
A Method for Service Agile Construction

Felipe Carvalho1,3, Leonardo Guerreiro Azevedo2,3, Gleison Santos3

1Petrobras – Petróleo Brasileiro S/A – Brazil

2IBM Research – Brazil

3Graduate Program in Informatics (PPGI)

Federal University of the State of Rio de Janeiro (UNIRIO)

Rio de Janeiro – Brazil

felipe.carvalho,gleison.santos@uniriotec.br,lga@br.ibm.com

Abstract. Service-Oriented Architecture (SOA) and agile methods share com-

mon drivers. However, there is a lack of guidelines a SOA team should pursue

in order to develop services considering best practices, acceptance tests, dis-

tributed teams, contract refactoring, among other issues related to SOA prin-

ciples and agile practices. This work presents a new method that addresses

team concerns and needs aiming at a systematic approach for service develop-

ment using XP’s agile practices and SOA principles. We provide best practices,

phases and activities that specifically address XP’s core practices and service-

oriented best practices. We also provide an example of our proposal in order to

demonstrate its applicability.

1. Introduction

SOA (Service-Oriented Architecture) has emerged as a concept that fosters busi-

ness agility, responsiveness to changes, reuse of corporate assets, cooperation

among stakeholders ([Josuttis 2007], [Erl 2008], [Lankhorst and Janssen 2012] and

[Gu and Lago 2007]). In parallel, in late 1990’s, many lightweight methods were pro-

posed to overcome problems in software development due to documentation driven de-

velopment and heavyweight processes. In 2001, the Agile Manifesto was published em-

phasizing collaboration, responsiveness to changes, business understanding, simplicity

and agility in software development [Beck et al. 2001]. Nevertheless, despite the com-

mon concerns that guide both service-orientation and agility, there is no consensus on

how to make use of agile methods in combination with service-oriented development

[Carvalho and Azevedo 2013].

Service-Oriented Architecture is an approach for software construction by the

composition of loosely coupled services, which capabilities are exposed to consumers

via their interfaces [Marks and Bell 2006]. Once a service is made available, modifica-

tions on its interface may impact several consumers. Hence, software changes requires

a careful design. Nevertheless, predicting reuse is not an easy task in any application

context; it is even harder when crossing enterprise boundary [Fowler 2008]. Therefore,

the service-oriented principle of designing an interface for maximum reuse and flexibility

does not follow the evolutionary design principle, which is the base of agile methods.

We conducted a systematic mapping study searching for a method that proposes

a combination of SOA and Agile methods. The results demonstrated that most authors

Trilhas Técnicas SBSI - 2014

566



provide insights/guidelines on SOA concepts and agile practices combination. There is a

lack of details on using agile practices for incrementally building service-oriented solu-

tions. This work evolves and systematize in a method the proposed guidelines and best

practices for service construction in a SOA environment using XP presented in a previous

work [Carvalho and Azevedo 2013].

This work proposes a new method for service development. It aims to fill in the

open gaps and offer an approach that is closer to XP practices and concepts, enabling the

construction of service-oriented solutions in an agile way. This is a critical phase for prod-

uct quality and customer satisfaction, since, ”working software is the primary measure of

progress” [Beck et al. 2001]. Valuable working software delivered in a continuous, flexi-

ble and adaptive manner allows customer to keep competitive advantage.

The remainder of this work is organized as follows. Section 2 presents an analysis

of the related works. Section 3 presents our proposal. Section 4 presents and an exemplary

implementation. Finally, Section 4 presents a discussion of the main characteristics of a

XP and SOA method and an exemplary use of our proposal. Finally, Section 5 presents

the conclusion and proposals of future work.

2. Related work

This section presents the systematic mapping study conducted in this work, an analysis of

the main related work and the gaps found in the literature.

2.1. Systematic mapping study

We conducted a systematic mapping study in order to assess the existence of meth-

ods that address XP and SOA combination in a proper level of detail. Be-

sides, we also aimed at confirming that combining SOA and agile is still an open

gap. The research protocol was based on [Kitchenham and Charters 2007], and a

complete version of it is available at http://www.uniriotec.br/˜azevedo/

SystematicMappingStudyProtocol.pdf.

