
SOASPE: a Framework for the Performance Analysis of 
Service Oriented Software

Henrique Jorge A. Holanda1, Giovvani Cordeiro Barroso2, A. B. Serra 3

1Departamento de Informática UERN, Mossoró, Brazil / Dpto. de Inf. e Ing. de 
Sistemas, UNIZAR, Zaragoza, Spain                      

2Universidade Federal do Ceará
Campus do Pici, Fortaleza,- CE 60455 760 – Brazil

3Centro Federal de Educação Tecnológica do Ceará
Av. 13 de Maio, 2081, Fátima,  Fortaleza – CE 60040-531 – Brazil

henriqueholanda@uern.br, gcb@ufc.br, prof.serra@gmail.com

Abstract. Business  Process Execution Language for Web Services  (BPEL4WS) is  a  
promising language describing the Service Oriented Software (SOS) orchestrations in 
form of Business Processes, but it lacks of a sound formal semantic, which hinders the  
formal analysis and verification of business processes specified in it. Formal methods,  
like Petri Nets (PN), may provide a means to analyse BPEL4WS processes, evaluating 
its  performance,  detecting  weaknesses  and  errors  in  the  process  model  already  at  
design-time.  This  paper  addresses  quality  of  SOS  orchestrations  created  using  the  
BPEL4WS  and  a framework  for  transformation  of  BPEL4WS  into  Generalized 
Stochastic Petri Nets (GSPN) is proposed to analise the performance and throughput of  
SOS, based on  the execution of orchestrated processes.    

1. Introduction

A  Web  Service  (WS)  is  a  software  application  identified  by  a  Uniform  Resource 
Identifier (URI), whose interfaces and bindings are capable of being defined, described 
and discovered by Extensible Markup Language (XML) artefacts´ and supports direct 
interactions with other software applications using XML based messages via Internet-
based  protocols  [W3C  2002].  However,  individual  elementary  services  can  only 
represent limited business functions, it is necessary and feasible to compose functions 
offered by different individual services,  likely from different Service Providers (SP), 
into  a  composite  service  which  is  represented  as  a  Business  Process  (BP)  and  can 
provide a more powerful and complex service.

Accordingly,  a  growing  interest  is  to  express  a  composite  service  using  a 
Business Process Modeling Language tailored for Web Services. A landscape of these 
languages  such  as  Business  Process  Modeling  Language (BPML),  Business  Process 
Execution  Language  for  Web  Services  (BPEL4WS,  or  BPEL),  Web  Service 
Choreography Interface (WSCI) and Web Services Choreography Description Language 
(WSCDL)  has  emerged  and  is  continuously  being  enriched  [OASIS  2007]. 
Nevertheless, all these proposals still remain at the descriptive level, without providing 
any kind of mechanisms or tools support for verifying an evaluation of performance 
specified in  the  proposed notations.  Modeling and analyzing these proposals  with a 
formal  tool  becomes critical.  Formal  analysis  and verification techniques can enable 

V Simpósio Brasileiro de Sistemas de Informação

204



designers to detect  performance problems  and repair design errors even before actual 
running of  a  service process,  or  verify whether  a  service process  does have certain 
desired properties, such as reachability, liveness, throughness, and so on.

In this paper, we are motivated by issues related to the definition of a framework 
for the transformation of WS orchestrating with BPEL4WS into GSPN and this way to 
evaluate its performance.

A BPEL4WS process implements a Web Service by specifying the interactions 
with  other  Web  Services,  which  might  be  BPEL4WS  processes  as  well,  and  their 
causality [OASIS 2007]. For evaluating the performance of Web Services,  we assume 
that we know the BPEL codes and the Probability Distribution Function (PDF) of the 
response time of individual Service Providers (SP) where the services are executed.

We also assume that the SP´s provide the PDF of their Quality of Service (QoS) 
metrics. These can be either obtained by the SP´s themselves by analyzing historical 
data or by external agents that monitor the SP´s at regular intervals and fit the data for a 
distribution.

This paper is organized as follows. Section 2 gives a review of some related 
work. The Framework  “SOASPE” is defined in Section 3 and  its analysis is discussed 
in  Section 4.  Finally Section 5 concludes  the paper and gives  suggestions  of  future 
work. 

2. Related Work

Software Performance Engineering  (SPE) and QoS in the context of Web Service is the 
subject of many studies.

