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ABSTRACT 
Software metrics provide basic means to quantify several quality 
aspects of information systems. However, the effectiveness of the 
measurement process is directly dependent on the definition of 
reliable thresholds. To define appropriate thresholds, we need to 
consider characteristics of the information systems, such as their 
size and domain. There are several studies to propose methods to 
derive thresholds and evaluate them. However, we still lack 
empirical knowledge about whether and how thresholds vary 
across different information system domains. To tackle this 
limitation, this paper investigates specific thresholds in four 
information system domains: accounting, e-commerce, health, and 
restaurant. Our study relies on 40 information systems to derive 
domain-specific thresholds for 9 well-known software metrics. 
Our results indicate that lower-bound thresholds (e.g., 15% 
smaller classes) usually do not significantly vary across domains. 
However, for all analyzed metrics, upper-bound thresholds (e.g., 
5% largest classes) are different in some domains. Moreover, our 
study also suggests that domain-specific thresholds are more 
appropriated than generic ones. For instance, we observed in our 
analysis that the more appropriated threshold to select the 5% 
largest classes is 290 LOC in health systems and 147 LOC in 
accounting systems. 

CCS Concepts 
• Software and its engineering → Empirical software 
validation 

Keywords 
Software Metrics; Thresholds; Software Domain 

1. INTRODUCTION 
Software metrics are the pragmatic means for assessing different 
quality attributes of information systems, such as maintainability 
and changeability [5]. Certain metric values can help to reveal 
specific parts of the information system that should be closely 
monitored [8]. For instance, measures can indicate whether a 
critical anomaly is affecting the software structure of an 
information system. This way, developers may suspect that 
something is wrong in the system design or implementation. 
Typical examples of anomalies include cases of large classes, long 

methods, and long parameter lists [7]. 

Nevertheless, the effective measurement of information systems is 
directly dependent on the definition of appropriate thresholds 
[1][16]. Thresholds allow us to objectively characterize or classify 
each class (or method) according to one of the quality metrics. We 
argue in this paper that the definition of appropriate thresholds 
needs to be tailored to each metric and characteristics of the 
measured systems, such as their size and domain. For instance, a 
health system might be more complex and, therefore, it may have 
higher metric values, than an e-commence system. 

In the past few years, thresholds were calculated based on 
experience of software engineers or using a single system as 
reference [5][11]. Recently, thresholds have been derived from a 
set of similar systems, named benchmarks, and calculated based 
on systematic methods [17]. A systematic method should provide 
the same thresholds for a metric if the same input is used. The 
idea behind the use of benchmarks is to use information from 
similar systems to help derive meaningful thresholds.  

In this paper, similar systems mean that they were developed in 
the same programming language and that they belong to the same 
domain, even though they might have been developed by different 
people. The basic idea of using benchmark-based threshold 
derivation is to get common characteristics of the majority of 
components in a domain. Therefore, discrepant values might 
indicate a problem in that specific domain. For instance, if almost 
all classes in a set of e-commerce systems have less than 100 lines 
of code (LOC), the minority of classes with more than 100 LOC 
are outliers. On the other hand, this threshold might be 120 LOC 
for a set of health systems, for instance. 

This paper presents an empirical study to investigate the 
hypothesis that thresholds vary among information systems of 
different domains since these systems have different degrees of 
complexity, cohesion, and size. To evaluate this hypothesis, we 
rely on four benchmarks composed by 40 object-oriented 
information systems. Each benchmark includes 10 information 
systems in one of the following domains: accounting, e-
commerce, health, and restaurants. We apply a set of nine well-
known metrics [5] [8] [9] to each system, namely Lines of Code 
(LOC), Number of Attributes (NOA), Number of Methods 
(NOM), Weighted Method per Class (WMC), Coupling between 
Objects (CBO), Lack of Cohesion in Methods (LCOM), McCabe 
Cyclomatic Complexity (McCabe), Depth of Inheritance Tree 
(DIT), and Number of Children (NOC). After aggregating metrics 
per domain, we derived thresholds for each metric by using a 
recently proposed systematic method [17].  

