

Searching for Refactoring Opportunities to apply the

Strategy Pattern

Guinther de B. Pauli1, Eduardo K. Piveta1

1
 Programa de Pós Graduação em Informática

Universidade Federal de Santa Maria - Santa Maria, RS - Brazil

piveta@inf.ufsm.br, guintherpauli@gmail.com

Abstract. It is difficult to maintain and to adapt poorly written code presenting

shortcomings in its structure. Refactoring techniques are used to improve the

code and the structure of applications, making them better and easier to

modify. Design patterns are reusable solutions used in similar problems in

object-oriented systems, so there is no need to recreate the solutions. Applying

design patterns in the context of refactoring in a corrective way becomes a

desired activity in the life cycle of a specific software system. However, in

large-scale projects, the manual examination of artefacts to find problems and

opportunities to apply a design pattern is a hard task. In this context, we

present a metric-based heuristic function to detect where the Strategy design

pattern can be applied in a given project. To evaluate the heuristic function

and its results we have also built a tool to show the results. This tool can

examine source code using ASTs (Abstract Syntax Trees), searching for

opportunities to apply the Strategy pattern, indicating the exact location in the

source code where the pattern is suggested, also showing some evidences used

in the detection.

1. Introduction

Software systems evolve and are constantly modified over time usually because of
requirements changes, bug fixes, performance improvements and migration to new
platforms. Software should be designed to be flexible, scalable, and easy to maintain. To
deal with these factors, design patterns [1] can be used to improve the quality of a
software system in order to make it easier to modify over time.

 A problem related to the use of design patterns is that the system designer must
have a deep knowledge to determine which pattern can be applied to solve a specific
problem. Based on this, there is a lack of tools that enable the application of patterns by a
semi-automatic approach, even if the developer makes the final decision about applying
or not the pattern. The use of patterns without this kind of support is a hard task that can
introduce code errors and unnecessary complexity.

 Refactoring [2, 3, 4] is the process of improving the design of software systems
without changing its external observable behavior. Refactoring can improve the quality
attributes [5, 6] of a software system by the application of transformations that preserve
its behavior.

 An important method to improve the quality of a software system is the use of
refactoring to apply design patterns to obtain benefits, such as code reuse, low coupling
between classes, promote best practices in object-oriented development, ease of
maintenance, and evolution of the software system. It also allows the addition of new

Trilhas Técnicas SBSI - 2014

357

features in a simple way without introducing bugs. Based on these factors, searching the
source code for refactoring opportunities aiming the application of design patterns is a
relevant practice, because there is a gain in developer productivity if this process is
supported by semi-automatic tools.

 Therefore, we propose an approach to detect refactoring opportunities applied to
the Strategy pattern [1], and use metrics and a heuristic function to search and find them.
We also have implemented a tool called AROS (Automatic Refactoring Opportunity
Search) [23] to evaluate and discuss the results. The main contributions of this paper are:
(i) a refined and formal definition for the “Switch Statements” [3] bad smell, indicate
precisely which sentences have switch problems with conditional complexity that can be
refactored, (ii) a heuristic function capable to detect if a switch statement can be
refactored by the application of the Strategy pattern, reduce the cyclomatic complexity
[26] of the source and improve its maintenance index [27].

 The remainder of this paper is organized as follows. Section 2.1 discusses about
the search for refactoring opportunities. Section 2.2 presents the Strategy design pattern,
while Section 2.3 describes how the Replace Conditional Logic with Strategy [18]
refactoring can minimize problems related to conditional complexity by the application
of polymorphism. Section 3 presents our approach and how we search source code to
find opportunities to apply the Strategy pattern. Section 4 presents the evaluation and the
results. Section 5 presents related works. Finally, Section 6 presents conclusions and
future works.

