
A Case Study on Legacy Information Systems Migration:

A Fault Tolerant Approach

Rafael de Paula Herrera1, Alan Salvany Felinto1

1Department of Computing – State University of Londrina (UEL)

Londrina, PR – Brazil

herrera.rp@gmail.com, alan@uel.br

Abstract. Legacy Information Systems play key-roles on organizations

development and growth. However, they can be considered as risky factor to

operations chain whether they do not meet the demanding or become acting as

single point of failures. In this work, we propose a migration model which is

able to handle systems that depend on Relational Databases and its changes

were driven through the use of a distributed middleware. We also pose how

this approach was successfully applied while migrating a Legacy Information

System to a Cloud Computing based infra-structure, adding fault-tolerance to

its architecture as a competitive advantage, enabling the related services to be

clustered and then horizontal scaled on demand. All major concerns on how

the whole solution and its aggregated tools were conceived are discussed in

high-level details, so them can be solely reproduced and integrated to another

systems in order to achieve the same goals or improve its level of quality

assurance.

Resumo. Sistemas de Informações Legados são peças-chave no

desenvolvimento e expansão das organizações. No entanto, podem ser

considerados fatores de risco para a cadeia operacional se não atenderem

a demanda ou se agirem como pontos singulares de falhas. Neste trabalho,

propomos um modelo de migrações capaz de lidar com sistemas que dependem

de Bancos de Dados Relacionais, tendo suas mudanças sido conduzidas por

meio da utilização de um middleware distribuı́do. Também mostramos como

esta abordagem foi aplicada com sucesso durante a migração de um Sistema

de Informações Legado para uma infra-estrutura baseada em Computação

nas Nuvens, adicionando tolerância à falhas como vantagem competitiva,

possibilitando que os serviços relacionados fossem clusterizados e então

escalados horizontalmente sob demanda. As principais preocupações sobre

como toda a solução e suas ferramentas agregadas foram concebidas são

discutidas com um detalhamento em alto-nı́vel, de modo que possam ser

individualmente reproduzidas e integradas em outros sistemas, visando atingir

os mesmos objetivos ou melhorar os nı́veis de garantia da qualidade.

1. Introduction

Information Systems play key-roles on sustainable evolution to practically every industrial

segment. Their continuous use represents Return of Investment (ROI) as one of the most

tactile results along productive chain [Vemuri 2008].

Trilhas Técnicas SBSI - 2014

90



Over the time, most of Information Systems (IS) tend to be classified as Legacy

Information Systems (LIS) due to several reasons, from obsolete Hardware and/or

Operating Systems in which they are running on, to social factors as lack of fully

understanding about its entire lifecycle or codebase, caused by documentation absence

or loss [Brodie and Stonebraker 1995, Bisbal et al. 1999].

In this work we propose a migration model that was developed and successfully

applied over production environment in a real time vehicle fleet monitoring LIS. Its

application stack ran in a hardware that was highly susceptible to failures and yet could

be smoothly moved to a Cloud Computing infrastructure without services disruption.

A conceived distributed middleware [Herrera and Felinto 2012] heavily

influenced the design of migration model presented here. We also pose its base

architecture details along qualitative results using a set of auxiliary components that was

developed in order to assist the systems integration with its Service Provider (SP).

In section 2, we present all related works that influenced us during the architecture

designing, which also increased our vision about the development of auxiliary solutions

that could allow a secure evolution of the present proposal, while applied to ASP in

production.

We introduced the overall environment in section 3, reporting in details the main

interdependence relationship found on services provider. Basically, blocks portrays how

different systems integrates themselves into a single high-level solution, which end-to-end

is taken in details in order to provide us a wider comprehension about the criticality on

changing the whole chain.

During the analysis of all systems which composes the solution, we rose up several

questions about critical points that could lead the application to fragility and failures. In

order to mitigate such behaviors in an improved infrastructure, there were reported the

singular points of failure we found, in section 4, being properly cleared.

With an identified opportunity of improvement and knowing the wish on moving

the solution from an obsolete infrastructure to another one which could be based on Cloud

Computing, we exposed in section 5 the details of developed and applied migration model.

We emphasize critical questions that motivated the designing of strategies and

auxiliary tools, so the process could be concluded without outages on services providing.

Finally, we approach on section 6 our ideas about future works, which we believe

to be the next potential contributions to distributed systems architecture area, that once

well understood in details, could be applied to innumerous LIS from several kinds.