In summary, the following string (in a search tool independent syntax) was used

to search for articles that addressed SOA development via XP practices: ((soa or service

oriented) AND (xp or ”extreme programming”)). The search was executed on the follow-

ing search engines: Scopus, Compendex, ACM Digital Library, DBLP Complete Search,

IEEExplore. Proceedings of conferences that address service development and/or agile

methods were analysed, such as: SBSI, ICEIS, AMCIS, CAiSE, ICIS, ECIS, SOSE, SB-

CARS, ESELAW and XP Conference. After protocol tests and adjustments, 154 articles

came up to be analysed. The abstract of 119 were not in consonance to our research fo-

cus, while 4 others were not available for download. So, we analysed the proposals of the

remaining 31 works. We found that the articles often do not define phases, roles, respon-

sibilities, deliverables etc. Most of them provide insights, general guidelines or mappings

between XP and SOA concepts, but without a focus on a concrete method. Most authors

have not either focused on service construction phase. Only one paper has provided best

practices on that phase. The next section presents the most relevant articles.

2.2. Relevant works

The most relevant works are described as follows:

Trilhas Técnicas SBSI - 2014

567



[Karsten and Cannizzo 2007]: focus on distributed communication to keeping a

fluid communication, such as, presential events where the team establishes work rela-

tionships, share know-how, identify shared dependencies and restrictions, and reshuffle

among other teams. The goal is to maintain intra team communications and keep members

challenged. Besides they emphasize the use of automated acceptance tests to demonstrate

story delivery and as a source of documentation for integration purposes.

[Lee et al. 2006]: contribute with best practices related to service construction.

They specify that service development projects should be concerned, for example, with

the right level of service granularity, interoperability, interaction mode to fit SOA princi-

ples and address functional & non-functional standpoints.

[Lee et al. 2005]: describe a method for web services development, composed by

phases, roles, activities and deliverables, which goes deeper and proposes an extension to

the original method [Tan et al. 2005] to fit XP principles and practices. They do not intro-

duce any new concept, but rather translates those into phases that map to XP’s phases, e.g.,

Requirement and Analysis phases are joined into the Planning phase, while Deployment

phase is renamed to Releases.

[Krogdahl et al. 2005]: suggest ideas to enable Lean [Poppendieck 2003] princi-

ples in service development. For instance, they propose the usage of an enterprise wide

backlog globally prioritized. They also propose open service interface, quickly deployed

to production via a working pilot. When other applications start to reuse services, both the

interface and internal logic can be constantly refactored and refined to fit business actual

needs. They also advise frequent meetings with team representatives for synchronizing

knowledge and shared impediments.

[Ivanyukovich et al. 2005]: depict the impacts incurred by XP practices on ser-

vice development. For example, Planning Game can be used to allow the team to see the

services backlog as a set of features to be developed. Refactoring can be used for service

continuous redesign and improvement. Test-driven development would lead to automatic

coordination of dependencies among services, thus enabling complex and reliable orches-

tration of those services at runtime.

[Maranzato et al. 2012]: presents a framework developed for improving commu-

nication among all stakeholders involved in the development of a product. The product

was divided by features addressed by different teams and customers. All teams shared

a ”mega backlog”, where items were denominated ”themes”, which granularity was fit

to allow customers to maintain a vision of the whole product. Every three months, the

”mega backlog” was revisited to ensure an up-to-date product view and to make it eas-

ier to agree on business priorities. Besides this event, several other regular meeting took

place including people in distinct roles aiming to maintain communication flow.

Table 1 presents the characteristics addressed by relevant works. The symbols

indicate the extent each characteristic was addressed: (-) the characteristic was cited,

but no examples or guidelines have been provided; (+) some examples were provided to

follow the characteristic; (++) the characteristic was addressed in a good level of details.

Those works were considered in the phase definitions of our proposal (Section 3). The

last column of the table relates characteristics to gaps presented in the next section.