We finally compare the derived thresholds of each metric among 
the four domains. In short, the results indicate that lower-bound 
thresholds (e.g., 15% smaller classes) usually do not significantly 
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  vary across domains. However, for all analyzed metrics, upper-
bound thresholds (e.g., 5% largest classes) are clear different in 
some domains. For instance, we observed in our analysis that the 
threshold to select the 5% largest classes is 290 LOC in health 
systems and 147 LOC in accounting systems. 

Finally, we compared the derived metrics with two others 
benchmarks: (i) Qualitas Corpus [15] and SPL Benchmark [16]. 
The Qualitas Corpus is composed of more than a hundred real 
object-oriented Java systems. The SPL Benchmark, on the other 
hand, has 33 software product lines implemented in different 
languages and technologies, namely: AHEAD [4] and Feature 
House [3]. As a result, we observed that our derived thresholds 
seem to be more equalized to the reality of each domain (account, 
e-commerce, health, and restaurant) than to the general thresholds 
derived from the others two benchmarks. 

The remainder of this paper is organized as follows. Section 2 
presents a background on metrics and threshold derivation. 
Section 3 describes the study configuration and set up, including 
our goal, research question, and the selection of systems and 
domains. Section 4 presents and discusses the results of 
measurements per domain. Section 5 show visualizations for the 
thresholds found. Section 6 compares our results with other two 
papers on threshold derivation. Section 7 correlates our study with 
papers from the literature. Section 8 discusses threats to the study 
validity. Finally, Section 9 concludes this paper and points out 
directions for future work. 

2. DERIVING THRESHOLDS FOR 
SOFTWARE METRICS 
In this section, we present 9 well-known software metrics 
analyzed in the study (Section 2.1). We also provide some 
background about methods to derive thresholds (Section 2.2), 
including a short explanation of the Vale’s method used in our 
work to derive domain-specific thresholds (Section 2.3). 

2.1 Software Metrics 
Software metrics are the pragmatic means for assessing different 
quality attributes of information systems, such as maintainability 
and changeability [5]. This study investigates domain-specific 
thresholds for nine metrics: Lines of Code (LOC), Number of 
Attributes (NOA), Number of Methods (NOM), Weighted 
Method per Class (WMC), Coupling between Objects (CBO), 
Lack of Cohesion in Methods (LCOM), McCabe Cyclomatic 
Complexity (McCabe), Depth of Inheritance Tree (DIT), and 
Number of Children (NOC). We choose these metrics because 
they capture different attributes of information systems, such as 
size, complexity, cohesion, and inheritance relationships. In 
addition, they are well-known object-oriented software metrics 
[5][8][9]. 

Size Metrics. Lines of Code (LOC) [9] measures the number of 
lines of code per class. It counts neither comment lines nor blank 
lines. The value of this metric indicates the size of a class. 
Weighted Method per Class (WMC) [5] counts the number of 
methods in a class weighting each method by its cyclomatic 
complexity. Number of Methods (NOM) and Number of Attributes 
(NOA) quantifies the number of methods/constructors and the 
number of fields/class variables, respectively. These metrics are 
mainly used to estimate the size of a class. 

Coupling, Cohesion and Complexity Metrics. Coupling 
between Objects (CBO) [5] counts the number of classes called by 
a given class. CBO measures the degree of coupling among 

classes based on method calls and attribute accesses. Lack of 
Cohesion in Methods (LCOM) [5] computes the difference 
between (i) the pairs of methods in a class that do not access any 
attribute in common and (ii) the pairs of methods in a class that do 
access attributes in common. This metric measures the cohesion 
of methods of a class in terms of the frequency that they share 
attributes. McCabe Cyclomatic Complexity (McCabe) [11] counts 
the number of linearly independent paths through a program 
source code. It is used to indicate the complexity of a program. 

Inheritance Metrics. Depth of Inheritance Tree (DIT) [5] counts 
the number of levels that a subclass inherits methods and 
attributes from superclasses in the inheritance tree of the system. 
This metric estimates the class complexity with respect to its 
inheritance relationships. Number of Children (NOC) [5] counts 
the number of direct subclasses of a given class. This metric 
indicates software reuse by means of inheritance. 