2. Related Works

Maintaining a LIS requires concerns on data interchangeability between related systems,

so several approaches were described by [Bisbal et al. 1999]. Its main contribution to our

research was the properly discretization and analysis of migration strategies, exposing

qualitative up/downsides from each one of them. Inspired in a set of techniques and

best practices stated in, we developed a distributed middleware which main focus is to

take care of performance issues on LISes that strictly depends on relational databases,

providing a codebase foundation to its evolution [Herrera and Felinto 2012].

Trilhas Técnicas SBSI - 2014

91



Assuming that information systems evolution is directly related on how hard is

its decomposability [Brodie and Stonebraker 1995], a good migration strategy should be

focused on turning a big and monolithic solution into smaller pieces of software, which

could be easily managed, tested and atomically changed over the time, however the

qualitative features that determine such level of success on this approach are not explicit

and needs a specific study on the complexity carried by legacy solution [Sneed 1995].

In order to lead a data migration, there was developed a methodology concerned

on it and the need for parallel operation of the legacy and target systems during migration

was discussed in [Wu et al. 1997]. We advocate that a gradual migration model that

should retains both systems running until the whole process is done, as a secure and

reasonable choice. System evolution is covered as re-engineering and continuously

improvements by a stream of incremental changes [Warren and Ransom 2002].

There was developed a middleware framework that links a new Web-based user

interface with a wrapped Legacy Information System, as an incremental migration

strategy based on re-engineering of user interface [De Lucia et al. 2008].

Reusing existing concepts of old methods allowed us to re-engineering them

in new methods while some server regions was adapted for WAN data interchanging

through distributed middleware adoption [Brinkkemper 1996, Herrera and Felinto 2012].

In a similar approach, a resource access middleware was developed considering a 3-layer

architecture to wrap legacy scientific application to grid service [Lu et al. 2005].

There was presented a survey of key approaches to integrate and/or

transform legacy applications into services to participate in an enterprise-wide SOA

[Erradi et al. 2006]. Also, a two phases approach integrates legacy systems into Web

Services [Parsa and Ghods 2008] was developed nearby the period of a case study on

modernizing large scale systems to SOA was made publicly [Vemuri 2008].

A descriptive case study from the same industry segment as our work was fits in,

was presented and covers aspects on re-engineering and evolution when Service Oriented

Architecture (SOA) is adopted [Nasr et al. 2010]. Migrating application features to SOA

by black-box approach based on multi-agent system was presented [Fayçal et al. 2010]

and we developed auxiliary tools which essentially has the same influences.

A management decision model was presented for migration versus integration

applied to SOA, taking care of combined strategic factors and cost-benefit analysis for

key-decisions [Umar and Zordan 2009]. Architecture reconstruction to support system

modernization through identification and reuse of legacy components as services in a

SOA is shown along an industry case study [O’Brien et al. 2005].

Our testing workbench evolved in a sense that affected server was handled as a

blackbox, in order to ensure cohesion over architectural codebase changes. A similar

approach was used in [Zhang et al. 2008] while migrating another application class.

Testing on SOA is discussed by means of complexity they could eventually impose, as

its location is no longer tiered to a single organization domain [Lewis and Smith 2007,

Canfora et al. 2008].

Trilhas Técnicas SBSI - 2014

92



3. Overall Environment

The Service Provider domain was composed by dedicated hardware under a single

physical cell and hosted heterogeneous systems communicating themselves by means of

open and proprietary protocols.

Overall environment is show by Figure 1, where mobile devices send real time

telemetry and geolocation data collected by sensors, from A endpoint. Customer

Application Servers were located in apparted infrastructures, performing monitoring and

control jobs over the vehicle fleet, so we must consider B as a multi-endpoint.

Request / Response

UDP

Request / Response

FileSystem

Service Provider

A

Edge

Application

Server

Main

Application

Server

Relational

DataBase

Request / Response

TCP

B

~12.000

Mobile

Devices

~500

Customer

Application

Servers

Figure 1. Main structures and its joint points.

There was an in-house message exchanging system between ≈ 12, 000 devices

and Edge Application Server (EAS). At least one message per device is delivered within

a 90 seconds interval. Using Global System for Mobile Communications (GSM) or

General Packet Radio Service (GPRS) means over Transport Control Protocol (TCP) has

lead to eventual communication breakdowns, motivating the development of a protocol

featuring checksum control and ordered delivery, over User Datagram Protocol (UDP).