Trilhas Técnicas SBSI - 2014

568



Table 1. Characteristics addressed by authors

Characteristic Reference Level of Gaps

Detail

C1. Frequency of iterations [Maranzato et al. 2012] + G1

C2. Acceptance tests [Tan et al. 2005] - G2

[Karsten and Cannizzo 2007] +

C3. TDD [Tan et al. 2005] - G3

[Ivanyukovich et al. 2005] -

C4. Refactoring [Karsten and Cannizzo 2007] + G4

[Ivanyukovich et al. 2005] -

C5. Service construction principles [Lee et al. 2006] ++ G5

and best practices for distributed

and co-localized teams

2.3. Gaps in the literature

We identified the following gaps from the most relevant works presented in Section 2.2.

G1. Iterations: Most authors provide ideas about how to use XP practices for

service development, but they do not discuss how iterations fit in a service development

model, although XP is an iterative and incremental method [Wake 2002]. The XP life-

cycle is divided into 5 iterative phases [Beck and Andres 2004]. The WSIM-XP method

[Tan et al. 2005] includes phases, activities, roles and deliverables. However, it does not

define where iterations take place, or how iterative is each phase.

G2. Acceptance tests: None of the authors discusses in depth the usage of ac-

ceptance tests (also known as ”functional tests”). These tests are written by the customer

aiming at assessing software adherence to business. A given feature cannot be considered

as ”done” until it fits all acceptance tests ([Beck and Andres 2004] and [Wake 2002]).

The tester is responsible for helping the customer in writing the acceptance criteria, but

those are not actually translated into automated tests, or used in any phase or activity

[Tan et al. 2005].

G3. Unit tests: Despite the importance of unit tests being written before pro-

duction code [Beck and Andres 2004], none of the authors mentions the usage of tests

during services development, neither do they discuss best practices or issues inherent to

test-driven development of services. Unit tests should be written before production code,

method by method, with several purposes (e.g., define the expected behavior of new code,

clarify the behavior of existing code, among others) [Beck and Andres 2004].

G4. Refactoring: Refactoring is also not handled in detail by the related

works, despite being a routine practice in a XP project ([Beck and Andres 2004] and

[Wake 2002]). It aims at improving design and fostering reuse, based on the support

provided by unit tests. A service interface is a corporate asset. Reuse of corporate as-

sets is a major driver for SOA and Web Services [Josuttis 2007]. Being refactoring such

an ordinary and primordial activity in a XP lifecycle, one could expect services refactor-

ing issues to be discussed by authors; more specifically, the issues inherent to interfaces

refactoring, due to the complexity of impacting multiple customers and business partners.

Trilhas Técnicas SBSI - 2014

569



G5. Service construction best practices: Most authors do no mention to is-

sues or differences inherent to service development, although there are several dif-

ferences between service oriented software engineering and ”traditional” software en-

gineering [Gu and Lago 2009]. The exceptions are [Karsten and Cannizzo 2007] and

[Lee et al. 2006] works, which address service construction at some level of detail from

both team communication and product robustness standpoints. However, service con-

struction phase was often not the focus of the related works. Many authors provide in-

sights, mapping of concepts, indications of possible ways to combine SOA and XP, but a

few have referred to construction best practices.

3. A SOA-XP method

Considering the SOA and XP concepts, the following main characteristics should be ad-

dressed by methods that combine both approaches: (i) it should define how frequent are

each activity, since XP is an iterative and incremental method ([Beck and Andres 2004]

and [Wake 2002]); (ii) it should address the usage of Acceptance Tests as the starting point

of any coding activity [Beck and Andres 2004]; (iii) it should not address testing and cod-

ing activities separately; instead, tests should be written prior to execution code, being

automated and incorporated to a test suite in order to provide feedback on the product

quality and readiness at any time [Beck and Andres 2004]; (iv) it should address refactor-

ing - a core XP practice [Beck and Andres 2004] - especially, contract refactoring, which

is not a trivial activity given the impact on multiple customers once a service is made

available [Gu and Lago 2007]; (v) it should address service-oriented principles and best

practices [Erl 2008], providing examples that make easy for teams, either distributed or

co-localized, to execute service construction.