2. Background

2.1. Refactoring Opportunities

A refactoring opportunity can be described as a potential improvement in a given source
code in relation to a quality attribute, or a specific location where a refactoring can be
applied [4]. Discover where the appropriate location is on the source code and which
refactoring to apply in a software system is not a simple task, and it relies on the
developer experience. Thus, the use of refactoring as a simple approach has stimulated
efforts to develop semi-automatic approaches [7, 8, 9, 10, 11, 12, 13, 14, 15] to detect
design flaws. The correct application of appropriate refactorings in a given context
enhances the project quality without changing its behavior. However, the identification
of inconsistences on source code is not a simple task, such as methods, methods
fragments, and attributes that should be moved to other classes.

 A motivation to improve the design of a software system is to locate
shortcomings in source code and refactor as a possible solution. Bad smells [3] describe
problems and a list of related refactorings that can help to improve the code. Refactoring
focuses primarily in the treatment of these problems, but the implementation of
improvements depends on the developer skills, who performs software maintenances.
Bad smells are a set of design problems and refactoring is a solution, but it is not in
accordance with a structure of a design pattern. Finding bad smells involve inspecting all
the source code, which may become impractical for medium and large-scale systems. In
this scenario, semi-automatic support to detect shortcomings is essential.

 Using some of these techniques, Refactoring Browser [16] was one of the first
tools to provide semi-automatic support to apply refactorings. Nowadays most
development environments provide some support for refactoring, although such tools
reduce the effort involved in the refactoring process.

Trilhas Técnicas SBSI - 2014

358

 Some semi-automatic approaches [7, 11] try to suggest improvements using
metrics to identify places that a refactoring may be necessary, so developers are
responsible for determining precisely what changes should be made. The refactoring
searching opportunities applied in design patterns brings an interesting technique to be
used in life cycle of object-oriented software systems.

2.2. The Strategy Design Pattern

The Strategy design pattern [1] defines a family of algorithms, encapsulate each of them
and make them interchangeable. Strategy lets the algorithm vary independently from
client classes that use it. This pattern can be applied when many classes have similar
purposes and differ only in their behavior (implementation). Strategy can be used when it
is necessary to encapsulate a solution to a problem which client classes should not be
aware of.

 This pattern brings some benefits, such as the elimination of conditional
statements to select desired behavior (algorithm) to solve a specific problem. Using
inheritance and abstraction, Strategy encapsulates these behaviors into subclasses and
uses polymorphism to replace the static conditional, opening the architecture for easy
inclusion of new strategies to solve the same problem.

 Figure 1 shows the structure of the Strategy pattern. It defines an abstract
superclass called Strategy with an algorithm interface, generally an abstract or virtual
method. Descendent classes can inherit this strategy base class to provide a specific
implementation to the algorithm interface and it is known as concrete strategies. Client
classes use a special class called Context that uses delegation to invoke the polymorphic
method through the strategy interface.

Figure 1. The Strategy design pattern [1], adapted from [18]

 2.3. Replace Conditional Logic with Strategy

The Replace Conditional Logic with Strategy [18] refactoring intends to apply the
Strategy design pattern to remove a conditional test that decides the choice of a particular
algorithm. Its application consists in encapsulating each one of the algorithms within a
family of classes, called strategies, and each class represents a variation of the algorithm.
The client class, which previously had a direct connection with the algorithm, should use
a context class that receives a concrete implementation of a strategy, so we can eliminate
conditional logic using polymorphism.

 Sometimes, conditional expressions make the code complex, especially if several
conditional tests are nested. The use of refactoring in this scenario brings many
advantages, such as the ease to modify a source code at runtime, since the client class is

Trilhas Técnicas SBSI - 2014

359

linked to an abstraction. In addition, it makes the source code clearer because static
conditionals are not used, and the choice is made dynamically through polymorphism.