This strategy was an effective and lightweight approach when compared to previous one,

with a low rate of packet loss and communication failures (both bellow ≈ 0.05%).

The relationship between the EAS and a single device is shown by the Figure 2,

where each device has an internal bus, able to communicates with sensors and actuators

which is connected to. EAS retains a complete in-memory states mapping of sensors and

actuators and if it does not get changed, in about 10 minutes, it should be persisted into

Relational Database (RDB).

Based on the nature of interchanged messages between Mobile Devices, Service

Provider and Customer Application Servers (CAS), integration data is generated in plain

text files, which would be consumed later and, if needed, key-states of entire solution

could be modified into EAS reserved memory and then persisted to RDB.

The Main Application Server (MAS), consumes the available information through

a Shared File System (SFS), as shown in Figure 3, sending a bunch of pre-processed files

to CAS, which would be used later on building operational reports to its end customers.

All the communications between MAS and about 500 CAS was given by means of a plain

text protocol, authenticated, cryptographed and TCP based.

Trilhas Técnicas SBSI - 2014

93



Request / Response

Data (UDP)

Edge

Application

Server

Single

Device

Internal Bus

In-Memory

States

Sensors

and

Actuators

Relational

DataBase

1 x 1

Mapping

Service Provider

Periodically

Last State Sync

GSM / GPRS Network

Figure 2. Relationship between the Service Provider and a Single Device.

Relational

DataBase

Border

Application

Server

Shared

Filesystem

Main

Application

Server

Produces

Consumes

Local

Filesystem

Local

Filesystem

Reports

Log

Devices

Log

Transformation

Produces

Consumes

D1

D2

Figure 3. Relationship beteween EAS and MAS, both located at the Services

Provider infrastructure.

In order to get integrated to whole solution, each customer should maintain

an Application Server under its own infrastructure. It was charged on receiving and

aggregating all vehicle fleet data, which was previously designated as its responsibility.

The Figure 4 shows how this approach could lead us to an distributed data storage of

pre-processed informations, by distinct business centers, once the raw informations are

stored on Services Provider side, waiting for data recovery needs that could eventually be

requested by some customers, which are limited up to 3 years period.

We can classify all the communications as bi-directional, in other words, the end

customer can interact with its vehicle fleet, intermediated by these mechanisms, sending

commands that goes from requesting specific data and then reconfiguring specific devices,

Trilhas Técnicas SBSI - 2014

94



Request / Response

TCP

Customer

Application

Server

Request / Response

TCP

Main

Application

Server

Relational

DataBase

Pre

Processed

Data

Business

Reports

Data
Data

Extraction

Data

Transformation

Service Provider Single Customer Infra-Structure

Front-End

Client

Applications

Figure 4. Relationship between the Services Provider and a Single Customer
Infra-Structure.

to start actuators which are physically attached to the monitored vehicles. The SFS and

the RDB could be changed during this process, and therefore, the associated data flow is

variable according to the actions taken by its end users and received data from devices

that would be later being processed by BAS.

4. Singular Point of Failure

The main characteristics that lead us to develop a distributed middleware in the past

[Herrera and Felinto 2012], was the presence of a data-structure which is essential to

EAS working: an operations buffer that should be taken into RDB. Once the service,

by any reason, was abruptly broken, such buffer was lost and, consequently, the related

operations to missed SQL queries could cause data inconsistencies.

There were threads made for receiving and dealing with arrived data from both

ends of BAS, either from mobile devices or customers. We have found 2 failures at the

non-transactional employed flow which, together with the stateful nature of crucial data

being temporary stored in memory, could cause inconsistencies in durable-state of whole

solution in case outages being occurring within key-steps. The flow can be described by

the following main states:

1. The first state, Idle, means a waiting period before any checking could be done

over EAS received data. It can be configured and by default is set up to 100 ms.

2. Having the Idle period passed by, a Polling is done in order to catch new arrived

messages, despite where did they came from. If there are no messages received,

the buffer is empty and then the thread returns to Idle state.

3. If a message was received, it will be processed and then got its results written

into RDB. Whether the Acknowledge (ACK) is unnecessary, then the messaging

process is finished and the thread returns to Idle state.

4. If a received message needs ACK after its results were written into RDB, then a

message is sent with a list of actions made over some request and the messaging

process is finished, so the thread returns to Idle state.