The focus of our work is specifically on activities that comprise the construction

phase, and not on an entire service development lifecycle. We propose six activities to

be performed during the construction phase of a service development lifecycle (Figure 1).

These activities are further detailed as follows. The four phases show on Figure 1 are an

example of a four-phase service development lifecycle where our proposal could fit.

Figure 1. Our proposal of a construction phase

The input for the construction phase is the iteration backlog (a prioritized list of

features to be constructed during the iteration) and the acceptance criteria (a set of crite-

ria written by the customer or its representative that indicate when a feature is adherent

to business needs). The output resulting from the construction phase are the services

deployed and running in a neutral environment, where the iteration product can be used

and validated by the customer. The next sections detail each activity, using the following

Trilhas Técnicas SBSI - 2014

570



notation: i denotes the artifacts that serve as input to the activity, o denotes outputs and f

indicates activity’s frequency.

1) Run Iteration Planning Meeting (i: prioritized features / services, acceptance

criteria (text), o: iteration backlog, f: once per iteration):

The construction phase starts with the Iteration Planning meeting where Customer

or its representative present the prioritized services to the team. Services should be docu-

mented using story cards [Patel and Ramachandran 2008] with information about its busi-

ness purpose and the expected behavior. When presenting the story, the customer also de-

fines how to measure the service adherence to business through acceptance criteria. The

story card may define both functional and non-functional information. A story will be

considered as finished or delivered when all of its acceptance criteria are met.

2) Encode Acceptance Tests (i: prioritized features (services), o: acceptance tests

(executable code), f: once per feature): Tests should automatically and periodically run in

a neutral continuous integration environment [Beck and Andres 2004]. Acceptance tests

should be periodically executed along with the entire test suite to provide feedback to all

stakeholders about the services adherence to business needs at any given time. Thus, the

acceptance criteria, which are primarily written in a textual manner, need to be translated

into executable code [Karsten and Cannizzo 2007]. There are several tools that allow

features to be specified textually and automatically translated into executable tests, e.g.:

JBehave (http://jbehave.org), Cucumber (http://cukes.info).

3) Identify Reusable Services (optional) (i: reusable services documentation, o:

documentation of identified reusable services, f: once per feature):

Reuse of corporate assets is a major driver in SOA [Erl 2008]. Hence, the method

must have an activity related to identifying existing services that can be reused, so the

solution being worked on can built on a pre-existing piece of software that solves the

business need, either completely or partially. Besides the programmer, the customer is

another stakeholder of this activity.There may be cases where his/her organization re-

quires a given set of services to be used (e.g., services that handle security according to

business legal demands). Customer provide information about those services.

Besides, software design emerges as the simplest response to the acceptance tests

[Beck and Andres 2004] - upfront design specifications do not apply. Therefore, the arti-

facts involved in this activity would be documentation about the reusable Web Services,

instead of a software design specification for the entire product.

4) Code Service Driven by Tests (i: acceptance tests (executable code), o: services

deployed and running in a neutral environment for system tests, f: once per feature):

Coding and testing activities should be performed together, in an incremental and

iterative way ([Beck 2001] and [Wake 2002]). Therefore, instead of focusing solely on

production code, this phase is made of both coding and testing activities, at both unit and

integration levels, comprising several steps as follows.

The first step is to execute the tests with no production code

[Beck and Andres 2004]. The very first execution of such tests usually fails. Then,

iteratively, design and implement the simplest code that makes the test pass, while keep-

ing other tests still running (XP’s practice of ”Simple Design” [Beck and Andres 2004]),

Trilhas Técnicas SBSI - 2014

571



until the implementation fills the requirement. When possible, simplify the design (XP’s

practice of ”Refactoring”).

In a first moment, just the service endpoint is created. Nevertheless, usually this

is not the only layer to be built. The feature internal design is created incrementally,

throughout the strive to make the acceptance tests to pass, following the same steps

[Beck and Andres 2004]: (i) create an unit test; (ii) design and implement the simplest

code that makes the test pass, while keeping other tests still running; (iii) repeat previous

steps; (iv) if possible, simplify the design;

All code is written based on acceptance criteria, which derive integration tests,

which derive unit tests, which derive production code. During the construction phase,

programmers often refer to customers (On-site Customer) to provide guidance and clari-

fications on the expected behavior of the service or of a given layer [Abrahamsson 2003].