 Figure 2 shows the Replace Conditional Logic with Strategy refactoring. At the
top of Figure 2 we can see a class named Loan, which has specific logic to calculate loan
amounts according to various conditions tested in a switch block. Each code related to a
case statement on the switch could be transformed in a method within a class (strategy).
By this way, the client class can communicate with any strategy transparently using an
abstraction, as we can see at the middle of Figure 2. Programming to an interface or
abstraction is one of the main foundations of object-oriented programming, and it is clear
at the center of Figure 2, where the Strategy pattern is applied.

Figure 2. The Replace Conditional Logic with Strategy [18] refactoring, adapted

from [18]

3. Searching for Opportunities to apply the Strategy Pattern

This section describes our approach to automatically detect the “Switch Statements” bad
smell [3] using a set of metrics. We have considered the template framework proposed
by Munro [7]. This template helps to give a more precise definition of a bad smell,
compared to the informal descriptions from the original author [3]. The characteristics of
the bad smells are used to define a set of measurements and interpretation rules for a
subset of bad smells.

 The motivation to use the Strategy pattern is due to the fact that it simplifies
conditional statements, such as if and switch / cases. This kind of source code generates
more costs and effort in the maintenance process. Using polymorphism and
“Programming to an Interface/Abstraction” [1], the Strategy pattern is able to eliminate
redundant tests and conditional complexity. Another motivation is that we have found
many approaches that search for refactoring opportunities [7, 8, 9, 10, 11, 12, 13, 14, 15],
however, few of them present a design pattern as a final result of the source code
transformation. This is one of the main contributions of our approach compared to the
existing ones. Most approaches are focused on searching and applying primitives
refactoring, such as Move Method, Move Attribute and Extract Class [3] and are not
focused on the application of design patterns.

Trilhas Técnicas SBSI - 2014

360

 The main problem is that the definition of the Switch Statement bad smell is
informal, and only intended to guide a developer to manually locate them within a
software system. We say informal because this definition does not provides an exact
criterion, using well-defined metrics, to indicate what really is not adequate. Switch
statements are considered a bad smell by the original authors, but not all switches need to
be eliminated and some criteria should be used to locate the bad ones.

 This informality does not have sufficient information to allow semi-automatic
identification using a tool. Switch statements can be considered as a problem because it
is not specified exactly how many tests are necessary, and the exact size of the code
block that could characterize the need for refactoring. On the other hand, some switch
statements are quite simple and does not require refactoring. It is needed a precise
definition about the problem related to the conditional statements bad smell, so we can
describe more precisely the Switch Statements bad smell as follows, using Munro’s
framework:

 Bad smell name: Switch Statements - This kind of construction tends to
duplicate code, and similar statements may be distributed throughout a program. When a
clause is added or removed in a switch block, it is necessary to change other parts of the
source code.

 Characteristics: One of the most common fields about complexity in a program
lies in conditional logic, because it tends to grow and becomes more sophisticated over
time. Many changes are necessary if a new conditional test is needed on the statement
and this code is already used in other places. When we have to test these conditional
statements using unit tests [17], it is necessary to include some logic to each conditional
sentence, which can be a problem to analyze the code test coverage.

 Design heuristic: A switch statement may contain source code to evaluate type
codes, such as enumerations. These type codes should be overridden by subclasses of an
abstract base class, and their respective codes fragments should be encapsulated in
methods in descendant subclasses, invoked through polymorphic calls.

 Measurement process: The problem lies in the interpretation whether a switch
statement is really complex. It is done based on the number of conditional tests, and
analyzing if the same sentences can be extracted to polymorphic methods in subclasses.
It is necessary because some sentences may have simple logic and it is not necessary to
apply the Strategy pattern. We have done it by counting the number of lines involved in
the switch block and it helps to improve the measurement process. If the switch block
uses a type code such as an enumeration, it indicates that a specialized class is necessary.
The number of conditional tests in the switch block can also justify the application of
Strategy pattern.