        In [Menascé and Almeida 2001] the authors developed a methodology issue of 
performance  evaluation  of  Web  Services.  While  this  methodology  is  focussed  on 
capacity planning using Queuing networks (QN), we aim at evaluating performance of 
WS using GSPN.

The  Web  Service  Trust  Center  (WSTC) is  a  platform for  development  and 
evaluation  of  measurement  tools  and  techniques  in  the  field  of  Service  Oriented 
Architectures  (SOA) and  web services.  One  of  their  publishers  titled  “Performance 
Modeling of WS-BPEL-Based Web Service Compositions”, addresses quality of service 
aspects of web service orchestrations created using WS-BPEL from the standpoint of a 
web service integrator. A mathematical model based on operations research techniques 
and formal semantics of WS-BPEL is proposed to estimate and forecast the influence of 
the  execution  of  orchestrated  processes  on  utilization  and  throughput  of  individual 
involved nodes and of the whole system. This model is applied to the optimization of 
Service Levels Agreement process between the involved parties [Rud et al. 2006].

Our work is different from the work presented in [Rud et al. 2006] , in fact we 
use GSPN to evaluate the performance of WS orchestrating with BPEL and not a pure 
mathematical model as the authors of that proposal. The advantage of using GSPN is 
that they are also mathematical models with the advantage of providing a good view of 
the system model. 

V Simpósio Brasileiro de Sistemas de Informação

205



For  Silva  and  Lins,  Web  Services  have  played  an  important  role  in  the 
development of Distributed Systems. In particular, the possibility of composing already 
implemented Web Services in order to provide a new functionality is  an interesting 
approach for building Distributed Systems. However, choosing the better composition is 
still  a challenger as different qualities may be observed in the composition,  such as 
security, performance, fault tolerance, and so on. In this context, the paper [Silva and 
Lins 2006] proposes a methodology based on Stochastic Petri Nets to model, evaluate 
and help to choose Web Service compositions considering performance aspects. 

Regarding the work [Silva and Lins 2006] which proposes a methodology based 
on  analytical  models  of  Generalized  Stochastic  Petri  Nets  in  an  effort  to  assess 
possibilities for composition of Web Services, with the main focus in the performance. 
Our work differs from it, because we are interested in evaluating the performance of WS 
based on the execution of orchestrated processes and not only in its composition. Our 
biggest interest is determined performance analysis of WS based on  the execution of 
orchestrated processes that are executed by an engine in WS of greater complexity.

3. Framework: SOASPE 

The related work showed that there has been a lot  of studied and researched in the 
performance of Web Services. However most of these studies and research promote the 
evaluation  of  the  performance  of  Web  Services  focussing  on  optimizing  their 
composition.

In our  work  we want  to  address  the  issue,  wich  has  not  been  explored  yet, 
concerning  the  performance  evaluation  of  the  WS  based  on   the  execution  of  
orchestrated processes and this WS  modeled with GSPN.    

Therefore, it is our intention to develop a framework for performance analysis of 
Web Services orchestrated with BPEL4WS. This framework, see Figure 2, is composed 
of five layers:  SOA Layer, BPEL Layer, Transformation Layer, Petri Net Layer 
and finally the  Performance Evaluation Layer .

The  architecture  of  the  Framework "SOASPE" is  based  on the principles  of 
SOA, where a Business Process (BP) is composed of one or more services, which in 
turn may be composed of several subservices ans it, and their execution is coordinated 
by a Business Process Integrator (BPI). 

The services can be of two types: Basic and Orchestrated.    

The  Basic  Services are  services  that  are  processed  by  computer  systems 
belonging to a  Service Provider that  return an  Extensible  Markup Language (XML) 
message as a result of processing.

The  Orchestrated  Services are  services  that  are  BPEL codes  that  serve  to 
orchestrate new Business Processes that compose the Business Processes Integrator. The 
composition of Business Processes is shown in Figure 1.

Services can and almost always stay available on the Internet Service Providers. 
These  services  are  mostly  orchestrated  with  BPEL  composing  Web  Services.  The 
evaliation  of  the  performance  of  the  WS  based  on  the  execution  of  orchestrated 
processes is importante. In this regard, we define the FrameWork "SOASPE."

V Simpósio Brasileiro de Sistemas de Informação

206



        

                                                                                 

Figure 1. Business Processes Composition  

3.1. The SOA Layer

One of the possible scenarios of SOA implementation is a system consisted of a Set of 
Service Providers, a  Integrator an operator of an orchestration engine and a  Set of 
Clients of the latter, i.e. Business Process Consumers. This scenario is used as the basis 
for SOA Layer of the Framework “SOASPE”.