Such steps must be followed for functional and non-functional requirements. Ac-

ceptance criteria may also include non-functional requirements, especially if those pro-

vide a competitive advantage for the organization [Patel and Ramachandran 2008]. XP

teams measure progress by the feature’s code adherence to acceptance tests [Wake 2002].

As an example, if an airline company is exposing ticketing services to be used

by cheap flights searchers (e.g., Fare Compare), fast responses become very important

to the business; therefore, it should be included as an acceptance criteria. A separate

set of integration tests becomes necessary to ensure that response time is kept below an

upper threshold above which business is harmed. Ensuring adequate functional response

from third-party services may be a challenge, especially on scenarios where such services

respond differently to the same request depending on given variables. For instance, a

stock quoting service provided by a business partner is expected to respond differently

to a request for a given company quoting along the day. Hence, a test would have to be

relaxed from the functional standpoint to consider as valid not a response with an exact

value, but a response that is well-formed and with a non-negative number.

Another example related to third-party services is billing. For example, on the

stock quoting example, if each request is charged for a given price, and the suite of in-

tegration tests requests stocks several times a day, these integration tests may quickly

become expensive, from a financial standpoint. A solution would be to put those inte-

gration tests in a separate suite running in a lower frequency, periodically ensuring the

service is adherent to specifications. A service composition testing may go under the

same problems, as each service integrating the composition may have different behaviors.

To overcome this issue, a test-enabled ESB (Enterprise Service Bus - [Josuttis 2007]) can

be used [Ribarov et al. 2007]. In this case, it is possible to ”hook” mock services re-

placing given parts of the composition to provide a more predictable response from the

composition’s entry point.

5) Run System Tests (optional) (i: acceptance tests, o: defects information, f:

once per feature):

The overall system functionality must be assessed considering all components run-

ning together. Non-automated acceptance tests must be performed in order to evaluate if

all requirements are covered by the solution, when all conditions cannot be automatically

tested. This activity focuses on acceptance tests and defects are artifacts to be addressed.

Trilhas Técnicas SBSI - 2014

572



In the stock quoting service example, responses may vary along the day and re-

quire human intervention for validation. There may also be cases where a service should

respond to a request by providing a file attached to the response message. In a case where

the acceptance criteria refers to the contents of such attached file, human intervention may

be necessary, due to lack of tooling support for automatically validating is contents.

6) Run Iteration Demonstration Meeting (i: executing services, o: customer

sign-off, list of changes or adjustments to be made to the delivered product, f: once per

iteration):

Upon the end of the iteration, the features are presented to the customer in the

Iteration Demonstration meeting. The team presents the features running and meeting

the acceptance criteria, and the customer is responsible for signing off the feature. When

customer realizes the delivered service does not exactly match what he/she had in mind

or a business change demands the service to work differently, he/she is responsible for

clarifying the desired behavior, prioritizing it over the other features and scheduling its

inclusion in another iteration’s scope.

It is important to emphasize that the iteration length in weeks is an agreement be-

tween Customer and Team, e.g., 1-3 weeks [Beck and Andres 2004] or 4-weeks iterations

[Maranzato et al. 2012] that fits stakeholders’ schedules. There is not really a rule about

iterations length, although authors agree that all iterations should have the same length

for the team to be able to assess its velocity.

4. Discussions and example

We have previously identified five characteristics that a SOA and XP method should ad-

dress for service construction (Table 1). Considering those items, we consider C4 and C5

to be the most critical, for the other items involve concerns mostly inherent to a single

team, whereas these two often impact multiple parallel teams and/or customers, possibly

bringing losses to business. They are discussed in the following sections. Besides, an

example of the method use is presented.

4.1. Best practice: Distributed teams

SOA teams are often geographically dispersed and end up facing communication prob-

lems. This is a fundamental difference from XP, which recommends face-to-face commu-

nication to address this exact problem. Therefore, it is not possible to use a XP practice

to handle such situation. Authors suggest different approaches to bridge this gap.