2.2 Methods to Derive Thresholds 
The effective use of software metrics is dependent on the 
definition of appropriate thresholds. Thresholds allow us to 
objectively characterize or to classify each component according 
to one of the quality metrics. In this paper, we aim to investigate if 
the definition of appropriate thresholds should be tailored to the 
characteristics of the measured system and its domain. In the past 
few years, thresholds were calculated based on experience of 
software engineers or using a single system as reference [5]. More 
recently, thresholds have been derived from benchmarks and 
calculated based on well-defined derivation methods. 

For instance, Alves et al. [1] proposed a method that weights 
software metrics by lines of code. The method aims at labeling 
each entity of a system based on thresholds. Each label is based 
on a fix and predetermined percentage of entities. Similarly, 
Ferreira et al. [6] presented a simple method for calculating 
thresholds. The method consists in grouping the extracted metrics 
in a file and gets three groups, with high, medium, and low 
frequency. The groups are called good, regular, and bad 
measurements, respectively. In this paper, we rely on a recently 
proposed method, called Vale’s Method (Section 2.3), to derive 
thresholds [17]. We choose Vale’s Method because a software 
tool that supports this method is available, making the threshold 
derivation process easier. 

2.3 Deriving Thresholds with Vale’s Method 
Vale’s Method proposes the threshold derivation in five steps 
[17], as illustrated in Figure 1. First, metrics have to be extracted 
from a benchmark of software systems. In this step, we employed 
two tools to measure the source code we used, namely Metrics 
Plugin 1.3.61 and Code Pro Analytix 3.62. For each entity, the 
method computes the weight percentage within the total number 
of entities in the second step. Then, Vale’s Method sorts the 
metric values in ascending order and takes the maximum metric 
value that represents 1%, 2%, up to 100%, of the weight. In the 
fourth step, it aggregates all entities per metric value. Finally, the 
thresholds 3%, 15%, 90% and 95% are derived by choosing the 
percentage of the overall metric values we want to represent. 
Apart from the first step, all other steps are supported by a tool 
called TDTool [19]. 

 
                                                                    
1 http://metrics.sourceforge.net/ 
2 https://marketplace.eclipse.org/content/codepro-analytix 
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Figure 1. Vale’s Threshold Derivation Method. 

3. STUDY SETTINGS 
In this section, we present the study settings. We present and 
motivate our research questions (Section 3.1). We then detail how 
we built the benchmark used in the study to derive domain-
specific thresholds (Section 3.2). This section also discusses the 
main characteristics of each domain in terms of Lines of Code and 
Number of Classes. 

3.1 Goal and Research Questions 
This study aims to investigate whether and how metric thresholds 
vary across information systems of different domains. Therefore, 
we design and execute an empirical study with 40 information 
systems of four domains in order to answer the following research 
questions (RQ). 

RQ1. What are the thresholds for metrics in each specific domain? 

RQ2. Which software attributes (size, complexity and cohesion) 
benefit most from domain-specific thresholds? 

RQ3 Is the Vale’s method, when applied to the studied domains 
individually, able to generate more appropriate thresholds than 
when applied to general systems? 

3.2 Selected Systems and Domains 
This study relies on information systems from four domains: 
accounting, e-commerce, health, and restaurant. We choose such 
domains for the following reasons. First, information systems 
from these domains encompass several basic business 
requirements (e.g., user and product management). Second, there 
are a significant number of information systems in these domains 
available for download in GitHub. Third, the four chosen domains 
are well-defined in terms of requirements and, therefore, we 
believe that their differences might reflect in varying thresholds 
among systems of each domain. 

We extracted information systems to compose our data set from 
GitHub3 repositories. We performed the selection of systems in 
May 2016. We selected the information systems based on the 
ranking of the most starred systems and their length in terms of 
lines of code. In GitHub, stars are a meaningful measure for 
repository popularity among the platform users, and they may 
support the selection of relevant systems for study. 
                                                                    
3 https://github.com/ 

To minimize the risk of biasing our results we applied a strict set 
of criteria. First, we collected 400 Java systems from GitHub, 100 
for each domain in the descending order of stars. Then, we 
discarded non-Java information systems, since GitHub does not 
automatically verify the main programming language of each 
result. For instance, we removed Java projects developed for 
Android, because these systems tend to have a different 
architectural design. Finally, we excluded systems with less than 
300 lines of code (LOC) because we considered them simple toy 
examples. Finally, to balance our data set, we randomly select 10 
information systems of each domain. Therefore, our final dataset 
includes 40 information systems; i.e., 10 systems of each domain. 