Trilhas Técnicas SBSI - 2014

95



5. In case of failures within the system fragility period, an inconsistency will be

generated in the whole durable-state. This occurrence demands maintenances and

could be sporadically found, ever with outages due abruptly crashes.

It is possible to abstract the described flow of messages handling, as shown by

Figure 5. Basically, when an end point does not receives the right acknowledge of some

written data, a singular point of failure is reached. So on, a set of discrepancies might be

found on virtual data mapping, which corresponds to real world states at several levels of

the whole solution, depending solely on the criticality of the lost data and what system

modules such consistent data affects.

Idle
Rx

Polling

Database

Writing

Data

Processing

Buffer is Empty

Done

Tx

Send

ACK

Check for

Incoming

Inconsistency

Crash

Crash

Done

Figure 5. States Machine illustrating an inconsistency upon EAS outages.

Suppose that devices reconfiguration were received by EAS, it would be

forwarded through the network to devices, after a properly handling. Once the targets have

stated that they properly received and applied the configurations, their related statuses

should be persisted to RDB. If, from this time, an outage occurs, the non-transactional

nature of the process at both ends, would certainly lead us to an inconsistency.

5. Developed Migration Model

Aiming uninterrupted service providing, we conceived a migration strategy able to turn

the Service Provider current architecture into a fault tolerant one. In order to overcome

problems such as Hardware provisioning and solution continuous evolving, we used

an environment that is solely based on Cloud Computing technologies, understood as

Infrastructure as a Service (IaaS) and provided by Amazon Web ServicesTM(AWS).

In order to accomplish such goal with cohesion and security, a smooth migration

was planned over the monitored devices. Consequently, the end users base were also

gradually migrated. The chosen devices groups, for each migration step, were taken

according to complexity level of operations. Each numbered migration step is related

to Mobile Devices features and is ordered from less to most critical ones:

1. Only provides geolocation queries.

2. Receives remote reconfigurations on its periodic reports.

3. Retains behavioral changes on its actuators, by remotes reconfigurations.

4. Generates real time critical alerts such as vehicles violations or requested helps.

The Figure 6 relates the percentage of devices and customers that were affected in

each migration step. All devices and end users base were migrated from an environment

Trilhas Técnicas SBSI - 2014

96



which was susceptible to failures and ran over obsolete Hardware, to another one that is

fully elastic and fault tolerant. However, the fault tolerance itself, could not be achieved

only with the full stack of applications being moved to such environment, but it was

needed that this Software could be deployed to multiple instances and being able to finish

some operations that were running into another machine which suffered from outage.

1 2 3 4

Devices and Costumers Affected by Migration Stage

Migration Stages

A
ff
e

c
te

d
 (

%
)

0
1

0
2

0
3

0
4

0
5

0

Devices

Customers

7.95 8.31

39.48

16.55

32.86

27.21

19.71

47.93

Figure 6. Impact of each migration step on devices and customers.

In order to build the idealized migration model and reach the fault tolerance, it

was developed a middleware (Herrera and Felinto 2012) that was able to intermediate

the communication process with RDB, storing all the stateful data from EAS into an

in-memory grid. It enabled that multiple instances of the same daemon being able to

continue running operations from another instances that for any reason were abruptly

interrupted.

An overall solution overview, counting on proposed improvements, is portrayed

by the Figure 7, where the distributed architecture is shown, while still be able to

interchange data with legacy infrastructure. The main idea consists on allowing all the

migration steps could occur such way that the services providing would not be shutdown.

The Cloud infrastructure received a modified version of BAS, where it is possible

to do a linkage between multiple instances of the same kind, so eventual crashes would

not lead to unavailability. While the migrations were occurring, the responsibility over

devices was transferred from the 1st RDB to 2nd RDB, once all devices should be

reporting all informations with Cloud infrastructure as its main reference.

During the migrations steps, there were several updates made on EAS codebase.

To ensure that no feature gets broken, there were developed two simulators, able to

reproduce the behavior of end customers and mobile devices in everyday operations. The

Figure 8 shows the simulated environment working, where EAS is handled as a blackbox

Trilhas Técnicas SBSI - 2014

97



1st

Relational

DataBase

Request / Response

TCP

Service Provider Primary Infrastructure

2nd

Relational

DataBase

Service Provider Cloud Infrastructure

WAN

Request / Response

TCP

Request / Response

UDP

Request / Response

UDP

Distributed

Data

Structures

A B

Request / Response

FileSystem

Request / Response

FileSystem

~12.000

Mobile

Devices

~500

Customer

Application

Servers

Distributed Middleware

Main

Application

Server

Edge

Application

Server

Edge

Application

Server

Main

Application

Server

Figure 7. The improved environment, communicating with LIS over the WAN and
making use of distributed middleware.

that is able to communicates with both customers and devices simulator. The requests set

was chosen such that they fully cover the messages variety, which can occur in production.