Loosely coupled interfaces can be used to minimize dependencies among dis-

tributed teams [Karsten and Cannizzo 2007]. They propose the use of a common integra-

tion area for the updated service upon a change in its interface. This area is used by other

teams to update their references to the updated service. Besides, we emphasize the impor-

tance of using contract-first development [Erl 2008]. If distinct teams depend on a given

contract yet to be defined, we recommend the contract definition to receive a high priority

during the construction phase, so that teams can start working independently as soon as

possible, without harming any team’s speed. Nevertheless, a service full up-front analysis

may prove itself non-viable or useless, given its characteristics are likely to change with

time ([Erl 2008] and [Fowler 2008]). Instead, we recommend a minimal effort spent on

the contract definition, with the purpose of defining the very least teams need to work

Trilhas Técnicas SBSI - 2014

573



in parallel, leaving contract details open for as long as possible [Krogdahl et al. 2005].

Notice that assigning top priority to the contract definition is not contrary to spending

minimal effort on this activity. We recommend a minimal definition of the contract to be

done early, in order to allow teams to progress independently.

Developers should be divided into small teams, either collocated or dis-

tributed. As to improve communication among teams, as recommended by

[Karsten and Cannizzo 2007], local teams should be reshuffled at each planning session,

as a way for people to get to know other parts of the system, and also to keep teams

challenged and motivated. Communication can also be addressed by using Web-based

technologies such as Wiki, Portal, forum and issue tracker. These serves both for teams to

establish internal communication, as well as documenting information important to cus-

tomers. Additionally, RSS can also be used to let people know about changes. When

dealing with distributed teams, it is important to have some sort of high-level regular

communication among teams.

4.2. Best practice: Contract refactoring

At the end of iteration, customer expects to see the feature passing acceptance tests

[Wake 2002]. Therefore, acceptance criteria derive the whole implementation of the fea-

ture. In fact, it is possible to say that acceptance criteria derive the business purpose being

pursuit on a specific feature. They represent the business needs on a specific matter. Ac-

ceptance criteria derive the service’s contract, which is one part of the simplest solution

(XP’s Simple Design) that passes the acceptance tests. Therefore, the contract reflects the

business needs on a specific matter. On the other hand, how to deal with contracts in a

XP approach to service-oriented development is an important issue to be addressed. The

general perception is that XP’s orientation towards continuous refactoring would drive

a service-oriented initiative to a scenario of constant overhead and rework of distributed

teams, due to constant contract refactoring.

Nonetheless, there is not a conclusive answer towards the contract’s behavior in

either agile or non-agile approaches. In fact, as stated before, a contract reflects an orga-

nization’s needs over a specific feature at a given time. Therefore, all service construction

work is done to meet business needs at that time, regardless of method (waterfall, RUP, ag-

ile). So, if organization’s needs changes, there’s no way to avoid a contract being changed,

regardless of the employed development method. In such case, there are several strategies

documented in literature to address impact on consumers [Karsten and Cannizzo 2007].

In regards of XP usage of Refactoring, it is important to improve code quality and

design without modifying its external behavior [Beck and Andres 2004]. So, there is no

evidence indicating that contract refactoring in a XP approach would take place more or

less often than in a non-agile scenario. Contracts reflect business needs, and, when they

change, it is inevitable to expect modifications on contracts and impact on consumers.

There is a fundamental difference, though, from the flexibility standpoint. SOA

generally dictates contract design towards reuse, as to reduce time-to-market. On the

other hand, XP aims at the current iteration needs, while taking also into consideration

flexibility needs that are known, concrete and unlikely to change [Beck and Andres 2004].

Unknown or unclear flexibility is disregarded [Poppendieck 2003].

Trilhas Técnicas SBSI - 2014

574



4.3. Example project using our method

We developed a sample web services project (available at https://github.com/

felipecao/xsoa-example) to exemplify and perform an analysis of our proposal.