 
Table 1. Descriptive Statistics of Lines of Code per Domain 

 Min Max Mean Std. Dev. 
Accounting 380 6,396 1,361.7 1,756.7 
ECommerce  330 2,867 991.4 897.0 
Health 636 12,046 2,825.2 3,526.6 
Restaurant 354 3,967 2,103.0 1,439.4 
 
Table 1 summarizes the descriptive statistics of the 40 selected 
information systems, in terms of lines of code. As we can see, the 
number of lines of code diverges largely across information 
systems. For example, the smallest one has only 330 LOC, while 
the biggest system has 12,046 LOC. In the same way, we can 
observe a considerable discrepancy in terms of lines of code 
among the studied domains. E-commerce information systems, on 
average, have near 70% less lines of code than health systems. 
This considerable difference corroborates with our hypothesis that 
health systems might be more complex and, therefore, it may 
present higher metric values. In summary, we consider that all 
means are representative of medium scale information systems. 

We also investigated the distribution of the number of classes over 
the 40 selected information systems. Table 2 shows the obtained 
data. In terms of means, we can observe that there is no 
substantial difference among the studied domains. However, in 
the same way as LOC, the health information systems were the 
ones that presented the largest number of classes, followed by 
restaurant, accounting, and e-commerce. Therefore, it is possible 
to assume that there exists a uniform variation among the domains 
characteristics, which can be reflected in the other software 
metrics and their thresholds. 
 

Table 2. Statistics of Number of Classes per Domain 

 Min Max Mean Std. Dev. 
Accounting 2 101 24,6 27,9 
E-Commerce  2 55 15,9 15,7 
Health 9 133 32,7 34,4 
Restaurant 5 62 29,7 17,0 
 

4. RESULTS AND ANALYSIS 
To answer our RQ1 and RQ2 research questions, we 
independently analyzed whether and how the derived thresholds 
vary in terms of size (Section 4.1), inheritance (Section 4.2) and 
other metrics (Section 4.3). We obtained the thresholds in 
conformance with Vale’s Method by using the TDTool [19]. 

4.1 Thresholds for Size Metrics 
Table 3 presents the thresholds derived for the size metrics: Lines 
of Code (LOC), Weighted Methods per Class (WMC), Number of 
Attributes (NOA), and Number of Methods (NOM). The first two 



XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017 

 407 

  columns present the metrics name and the Vale’s Method 
thresholds distribution (3%, 15%, 90%, and 95%). The others 
columns show the respective derived thresholds for each domain. 
For instance, 90% of classes in the accounting domain have no 
more than 121 lines of code. 

 
Table 3. Thresholds for Size Metrics 

  Account ECom Health Restaurant 
 3% 3 4 3 3 
LOC 15% 4 4 5 5 
 90% 121 164 231 172 
 95% 147 264 290 238 

 3% 0 0 0 0 
WMC 15% 1 0 0 1 
 90% 21 27 24 24 
 95% 31 50 30 30 

 3% 0 0 0 0 
NOA 15% 0 0 0 0 
 90% 9 9 23 9 
 95% 15 11 30 15 

 3% 0 0 0 0 
NOM 15% 0 0 0 0 
 90% 14 10 12 12 
 95% 22 17 16 16 

 
The results, as presented in Table 3, show no relevant difference 
across domains for size metrics in the lower-bound thresholds 
(i.e., 3% and 15%). This result is somehow expected since many 
classes of these systems are small. For instance, at least 15% of 
the classes have no more than five lines of code in all domains. 
One reason for this large number of small classes might be that 
some systems are under development. Therefore, their classes are 
empty or with just stub code.  

On the other hand, we can observe a substantial variation on the 
95% upper-bound thresholds. The classes in health information 
systems have highest thresholds for LOC and NOA than 
information systems from other domains. For example, comparing 
with the accounting information systems, the largest classes in 
health systems have about twice more lines of code (147 vs. 290) 
and attributes (15 vs. 30). Therefore, these results suggest that the 
largest classes in health systems are more complex than the largest 
one in other domains, such as accounting and restaurant. We can 
also observe in Table 3 that LOC and NOA are two metrics that 
might benefits from domain-specific metrics, while NOM seems 
to not vary largely across domains. 