Edge

Aplication

Server

Protocol Tester

Fake Customer

Preset of

Requests

Preset of

Responses

Request

Choosen

Expected

Response

Requesting

Responsing

Obtained Response

R

R*

Protocol Tester

Fake Device

R’

Requesting

Responsing

Black

Box

Figure 8. Devices and Customers simulation, handling EAS as a blackbox. The
received responses set should match to the expected responses in order the

codebase changes be accepted.

Each chosen request R, owns an expected R∗ response, previously selected as

a mean of acceptance. Once the protocol tester has selected any R message, then it is

being fired against the blackboxed server, generating a response R′ that is received and

Trilhas Técnicas SBSI - 2014

98



compared with its related expected response R∗.

If both R′ and R∗ are equals, it means that the developed feature does not affects

negatively the server behavior and then, we can accept that codebase changes. However,

whether the the comparison lead us to different results, the proposed changes must me

rejected and an accurate analysis of R′ could provide us traces on what is wrong with

the evaluated implementation. Once these improvements were aggregated to the protocol

testing process, we could ensure that all known behaviors would be retained while new

features could be continuously added with security.

Since we developed a distributed solution with several daemons, we needed to

ensure the tests process during the architectural changes conceiving could be agile. Thus,

we developed a set of scripts that are able to setup a test environment with the applications

full stack deployed into and ready to use. The main characteristics found in this script set

which turned it into a reliable tool during codebase changing are:

• Ordered Startup and Shutdown: By means of configuration, we could set

precedence between daemons, once there are productors and consumers in entire

solution. Special parameters passing were allowed for bootstraping, such as

activation of remotely monitoring on internal application states.

• Multiple hosts operations: Daemons can be activated and deactivated properly in

different nodes along the network, according to test nature.

• Real-time log watching: Failures could be found by daemon alerts within log files,

so when some miss behavior is detected upon previously stated patterns, we could

setup stop conditions or else we can monitor for some expected behavior, in order

to signal that whole operations are fully cohese and then could be continued.

• Ensure the full stack is properly running: It imposes the condition that no daemon

could be solely ran. So, all the data flow is ensured and no end-point will fail

to communicates with another ones due secondary reasons, as not being properly

started.

6. Future Works

During the development of this work, we could state some points we believe to deserve

more in depth attention. Thus, according to our past experiences it lead us to list them as

potential contributions on the legacy and distributed systems fields of knowledge.

Considering the solution evolved in the sense of being able to operate with

multiple instances of the fullstack, simultaneously, we suggest a measurement on how

horizontal the solution could be scaled. We expect such rate reveal us to what extend the

load applied over the solution could be relieved, simply by starting clone instances, so

they can co-operate while doing load balancing themselves.

The auxiliary simulators that were developed, especially to migration process,

could be extended to become generic enough, allowing its complete customization for

another LIS testing purposes. This way, in the future they can be known as open tools

for testing and protocols validation, enabling a wider range of blackbox tests on general

purposes servers.

The set of scripts that handles startup and shutdown over the daemons, are found in

a flexibility level enough such as it can be used in heterogeneous applications of several

Trilhas Técnicas SBSI - 2014

99



kinds and, therefore, maybe it could be widely used by Platform as a Service, Cloud

Computing based industry, because it allows the management of different services located

in apparted hosts, building in a completely distributed way the requested setup.

7. Conclusion

The importance of this Case Study, was primarily concerned on addressing how a viable

transition to a modern infrastructure could be made smoothly, while providing means for

secure evolving of the whole solution, with its behavior fully validated on each iteration

of migration steps, where brand new features could be developed and integrated to main

codebase of the project.

The imposed fragility over the full operations chain, was essentially related to

the stateful nature of critical data, that were in-memory stored. This phenomenon

was successfully overcame after the aggregation of distributed middleware, which uses

distributed data structures that resembles queues to handle the operations demand that

made changes on RDB and memory states.