 Interpretation:

1: public bool isStrategyOpportunity(
2: int numberOfCases,
3: int sizeOfSwitch,
4: bool isTypeCode)
5: {
6: return (numberOfCases > cNumberOfCases) &&
7: (sizeOfSwitch > cSizeOfSwitch) &&
8: (isTypeCode);
9: }

 In this function, numberOfCases (line 2) represents the number of cases found in
a switch statement, sizeOfSwitch (line 3) represents the total size in lines of code (LOC)
of the parsed switch statement block and isTypeCode (line 4) indicates if the switch uses

Trilhas Técnicas SBSI - 2014

361

an enumeration type in its definition. In order to find opportunities to apply the pattern,
the function compares the size of a switch block and the number of tests using constants
defined by the developer, called cNumberOfCases and cSizeOfSwitch (lines 6 and 7).
The function also searches for type codes (line 8) and the evaluation is also based on
them. This comparison is necessary to identity if a switch block is considered a real bad
smell or a simple conditional statement that not necessarily need to be refactored. Using
this approach, developers can define different values for these variables allowing the
decision of which are the best opportunities to refactor.

 The proposed approach was implemented by developing a C# tool we called
AROS, which identifies the Switch Statements bad smell and whether it can be
eliminated by applying the Replace Conditional Logic with Strategy refactoring. The tool
uses an open source library called NRefactory [19], which includes support for code
manipulation through ASTs.

 AROS does not need integration with an IDE and it can run as a “stand alone”
application and it is possible to analyze any C# project from the root directory. The tool
reads and processes each file on the project, processing its AST. When a node is
identified in the tree that has a switch statement, the tool provides an interpretation (YES
or NO) to the conditional statement and indicates if the application of a Strategy pattern
would be a good solution. After the detection of a switch block, an analysis is done, and
each child node is evaluated, including case expressions. The number of lines (size) is
evaluated computing the cases statements. These values are compared with predefined
variables in code, which can be changed dynamically to obtain more accurate results.
The algorithm evaluates if the tests are made on type codes, as enumerations, which is a
strong indicator that a subclass should override this primitive type. The code in each case
is evaluated to determine whether the set of all tests and results justify the opportunity to
apply a Strategy. Thus, the code in each “type code” test could be considered as a
polymorphic method in subclasses of an abstraction, eliminating conditional logic.

 Figure 3 shows a snapshot of the tool user interface. The main screen allows the
developer to open a project or a single class file. After this process, the ASTs are created,
which is graphically presented to the user to allow the navigation on the source code.
When a node is selected, its associated code is also selected, in order to help the
developer to analyze the source code. If the tool accuses an interpretation YES to the
assessment, it indicates where the file / class has a bad smell, and which lines are with
the switch statement that can be eliminated by applying the Strategy pattern.

Figure 3. AROS: a tool to search for opportunities to apply the Strategy design

pattern

Trilhas Técnicas SBSI - 2014

362

4. Evaluation

This section presents a case study to evaluate our approach. The experiment was
conducted using an open source software system used in unit tests called NUnit [22]
framework (version 2.6.2, with 27k lines of code).

 It is impractical to show all the results due to the large volume of classes
involved in the experiment, so we present only the most relevant results. Table 1
indicates the interpretation result, that indicates if the heuristic function evaluated a
switch statement as a possible opportunity to apply the pattern. Furthermore, we present
two metrics that help the cyclomatic complexity (CC) measure and maintenance index
(MI) of each class. In the CC metric, lower values are better while in the MI index,
higher values are better. The results of the evaluation are calculated based on the
numberOfCases and sizeOfSwitch constants. In this experiment, the values 2 and 10 were
considered, respectively.

 Table 2 presents the main classes evaluated by the tool. A true-positive indicates
the evaluation rule show the presence of a switch statement and a real opportunity to
apply the Strategy pattern, according the prior defined heuristic rule. A true-negative
indicates a switch was evaluated but it was decided not to apply Strategy to solve the bad
small. A false-positive indicates the approach failed to identify a possible application of
Strategy pattern, which indicates the criteria should be improved. A false-negative
indicates the approach suggests a “No” interpretation incorrectly, also needing
improvement.