Indeed, accounting seems to contain a small number of classes 
with a large number of lines of code. That is, 95% of classes in 
this domain have no more than 147 lines of code. Despite of this 
low threshold value for LOC, large classes in the accounting 
domain have many methods compared to the other domains. Table 
3 shows that for both 90% and 95% thresholds, accounting has the 
highest values for NOM (14 and 22 methods per class, 
respectively) among the analyzed domains. 

4.2 Thresholds for Inheritance Metrics  
Table 4 presents the derived thresholds for two inheritance 
metrics, named Depth of Inheritance Tree (DIT) and Number of 
Children (NOC). The results reveal no considerable difference 
across domains considering the lower-bound thresholds (3% and 
15%). Therefore, in addition to be small, at least 15% of classes in 
all analyzed domains do not use inheritance relationships. 

 
Table 4. Thresholds for Complexity and Inheritance Metrics 

  Account ECom Health Restaurant 

 3% 1 1 1 1 
DIT 15% 1 1 1 1 
 90% 8 4 13 8 
 95% 10 4 21 12 

 3% 0 0 0 0 
NOC 15% 0 0 0 0 
 90% 1 1 0 1 
 95% 2 4 1 1 

 

It is worth to note that the e-commerce and health systems have 
opposite results considering inheritance metrics (DIT and NOC). 
The health systems have deeper inheritance trees and a low 
number of children, while classes in e-commerce systems have 
many subclasses with flat inheritance tree. Accounting and 
restaurant information systems have very similar thresholds for 
DIT and NOC. Therefore, we can conclude that domain-specific 
thresholds might corroborate to more precise analysis of DIT and 
NOC only in some domains, such as e-commerce and health 
systems. 

4.3 Thresholds for Coupling, Cohesion and 
Complexity Metrics  
Table 5 presents the derived thresholds for three metrics: 
Coupling between Objects (CBO), Lack of Cohesion of Methods 
(LCOM), and McCabe Cyclomatic Complexity (McCabe). 
Considering the CBO metric, we can observe that the accounting 
domain has the lowest thresholds for both 95% and 90% 
percentiles. Also, the e-commerce and health domains present the 
highest thresholds for the 95% percentile which corroborates with 
our claim that health is a more complex domain. In the same way, 
as we can observe in Table 5, accounting and health are the two 
domains with the more discrepant values for LCOM. That is, they 
have more non-cohesive classes than the other domains. On the 
other hand, the McCabe complexity metric does not vary largely 
across domains. Therefore, CBO and LCOM, in contrast to 
McCabe, seem to be metrics that could benefits from domain 
specific thresholds. In general, considering the LCOM and 
McCabe metrics, we can hypothesize that the restaurant domain 
has, in general, more cohesive and simple classes than the other 
domains, which illustrate the need for specific thresholds for 
classes across domains. 
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  Table 5. Thresholds for Coupling, Cohesion, and Complexity 

  Account ECom Health  Restaurant 

 3% 0 0 0  0 
CBO 15% 0 0 1  0 
 90% 6 10 11  9 
  95% 8 14 14  10 

 3% 0 0 0  0 
LCOM 15% 0 0 0  1 
 90% 55 28 36  35 
 95% 207 71 72  63 

 3% 0 0 0  0 
McCabe 15% 1 0 0  1 
 90% 7 12 8  7 
 95% 11 20 10  11 

 

5. ANALYSIS OF THRESHOLDS 
After visualizing the calculated results using the Vale method, in 
this section some figures will help to better understand the 
significance of the obtained values for three metrics, CBO, DIT 
LOC. To conduct this visualization, the following figures show 
the values obtained for the metrics and their percentage of 
representativeness, for each domain and also for the combined 
domains. In Figure 1 the domains are represented by colors, as in 
the next figures. It is worth mentioning that the analysis is 
performed on the classes present in the systems within a domain, 
and there may be equal values, which in the graph would occupy 
the same space. 

