REFERENCES
[1] T. Alves, C. Ypma, J. Visser. “Deriving Metric Thresholds

from Benchmark Data”. In Proc. of 26th Int. Conf. on
Software Maintenance (ICSM), pp. 1–10, 2010.

[2] S. Apel, D. Batory, C. Kästner, G. Saake. “Feature-Oriented
Software Product Lines”. Springer, 2013.

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 411

 [3] S. Apel, C. Kästner, C. Lengauer. “FeatureHouse: Language-
Independent, Automated Software Composition”. In:
Proceedings of the 31st International Conference on
Software Engineering (ICSE), pp 221–231, 2009.

[4] D. Batory, J. Sarvela, A. Rauschmayer. “Scaling Step-Wise
Refinement”. In Proceedings of the 25th International
Conference on Software Engineering (ICSE), pp. 187–197,
2003.

[5] S. Chidamber, C. Kemerer. “A Metrics Suite for Object
Oriented Design”. IEEE Trans. Software Engineering, 20(6),
476–493, 1994

[6] K. Ferreira, M. Bigonha, R. Bigonha, L. Mendes, H.
Almeida. “Identifying Thresholds for Object-Oriented
Software Metrics”. Journal of Systems and Software, 85(2),
pp. 244–257, 2012.

[7] M. Fowler. “Refactoring: Improving the Design of Existing
Code”. Pearson Education, 1999.

[8] M. Lanza, R. Marinescu. Object-Oriented Metrics in
Practice. Springer, 2007.

[9] M. Lorenz, J. Kidd. Object-Oriented Software Metrics.
Prentice Hall, 1994.

[10] R. Marinescu. “Detection Strategies: Metrics-based Rules for
Detecting Design Flaw”s. In Proceedings of the 20th
International Conference on Software Maintenance (ICSM),
pp. 350–359, 2004.

[11] T. McCabe. “A Complexity Measure”. IEEE Transactions on
Software Engineering, 2(4), pp. 308–320, 1976.

[12] P. Oliveira, M. Valente, F. Lima. Extracting Relative
Thresholds for Source Code Metrics. In Proceedings of the
18th International Conference on Software Maintenance and
Reengineering (CSMR), pp 254–263, 2014.

[13] K. Pohl, G. Böckle, F. van der Linden. “Software Product
Line Engineering”. Springer Science & Business Media,
2005.

[14] A. Silva, A Garcia, E. Cirilo, C. Lucena. “Reuse of Domain-
Sensitive Strategies for Detecting Code Anomalies: A Multi-
Case Study”. In Proceedings of the Brazilian Symposium on
Software Engineering (SBES), 2013.

[15] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M.
Lumpe, H. Melton, J. Noble. “Qualitas Corpus: A Curated
Collection of Java Code for Empirical Studies”. In
Proceedings of the Asia Pacific Software Engineering
Conference (APSEC), pp336–345, 2010.

[16] G. Vale, D. Albuquerque, E. Figueiredo, A. Garcia.
“Defining Metric Thresholds for Software Product Lines: A
Comparative Study”. In proc. of Int’l Software Product Line
Conf. (SPLC), 176–185, 2015.

[17] G. Vale, E. Figueiredo. A Method to Derive Metric
Thresholds for Software Product Lines. In Proceedings of the
29th Brazilian Symposium on Software Engineering (SBES),
pp. 110–119, 2015.

[18] G. Vale. “A Benchmark-based Method to Derive
Thresholds”. MSc Dissertation, Federal University of Minas
Gerais, 2016.

[19] L. Veado, G. Vale, E. Fernandes, and E. Figueiredo.
“TDTool: Threshold Derivation Tool”. In proceedings of the
20th International Conference on Evaluation and Assessment
in Software Engineering (EASE), Tools Session, 2016.