Conceptually, such data structures describe a query buffer such that they are fully

compatible themselves, eliminating problems on storing batch operations into the memory

from a single server, affecting them end-to-end in a non-transactional flow. Thus, even

there are running operations, it could be immediately resumed by any EAS active instance,

no matter what reason lead other service nodes to outages.

To ensure that EAS behavior has not been changed during the development and

migration process, protocols testers were made featuring output validation by means of

known and expected responses, attached to both ends of servers, which were able to be

handled as different blackboxes on each planned migration step, securing that the solution

could evolve without services disruption neither inclusion of bugs on its codebase.

References

Bisbal, J., Lawless, D., Wu, B., and Grimson, J. (1999). Legacy information systems:

issues and directions. IEEE Software, 16(5):103 –111.

Brinkkemper, S. (1996). Method engineering: Engineering of information

systems development methods and tools. Information and Software Technology,

38(4):275–280.

Brodie, M. and Stonebraker, M. (1995). Migrating legacy systems: gateways, interfaces

& the incremental approach. Morgan Kaufmann series in data management systems.

Morgan Kaufmann Publishers.

Canfora, G., Fasolino, A. R., Frattolillo, G., and Tramontana, P. (2008). A wrapping

approach for migrating legacy system interactive functionalities to service oriented

architectures. Journal of Systems and Software, 81(4):463 – 480. Selected papers from

the 10th Conference on Software Maintenance and Reengineering (CSMR 2006).

De Lucia, A., Francese, R., Scanniello, G., and Tortora, G. (2008). Developing legacy

system migration methods and tools for technology transfer. Softw. Pract. Exper.,

38(13):1333–1364.

Trilhas Técnicas SBSI - 2014

100



Erradi, A., Anand, S., and Kulkarni, N. (2006). Evaluation of strategies for integrating

legacy applications as services in a service oriented architecture. IEEE International

Conference on Services Computing, pages 257–260.

Fayçal, H., Habiba, D., and Hakima, M. (2010). Integrating legacy systems in a soa using

an agent based approach for information system agility. International Conference on

Machine and Web Intelligence (ICMWI), pages 338 –343.

Herrera, R. and Felinto, A. (2012). A distributed, multi-staged, high-throughput

middleware for relational databases. IIX Simpósio Brasileiro de Sistemas de

Informação (SBSI).

Lewis, G. and Smith, D. B. (2007). Developing realistic approaches for the migration of

legacy components to service-oriented architecture environments. 2nd International

Conference on Trends in Enterprise Application Architecture, pages 226–240.

Lu, F., Huang, H., Xu, Z., and Yu, H. (2005). A middleware for legacy application

wrapper. First International Conference on Semantics, Knowledge and Grid, pages

47–.

Nasr, K. A., Gross, H.-G., and van Deursen, A. (2010). Adopting and evaluating service

oriented architecture in industry. 14th European Conference on Software Maintenance

and Reengineering, pages 11–20.

O’Brien, L., Smith, D., and Lewis, G. (2005). Supporting migration to services using

software architecture reconstruction. 13th IEEE International Workshop on Software

Technology and Engineering Practice, pages 81–91.

Parsa, S. and Ghods, L. (2008). A new approach to wrap legacy programs into web

services. 11th International Conference on Computer and Information Technology

(ICCIT), pages 442 –447.

Sneed, H. M. (1995). Planning the reengineering of legacy systems. IEEE Softw.,

12(1):24–34.

Umar, A. and Zordan, A. (2009). Reengineering for service oriented architectures:

A strategic decision model for integration versus migration. J. Syst. Softw.,

82(3):448–462.

Vemuri, P. (2008). Modernizing a legacy system to soa - feature analysis approach. IEEE

Region 10 Conference (TENCON), pages 1 –6.

Warren, I. and Ransom, J. (2002). Renaissance: a method to support software system

evolution. 26th Annual International Computer Software and Applications Conference

(COMPSAC), pages 415 – 420.

Wu, B., Lawless, D., Bisbal, J., Grimson, J., Wade, V., O’Sullivan, D., and Richardson, R.

(1997). Legacy systems migration-a method and its tool-kit framework. Asia Pacific

Software Engineering Conference and International Computer Science Conference

(APSEC / ICSC), pages 312 –320.

Zhang, B., Bao, L., Zhou, R., Hu, S., and Chen, P. (2008). A black-box strategy to

migrate gui-based legacy systems to web services. IEEE International Symposium on

Service-Oriented System Engineering, pages 25–31.

Trilhas Técnicas SBSI - 2014

101