The example is based on the following scenario. A fictitious company called

”SmartBrick” has developed a solution to assess productivity on building sites. It is based

on a web service that sends data to a PDA (Personal Digital Assistant) based on user roles:

administrator users are able to download data from all sites; non-administrator users are

only allowed to see information regarding sites they have been assigned to. The project’s

home page presents the acceptance criteria for ”sites download” feature.

We use the terms ”feature” and ”service” interchangeably

[Ivanyukovich et al. 2005]. Following our proposal, the acceptance criteria are the

starting point for the service construction. So, as far as Run Iteration Planning Meeting

goes, all artifacts are available. In our example, ”sites download” is the top priority

(fitting ”prioritized features”), and its acceptance criteria are available.

The next step is to run Encode Acceptance Tests and translate those criteria into

acceptance tests. This step starts breaking the acceptance criteria into textual acceptance

tests. There are several ways to write acceptance tests. We have used the GIVEN-WHEN-

THEN syntax, which is supported by Cucumber, a BDD tool we chose for this example.

Once the acceptance tests are ready, we transpose them in the project, into .feature files,

which are used by Cucumber generate executable code. An example of .feature file and

executable code are available at http://goo.gl/VPGFYg and http://goo.gl/

bsols9, respectively. Notice that Cucumber annotations are responsible for matching

each line from acceptance tests to test methods. Cucumber also binds the parameter values

defined in each acceptance test (written between ””) to actual Java types in test methods.

The third phase is to Identify Reusable Services. Nevertheless, this example con-

siders a scenario where there is not a pre-existing service to be reused, thus, this phase is

not executed. Notice that our proposal does not state all phases are mandatory; instead,

we consider that some phases may be skipped, according to the situation at hand.

The next activity is to Code Service Driven by Tests. Following our proposal,

after acceptance tests development, unit tests should be created for each part being built.

An example unit test is available at http://goo.gl/KMaJmI. These tests should be

built prior to writing service code. When test is ready: run the test; let it fail; write the

simplest code that passes the test; check if it succeed; and, then, refactor. Other unit tests,

created for other layers, are available within the project. Integration tests have also been

created (http://goo.gl/6446nP).

The Run System Tests are not illustrated, since it requires human intervention to

explore the feature in areas where automation is not possible.

For the final step, Run Iteration Demonstration Meeting, the features need to be

deployed and available for demonstration to the user or customer. This demonstration

is usually based on the acceptance criteria and/or acceptance tests, as to demonstrate the

product fits the expectations the customer has previously registered on the same criteria.

Cucumber reports can also be used to make customer confident that acceptance criteria

are being ensured at all times.

Trilhas Técnicas SBSI - 2014

575



This example helped to indicate the applicability of the proposal. Although the

example was not conduct by a real team, the acquired knowledge allowed the method

evolution towards its adequacy for usage in real scenarios. For example, when compared

to an execution of the method proposed by [Tan et al. 2005], our proposal indicated the

existence of fewer defects during user tests. We also had front-end developers working

on the development of an application to present data coming from the services on the

PDA, in parallel to service developers. This parallel working indicated the importance of

an early minimal contract definition to allow teams to progress. The execution of both

methods (ours and [Tan et al. 2005]) was done by having the same team implementing

the example system described in the beginning of this section and strictly following the

instructions outlined by each step of each proposal.

5. Conclusion

Service orientation and agile methods are important paradigms for system development

with similar concerns. Despite this similarity in fundamental concepts, there is no con-

sensus on how to use agile methods in service-oriented system development.

We have presented how authors face the combination of agile concepts to service

oriented solutions, and the protocol of a mapping study from which was possible to con-

clude that most authors do not provide a method that defines enough details to be followed

by a team. This work proposes a method for the construction of service-oriented solutions,

with phases, activities and artifacts, addressed in an iterative-incremental manner.

We have also presented a sample project that illustrates the use of our proposal.

Our proposal ensures meeting of customer’s acceptance criteria through an automated

test suite running regularly. In the case of non-functional requirements, if a source code

modification drives to a violation of a given threshold, the test suite fails and feedback

is immediate. Given the results of our systematic mapping study, it is possible to notice

that such concerns are not address by other authors. Besides, following our proposal,

software product will only be made available for system tests, and subsequent customer

validation, once all acceptance criteria are met. Finally, a Test-Driven approach leads to

a more decoupled code, which in turn is easier to refactor, since tests ensure the systems

external behavior is maintained after a change [Beck and Andres 2004].