 
Figure 1. Thresholds for Coupling between Objects 

In view of the previous figure, we note that the trend line is the 
need for different values of thresholds, being a unique value far 
from ideal, as represented by the orange color in accounting. An 
interesting point is that the lines point to a similar distribution in 
the accounting and ecommerce domains, but very different for 
health and restaurant. 

 
Figure 2. Thresholds for Depth Inheritance Tree 

In Figure 2 it is possible to see the existence of a cluster of points 
in the initial region of the graph, showing that the inheritance trees 
are concentrated in smaller numbers, but also a different 
distribution in restaurant. 

 
Figure 3. Thresholds for Lines of Code 

For Figure 3, what stands out is the distribution of the points 
showing that there are many classes with a smaller size of lines of 
code, but the distribution helps to visualize that the distributions 
for each domain follow different, which justifies the different 
representative thresholds presented In the previous tables. 

Considering the presented figures it is observed that when Vale 
method is applied on software systems domains the value of 
thresholds obtained are more accurate, varying for different 
metrics and systems modalities, being more appropriate for uses 
in other contexts, as in the search for Anomalies in codes, 
answering the third research question. 

6. ANALYSIS OF OTHER BENCHMARKS 
The previous section analyzed thresholds taking into account four 
benchmarks of systems that we mined from GitHub; one for each 
selected domain. In this section, we analyzed and compared our 
results with two other benchmarks from the literature, namely 
Qualitas Corpus [15] and Software Product Lines [16] (SPL 
Benchmark, for short). Section 5.1 analyzes thresholds for 
Qualitas Corpus, while Section 5.2 discusses the SPL Benchmark. 
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  6.1 Comparison with Thresholds for Qualitas 
Corpus 
In previous work [18], Vale’s Method has been applied to the 
Qualitas Corpus benchmark. Since in this paper we used the same 
method to derive domain-specific thresholds, it is expected a 
comparison between ours and Vale’s results [18]. The Qualitas 
Corpus benchmark is composed of industry-strengths information 
systems. It has more than a hundred systems and most of these 
systems are larger and more complex than the ones we mined 
from GitHub (used in Section 4). Similar to our benchmarks, all 
systems in Qualitas Corpus were developed in Java programming 
language. 

Data in this section rely on the 20101126 release of Qualitas 
Corpus, composed by 106 open source Java software systems. For 
each system, the corpus presents a set of 21 software metrics. 
However, three systems, namely Eclipse 3.7.1, JRE 1.6.0, and 
Netbeans 7.3, do not have all metrics computed. Vale [18] then 
derived thresholds for a subset of seven metrics for 103 systems, 
but only four of these metrics (LOC, WMC, DIT, and NOC) are 
the same in this study.  

Table 6 shows the obtained threshold values for these four metrics 
in Qualitas Corpus. For example, for LOC the derived thresholds 
are 3, 11, 308, and 510 for 3%, 5%, 90%, and 95%, respectively. 
Taking into account the inheritance metrics (DIT and NOC), we 
could not see significant difference between thresholds for 
specific domains and for general systems. That is, thresholds in 
Tables 4 and 5 for DIT and NOC are similar. 

On the other hand, we observe that domain-specific thresholds for 
size metrics (Tables 3) are lower when compared with general 
thresholds (Table 5). With respect to LOC and WMC, thresholds 
for Qualitas Corpus are always higher than for any of our four 
benchmarks. For instance, in the 95% label, the highest domain-
specific threshold is 290 LOC (health), against 510 LOC for 
Qualitas Corpus. A possible explanation is that, in general, 
systems in Qualitas Corpus are larger than systems in our 
benchmarks. Therefore, our conclusion is that, in addition to 
domain, thresholds also vary depending on the size of the systems 
in the benchmark. 

 
Table 6. Thresholds of Qualitas Corpus 

 LOC WMC DIT NOC 
3% 3 1 1 0 
15% 11 2 1 0 
90% 308 42 4 1 
95% 510 70 5 2 

 

6.2 Comparison with Thresholds for Software 
Product Lines 
This section presents and discusses thresholds derived for a 
benchmark of 33 Software Product Lines (SPL Benchmark) [16]. 
An SPL is a configurable set of systems that shares a common, 
managed set of features in a particular market segment [13]. 
Features can be defined as modules of an application with 
consistent, well-defined, independent, and combinable functions 
[2]. The SPL Benchmark was built in previous work [2] because 
SPLs have been increasingly adopted in software industry to 
support coarse-grained reuse of software assets. This benchmark 
only includes software product lines developed using feature-

oriented programming (FOP). In this study, we only considered 
software product lines implemented in AHEAD [4] and Feature 
House [3] because these programming languages extends Java. 