 Table 1 also shows the final results of the evaluation and a number included in
each cell to indicate how the results can be interpreted after a manual inspection of
source code. The tool found 69 switch statements, and our approach indicated 13
possible candidates to apply the Strategy pattern. The accuracy of our approach criteria
was 78.26% after manual inspection of the source code. It is possible to see a high index
of True-Negative (46), which indicates a switch statement with bad smell but not capable
of applying a Strategy. As an example, it makes no sense to create dozen of classes to
eliminate a switch statement that presents few lines of code in each test.

Table 1. Possible interpretations and results

Interpretation Yes No

True True-Positive (8) True-Negative (46)

False False-Positive (15) False-Negative (0)

 In most cases where the interpretation indicates YES, we applied the Replace

Conditional Logic with Strategy refactoring on the source code indicated by the tool.
After running the unit tests provided by NUnit, we have a certain degree of confidence
that the external observable behavior was not affected and all tests had been successfully
executed.

 Furthermore, we could observe that after applying the refactoring, the cyclomatic
complexity index of the classes had considerably reduced its value, which show our
approach accurately identified places in the code that had complex conditional logic.
Consequently, the index of maintenance for each class had their value increased, which
also indicates that our approach has helped improve the way software systems can be

Trilhas Técnicas SBSI - 2014

363

evolved, eliminating unnecessary conditional statements that can be replaced by the
Strategy pattern.

 We conclude that several code snippets use a type code apply conditional logic
on these types excessively, which would be more appropriate the addition of a specific
class for each tested type, and each test can then be moved to a polymorphic method in
concrete classes by applying the Strategy pattern. Finally, we conclude that some switch
statements has many conditional tests but it contain small blocks of code associated to
them, such as a single method call, or on the other hand, the logical structure is very
simple to be replaced by the Strategy pattern. In these cases, creating a class for each test
would generate unnecessarily complex architectures, which are difficult to maintain.

 For example, examining the process to evaluate the first class shown in Table 2
using our approach, the ProviderReference class, according indicated by the tool, has a
bad smell with an opportunity to apply the Strategy pattern between the lines 71 and 92,
as seen in Listing 1 (original code from NUnit). This class has the value 17 for the
cyclomatic complexity (CC) and 67 for the maintenance index (MI). After applying the
Replace Conditional Logic with Strategy refactoring in the location indicated by the tool,
the CC was reduced to 11, while the MI was increased to 73, which indicates that the
tool has successfully detected the opportunity to apply the pattern, reducing the
maintenance cost and complexity. Listing 2 shows the refactored code (summarized) for
this example. Basically, each case used in the switch statement of Listing 1 was
transformed in a concrete strategy class. Similarly, the MI index for the EventCollector
class (the second class in Table 1) was increased from 69 to 73, while the CC was
reduced from 37 to 28. Listing 3 shows an example of a correct NO interpretation
(PlatformHelper, third class of Table 2), a set of small tests that not represents a real
opportunity to apply the strategy pattern.

Table 2. Main evaluation results for NUnit

Class Lines LOC Tests CC MI Interpretation

NUnit.Core.Builders.ProviderR
eference

71-92 26 3 17 67 YES

NUnit.ConsoleRunner.EventCo
llector

79-121 42 3 37 69 YES

NUnit.Core.PlatformHelper 135-217 82 23 53 59 NO

NUnit.Framework.Constraints.
MsgUtils

74-119 45 13 43 59 NO

Listing 1. Switch Statement bad smell in NUnit, a real opportunity to apply a Strategy

67: private object GetProviderObjectFromMember(MemberInfo member)
68: {
69: object providerObject = null;

70: object instance = null;
71: switch (member.MemberType)