As future work, we point out to expand the scope of this proposal to include other

activities of a service development lifecycle, e.g., planning and deployment. Another

important future work is evaluate our proposal in a distributed team environment using a

real scenario, and compare the use of our proposal to other approaches.

References

Abrahamsson, P. (2003). Extreme programming: First results from a controlled case

study. In Euromicro Conference, 2003. Proceedings. 29th, pages 259–266. IEEE.

Beck, K. (2001). Planning extreme programming. Addison-Wesley Professional.

Beck, K. and Andres, C. (2004). Extreme programming explained: embrace change.

Addison-Wesley Professional.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., et al. (2001). The agile manifesto. The agile alliance, 200(1).

Trilhas Técnicas SBSI - 2014

576



Carvalho, F. and Azevedo, L. G. (2013). Service agile development using xp. In 7th Intl

Symposium on Service-Oriented System Engineering (SOSE 2013), pages 254–259.

Erl, T. (2008). SOA: principles of service design, volume 1. Prentice Hall.

Fowler, M. (2008). Evolutionary soa. http://martinfowler.com/bliki/

EvolutionarySOA.html.

Gu, Q. and Lago, P. (2007). A stakeholder-driven service life cycle model for soa. In 2nd

International Workshop on Service-Oriented Software Engineering, pages 1–7. ACM.

Gu, Q. and Lago, P. (2009). Exploring service-oriented system engineering challenges: a

systematic literature review. Service Oriented Computing and Applications, 3(3):171–

188.

Ivanyukovich, A., Gangadharan, G., D’Andrea, V., and Marchese, M. (2005). Towards a

service-oriented development methodology. Journal of Integrated Design and Process

Science, 9(3):53–62.

Josuttis, N. M. (2007). SOA in Practice. O’reilly, 1st edition.

Karsten, P. and Cannizzo, F. (2007). The creation of a distributed agile team. In Agile Pro-

cesses in Software Engineering and Extreme Programming, pages 235–239. Springer.

Kitchenham, B. A. and Charters, S. (2007). Guidelines for performing systematic litera-

ture reviews in software engineering.

Krogdahl, P., Luef, G., and Steindl, C. (2005). Service-oriented agility: An initial analysis

for the use of agile methods for soa development. In Services Computing, 2005 IEEE

International Conference on, volume 2, pages 93–100. IEEE.

Lankhorst, M. and Janssen, W. (2012). Agile service development. New York: Springer.

Lee, E. W., Tan, P. S., ChenG, Y., et al. (2005). Web service implementation methodology.

Organization for the Advancement of Structured Information Standards (OASIS).

Lee, S. P., Chan, L. P., and Lee, E. W. (2006). Web services implementation methodology

for soa application. In 2006 IEEE Intl. Conf. on Industrial Informatics, pages 335–340.

Maranzato, R. P., Neubert, M., and Herculano, P. (2012). Scaling scrum step by step:” the

mega framework”. In Agile Conference (AGILE), 2012, pages 79–85. IEEE.

Marks, E. A. and Bell, M. (2006). Service Oriented Architecture (SOA): a planning and

implementation guide for business and technology. Wiley. com.

Patel, C. and Ramachandran, M. (2008). Acceptance test driven story card development

for xp (agile software development). In Proceedings of the International Computer

Science and Technology Conference.

Poppendieck, M. (2003). Lean software development: an agile toolkit. Addison-Wesley.

Ribarov, L., Manova, I., and Ilieva, S. (2007). Testing in a service-oriented world.

Tan, A., Ang, C. H., Lee, E. W., and Haines, M. (2005). Web service implementation

methodology: Case example using extreme programming. Organization for the Ad-

vancement of Structured Information Standards (OASIS).

Wake, W. C. (2002). Extreme programming explored, volume 1. Addison-Wesley.

Trilhas Técnicas SBSI - 2014

577