Table 7 shows the threshold values for two metrics (LOC and 
WMC) for the SPL Benchmark. We focus only on these two 
metrics because they are the same in both studies, Vale et al. [16] 
and ours. Data in Table 3 shows that domain-specific thresholds 
for size metrics are usually higher than thresholds for software 
product lines (Table 7). For instance, considering the 95% 
percentage, the highest values are 139 and 32 for LOC and WMC, 
respectively, derived from the SPL Benchmark. For domain-
specific thresholds, however, the lowest values are 147 for LOC 
(accounting) and 30 for WMC (health and restaurant). That is, the 
lowest domain-specific thresholds are higher than thresholds for 
software product lines, considering the 95% upper limit. This 
result confirms that thresholds depend on the used implementation 
technology (OOP vs. FOP) and programming languages (Java vs. 
AHEAD and FeatureHouse). 

 

Table 7. Thresholds of Software Product Lines Benchmark 

Benchmark % LOC WMC 
 3% 3 1 

1 15% 5 2 
 90% 78 18 
 95% 139 32 

 

7. RELATED WORK 
Alves et. al. [1] proposed a threshold derivation methodology 
designed according to three requirements. First, it should respect 
the statistical properties of the metric, such as scale and 
distribution. Second, it should be based on data analysis from a 
representative set of systems (benchmark). Third, it should be 
repeatable, transparent and straightforward to execute. The 
authors applied the proposed method to a benchmark of 100 
object-oriented information systems (C# and Java), both 
proprietary and open-source, to derive thresholds for metrics 
included in the SIG maintainability model (Unit Complexity, Unit 
Size, Module Inward Coupling, Module Interface Size). As a 
result, they observe that the derived thresholds are representative 
of the selected quantiles: low risk (between 0 – 70%), moderate 
risk (70 – 80%), high risk (80 – 90%) and very-high risk (> 90%).  

Ferreira et. al. [6] presents the results of a study based on a 
collection of open-source software programs written in Java. The 
study aimed to establish thresholds for a set of metrics (LCOM, 
DIT, coupling factor, afferent couplings, number of public 
methods, and number of public fields). Based on the most 
commonly values, they were able to derive general thresholds for 
object-oriented software metrics, and thresholds by size and type 
(tool, library and framework). As Ferreira et. al. [6] did not find 
relevant difference among thresholds, they conclude that the 
general thresholds can be applied to object-oriented software in 
general. 

Oliveira et. al. [12] propose the concept of relative thresholds for 
evaluating metrics data following heavy-tailed distributions. The 
proposed thresholds are relative because they assume that metric 
thresholds should be followed by most source code entities, but 
that it is also natural to have a number of entities in the “long-tail” 
that do not follow the defined limits. They report a study of 
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  applying this method to the Qualitas Corpus with 106 systems. 
Based on the results, they argue that the proposed thresholds 
express a balance between real and idealized design practices. The 
authors also report the results of a study conducted to validate the 
method that extracts relative metric thresholds from benchmark 
data. They used this method to extract thresholds from a 
benchmark of 79 Pharo/Smalltalk software systems, which were 
validated with five experts and 25 developers. The results indicate 
that good quality software systems respect metric thresholds, 
while noncompliant ones are not largely viewed as requiring more 
effort to be maintained. 

Silva et. al. [14] conducted an industry multi-project study to 
evaluate the reusability of detection strategies in a critical domain. 
They assessed the degree of accurate reuse of anomalies detection 
strategies based on the judgment of domain specialists. The study 
revealed that even though the reuse of strategies in a specific 
domain should be encouraged, their accuracy is still limited when 
holistically applied to all the modules of a program. However, the 
accuracy and reuse were both significantly improved when the 
metrics, thresholds and logical operators were tailored to each 
recurring concern of the domain. 