72: {
73: case MemberTypes.Property:
74: PropertyInfo providerProperty = member as PropertyInfo;

75: MethodInfo getMethod = providerProperty.GetGetMethod(true);
76: if (!getMethod.IsStatic)

77: instance = Reflect.Construct(providerType, providerArgs);
78: providerObject = providerProperty.GetValue(instance, null);
79: break;

80: case MemberTypes.Method:

Trilhas Técnicas SBSI - 2014

364

81: MethodInfo providerMethod = member as MethodInfo;
82: if (!providerMethod.IsStatic)
83: instance = Reflect.Construct(providerType, providerArgs)

84: providerObject = providerMethod.Invoke(instance, null);
85: break;

86: case MemberTypes.Field:
87: FieldInfo providerField = member as FieldInfo;
88: if (!providerField.IsStatic)

89: instance = Reflect.Construct(providerType, providerArgs);
90: providerObject = providerField.GetValue(instance);

91: break;
92: }
93: return providerObject;

94: }

Listing 2. Code after applying the Replace Conditional Logic with Strategy refactoring

private object GetProviderObjectFromMember(MemberInfo member)

{
 object providerObject = null;
 object instance = null;

 var ctx = new Context(Factory.GetInstance(member.MemberType));
 ctx.AlgorithmInterface(member, ref providerObject, ref instance);

 return providerObject;
}
...

public class Context // context implementation according Strategy Pattern
...

public abstract class Strategy
{
 public abstract void AlgorithmInterface(

 MemberInfo member, ref object providerObject, ref object instance);
}

public class StrategyField : Strategy
{
 public override void AlgorithmInterface(…)

 {
 // here is the code of lines 87-90 of Listing 1

 }
}
public class StrategyMethod : Strategy

{
 public override void AlgorithmInterface(…)

 {
 // here is the code of lines 81-84 of Listing 1
 }

}
public class StrategyProperty : Strategy

{
 public override void AlgorithmInterface(…)
 {

 // here is the code of lines 74-78 of Listing 1
 }

}

Listing 3. Switch Statement bad smell in NUnit, but not a real opportunity to a Strategy

switch (platformName.ToUpper())
{

 case "WIN32":
 isSupported = os.IsWindows;

 break;
 case "WIN32S":
 isSupported = os.IsWin32S;

 break;
 case "WIN32WINDOWS":

 isSupported = os.IsWin32Windows;
 break;

Trilhas Técnicas SBSI - 2014

365

 // more 20 similar small tests

5. Related Work

There are many researches and efforts [7, 8, 9, 10, 11, 12, 13, 14, 15] to optimize the
semi-automatic search for refactoring opportunities. An important research was done by
Mens and Tourwe [4], they present an extensive overview of existing research in the
field of software refactoring.

 Tsantalis and Chatzigeorgiou [8] propose a method to identify opportunities to
the application of the Move Method [3] refactoring; aiming to minimize the Feature
Envy bad smell [3]. It is based on algorithm that applies the distance between entities,
such as attributes, methods, and classes. Simon et al. [11] define a metric that measures
the cohesion between the attributes and methods based on its distance. The main goal is
to identify methods that use characteristics from other classes in the system. The results
of the calculated distances are displayed in a three-dimensional perspective, which helps
the developer to manually identify refactoring opportunities, such as Move Attribute,
Move Method, Extract Class and Inline Class [3].

 El-Sharqwi et al. [20] propose an approach to refactor a software model using
design patterns. The authors suggest a XML structure that contains a flawed design,
transformation rules (refactorings), and a structure model that consists of application
patterns. Similarly, Kim [21] presents an approach to refactor software models using
patterns to improve the quality using three components: a problem, a transformation and
a solution. Balazinska et al. [9] propose a method to refactor object-oriented software
systems through the identification of clones in source code as duplicated. Mens and
Tourwe [10] show how automated support can be used to identify refactoring
opportunities to detect bad smells [3], like an obsolete parameter or an inappropriate
interface, but they do not clearly indicate which design pattern could be applied.

 Seng et al. [12] propose a method based on surveys which can be helpful in
assisting a software engineer to improve the structure of a software system. It is done by
suggesting a list of refactoring using evolutionary algorithms that simulates refactoring.
Their work can help in the task of defining refactoring for improving the structure of the
class in object-oriented systems. It also detects the “God Class” bad smell [3]. Tekin and
Erdemir [13] approach is based on graph mining used to detect similar structures in
object-oriented systems, which can provide useful information about the project, such as
design patterns commonly used, frequent design defects, and clones.

 Piveta [14] provides a detailed process for refactoring, including mechanism for
the selection and creation of quality models, the selection of refactoring patterns, and the
creation and use of heuristic rules, the search for refactoring opportunities and
prioritization, the assessment of the effects of refactoring on software quality, and the
trade-off analysis and the application of refactoring patterns. Our approach extends that
research in order to identify refactoring opportunities to apply the Strategy design
pattern.

 O'Keeffe and Cinneide present two works [24, 25] related to search-based
refactoring. The authors propose a semi-automatic refactoring opportunities search, such
as Make Superclass Abstract, and Replace Inheritance with Delegation [3].

 Based on the observation of the existing reviews, we have found that all papers
define approaches to detect some opportunity to apply some primitive refactorings, like
Move Method or Extract Class [3], but not a refactoring to a given design pattern, as
Replace Conditional Logic with Strategy [18]. For example, if some found opportunities

Trilhas Técnicas SBSI - 2014

366

were combined, this could indicate the application of a design pattern, like Adapter,
Decorator, Template Method or Strategy [1]. If a method is moved to a class, this being
an abstract base class, and this method can be overridden in descendant classes to define
different behaviors for the same result, a Strategy pattern could be suggested as final
result of the refactoring. Furthermore, many works propose to increase software quality
based on the application of some design patterns in source code, but they not provide an
automatic tool to support the search. Based on this, we extend these approaches to i)
propose an automatic tool to support the efforts to locate where a refactoring can be
applied, ii) suggest a refactoring to a pattern (Strategy) instead of a primitive refactoring
(like Move Method), iii) evaluate medium and large-scale projects instead of small
projects.

6. Conclusion and Future Work

Our approach shows how to identify opportunities to apply the Strategy design pattern,
because the exhaustive use of conditional statements makes software system complex to
maintain and evolve. As future work, we plan to extend the approach and the
implementation of the tool, to search for opportunities to apply other important and
useful patterns, including Adapter, State, and Template Method [1]. We are studying the
possibility to analyze different versions of the same source code, in order to detect the
increasing complexity of switch statements along the evolution of the software system.

7. References

[1] Gamma, E., Helm, R., Johnson, R., Vlissides, J., “Design Patterns: Elements of
Reusable Object-Oriented Software”, Addison Wesley, 1995.

[2] Opdyke, W.F., “Refactoring: A Program Restructuring Aid in Designing Object-
Oriented Application Frameworks”, PhD thesis, Univ. of Illinois at Urbana-
Champaign, 1992.

[3] Fowler, M., “Refactoring: Improving the Design of Existing Programs”, Addison-
Wesley, 1999.

[4] Mens, T., Tourwé, T., “A survey of software refactoring”. IEEE Trans. Softw. Eng.,
30(2):126–139, Feb. 2004.

[5] ISO. Iso/iec 9126-1:2001 - product quality - part 1: Quality model. Technical report,
Intl. Org. for Standardization, 2001.

[6] Boehm, B., In, H., “Identifying quality-requirement conflicts”, Software, IEEE,
vol.13, no.2, pp.25,35, Mar 1996.