8. THREATS TO VALIDITY 
The focus on this work was to obtain thresholds for metrics of 
classes contained in selected domains, in order to compare and 
verify the consistency of the resulting values. Throughout the 
process, some concerns with validity have emerged. The main 
concerns that threaten the validity of this work are presented and 
discussed below. 

Internal Validity. We identified the following threats to the 
construct validity: selected domains and key word search strings. 
We argue that the selected domains (accounting, e-commerce, 
health, and restaurant) are representative, given that they are well-
defined in terms of a diversity of recurrent requirements (e.g., user 
and product management). Therefore, we believe that differences 
in implementation might reflect in valid varying thresholds among 
systems of distinctive domains. Another threat is the reliance on 
the key word search string for selecting the initial set of systems. 
We cannot ensure that the GitHub search facilities return all 
relevant systems of each domains. However, we could observe 
that the search process was able to return systems that we consider 
as relevant to our research questions (high starred). 

Construction and Conclusion Validity. Threats to the validity 
also reside on how we have interpreted and implemented the 
software metrics. From the perspective of the application of the 
results, different interpretations of the software metrics represent a 
threat to the conclusion validity of the study. To avoid this 
problem, the tool-supported method [17] [19] to derive threshold 
was used to derive the thresholds. It makes the derivation process 
easy and repeatable. 

External Validity. The major risk here is related to the limitation 
on selected systems. First, it is not possible to ensure that they 
reflect the best samples of the recurrent practice. To reduce this 
risk, we proceed by selecting systems from GitHub based on the 
ranking of starred systems. As mentioned, in GitHub, stars are a 
meaningful measure for repository popularity, and they may 
support the selection of relevant and high-quality systems for 
study. We also excluded systems with less than 300 lines of code 
(LOC) because we considered them simple toy examples. Second, 
the sample size might be itself another threat to the validity of the 
study. We have selected forty systems from different domains. 

However, this decision allowed us to obtain more consistent 
results that could be interpreted in this specific context. 
Nevertheless, additional replications are necessary to determine if 
our findings can be generalized to other domains and systems. 

9. CONCLUSIONS AND FUTURE WORK 
This paper presented an empirical study to investigate the 
hypothesis that thresholds vary among systems of different 
domains, since these systems have different degrees of complexity 
and size. To perform this study, it was necessary to collect metrics 
of the systems contained in the domains, and using tools. 
Thresholds were calculated and then compared (Section 4 and 5). 

To evaluate our hypothesis, we relied on a benchmark composed 
by 40 object-oriented Java systems of four domains: accounting, 
e-commerce, health and restaurants. We applied a set of eight 
well-known metrics to each system, namely Lines of Code (LOC), 
Number of Attributes (NOA), Number of Methods (NOM), 
Weighted Method per Class (WMC), Lack of Cohesion in 
Methods (LCOM), McCabe Cyclomatic Complexity (McCabe), 
Depth of Inheritance Tree (DIT) and Number of Children (NOC). 
After aggregating metrics per domain, we derived thresholds for 
each metric by using a Vale’s Method and its supporting tool 
called TDTool. 

We finally compared the derived thresholds of each metric among 
the four domains. The results indicate that lower-bound thresholds 
(e.g., 15% smaller classes) usually do not significantly vary across 
domains. However, for all analyzed metrics, upper-bound 
thresholds (i.e., 90% and 95%) are visible different in some 
domains. In addition to obtaining the results, they were also used 
in a comparison with Qualitas Corpus and SPL-Benchmark. As a 
result, we observed that our derived thresholds seems to be more 
equalized to the reality of each domain (health, e-commerce, 
restaurant and account) than the general thresholds derived from 
the others two benchmarks. 

For future work, others could use the presented data to compare 
with data obtained for a number of systems per domain. 
Following this idea, it would be possible to increase the number of 
domains and verify the variation behavior of the values. In 
addition, future work may apply a varied group of techniques to 
validate the thresholds for smaller groups within the same domain 
and to compare with other domains of systems. These further 
replications would verify the representativeness and reliability of 
the calculated values. This study was carried out on systems 
collected from GitHub, so a case study could be elaborated to 
compare with thresholds obtained from systems collected from 
companies. In addition to the highlights, it would be possible to 
use other metrics to analyze and compare with other studies and to 
be able to verify the validity of the thresholds found in the 
industry context. 
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