[7] Munro, M.J., “Product Metrics for Automatic Identification of "Bad Smell" Design
Problems in Java Source-Code”, Software Metrics, 2005. 11th IEEE International
Symposium, vol., no., pp.15,15, 19-22 Sept. 2005.

[8] Tsantalis, N., Chatzigeorgiou, A., “Identification of Move Method Refactoring
Opportunities”, Software Engineering, IEEE Transactions on, vol.35, no.3,
pp.347,367, May-June 2009.

[9] Balazinska, M., Merlo, E., Dagenais, M., Lague, B., Kontogiannis, K., “Advanced
clone-analysis to support object-oriented system refactoring”, Reverse Engineering,
2000. Proceedings. Seventh Working Conference on , vol., no., pp.98,107, 2000.

Trilhas Técnicas SBSI - 2014

367

[10] Tourwé, T., Mens, T. “Identifying Refactoring Opportunities Using Logic Meta
Programming”, Seventh European Conference on Software Maintenance and
Reengineering Proceedings, March 2003.

[11] Simon, F., Steinbruckner, F., Lewerentz, C., “Metrics based refactoring”, Software
Maintenance and Reengineering, 2001. Fifth European Conference on, vol., no.,
pp.30,38, 2001.

[12] Seng, O., Stammel, J., Burkhart, D., “Search-based determination of refactorings
for improving the class structure of object-oriented systems”, Proceedings of the 8th
annual conference on Genetic and evolutionary computation (pp. 1909-1916). ACM,
2006.

[13] Tekin, U., Erdemir, U., Buzluca, F., “Mining object-oriented design models for
detecting identical design structures”, Software Clones (IWSC), 2012 6th
International Workshop on , vol., no., pp.43,49, 4-4 June 2012.

[14] Piveta, E. K., “Improving the search for refactoring opportunities on object-
oriented and aspect-oriented software”, PhD thesis, Universidade Federal do Rio
Grande do Sul, 2009.

[15] Bavota, G., De Lucia, A., Oliveto, R., “Identifying Extract Class refactoring
opportunities using structural and semantic cohesion measures”, Journal of Systems
and Software, Volume 84, Issue 3, March 2011, Pages 397-414, ISSN 0164-1212,
10.1016/j.jss.2010.11.918.

[16] Robert’s Refactoring Browser (Roberts, 1999).

[17] Beck, K., “Test Driven Development: By Example”, Addison-Wesley, 2002.

[18] Kerievsky, J., “Refactoring to Patterns”, Addison-Wesley, 2008.

[19] NRefactory. https://github.com/icsharpcode/NRefactory.

[20] El-Sharqwi, M., Mahdi, H., El-Madah, I., “Pattern-based model
refactoring”, Computer Engineering and Systems (ICCES), 2010 International
Conference on, vol., no., pp.301,306, Nov. 30 2010-Dec. 2010.

[21] Kim, D. “Software Quality Improvement via Pattern-Based Model
Refactoring”, High Assurance Systems Engineering Symposium, 2008. HASE 2008.
11th IEEE , vol., no., pp.293,302, 3-5 Dec. 2008.

[22] NUnit. http://www.nunit.org/

[23] AROS. http://www.sourceforge.net/projects/aros2dp

[24] O'Keeffe, M., Cinnéide, M. Ó., “Search-based refactoring: an empirical study”, J.
Softw. Maint. Evol.: Res. Pract., 20: 345–364. 2008.

[25] O'Keeffe, M., Cinnéide, M. Ó., “Search-based refactoring for software
maintenance”, Journal of Systems and Software, Volume 81, Issue 4, Pages 502–
516. 2008.

[26] McCabe, T.J., “A Complexity Measure”, Software Engineering, IEEE Transactions
on , vol.SE-2, no.4, pp.308,320, Dec. 1976.

[27] ISO/IEC 9126 – Software and System Engineering – Product quality – Part 1:
Quality model. 1999-2002.

Trilhas Técnicas SBSI - 2014

368