The mission of the Integrator is execute the BPI Code of WS,  to orchestrate a 
composite service from it by filling out a Business Process description template with all 
information necessary to start the process - i.e. with partner links, addresses, etc., and 
finally to provide the latter  to the customers. This BPI Code  will  be  written with 
BPEL4WS and for having evaluated the performance of the WS orchestrated by it, we 
will transform it into GSPN.

The relationship between the  Integrator and the Service Providers as well as 
between the Integrator and the Clients  is based on Service Level Agreements (SLA) 
which,  in  particular,  determines:  pricing,  conditions  and  Quality  of  Service  (QoS) 
warranties.

3.2. The BPEL Layer

In the BPEL Layer  are finding the BPEL codes that make the orchestration of Web 
Services, the values of PDF of the response time of each of  Service Providers (SP) of 
the WS and the Business Process Management (BPM) data models. 

Since BPEL is not very friendly to developers, most of them prefer  to model 
their applications using BPM tools. For this reason,  BPM data models  constitute the 
other component of this layer.

Figure  2.  Architecture  of  Framework 
“SOASPE”

V Simpósio Brasileiro de Sistemas de Informação

207



The leading standards for Business Process Modeling in SOA are the Business 
Process  Modeling  Notation  for  graphical  modelling  of  Business  Processes  and  the 
XML-based BPEL4WS for their execution. The corresponding centralised approach is 
referred  to  as  Web  Service  orchestration.  The  main  component  of  an  orchestration 
infrastructure is a BPEL4WS engine that drives the execution of Business Processes by 
carrying  out  given  algorithmic  constructs  and  communicating  with  involved  Web 
Services and clients.

From the BPM data models, the BPM tools generate all the BPEL code required 
for orchestration of the Web Service. 

The BPEL codes are  used also to be  transformed into  GSPN, which enabled 
make performance analysis of WS based on the execution of orchestrated processes.   

3.3. The Transformation Layer

In Transformation Layer are presented the  transformation algorithms of the   BPEL 
codes  into  GSPN.  In this  transformation,  the  BPEL code  that  is  present  in  BPI is 
transformed  into  the  main  GSPN,  while  Orchestrated  Services  are   transformed  in 
subnets of the main GSPN and the Basic Services that are processed in the Service 
Providers are modelled on GSPN as transitions and the PDF of the response time of 
each Service Provider will be assigned to the Delay Time of this transitions in GSPN. 
The  firing  of  these   transitions  models  the  executions  of  the  services  in  a  Service 
Providers.

The representation of the transformation of each Basic Service into GSPN is 
modeled by a transition “t”, by two places “p1” and “p2”, and two arches linking it 
places to a transition, as shown in Figure 3. A token in place “p1” represents that the 
Basic  Service modeled by the transition “t” is  able  to execute.  The place “p2” will 
contain tokens after the firing of transition “t”, and this represent that Basic Service was 
executed.

Figure 3.  Representation of Basic Services and Basic Activities

The  other  component  of  this  layer  is  the  API´s  Java  that  is  added  to  the 
transformation algorithms to generate the executable codes.

The functionality of the Transformation Layer is illustrated in Figure 4.

The rules of transformation of BPEL code into GSPN are specified in the next 
section.

3.3.1. Transformation of BPEL into PETRI NETS (GSPN)

 The purpose of this section is to provide a translation of BPEL into GSPN. We 
present the representation of the Basic Activities and Structured Activities of BPEL into 

V Simpósio Brasileiro de Sistemas de Informação

208



GSPN. We stress that layer of management is relevant to the implementation of WS, but 
for our purposes it will be omitted here.

Figure 4. The Functionality of Transformation Layer

3.3.1.1. Transformation of Basic Activities

The Basic  Activities are those that describe the steps of an elementary activity. BPEL 
defines  the  following  Basic  Activities:  <Process>,  <Invoke>,  <Receive>,  <Reply>, 
<Wait>, <Empty> and so on. The representation of the Basic Activities is the same of 
Basic Service and is shown in Figure 3.

3.3.1.2. Transformation of Structure Ativities

The  Structured  Activities prescribe  the  order  in  which  a  set  of  Basic  Activities  is 
executed.  To  enable  the  representation  of  complex  structures,  BPEL  defines  the 
following Structured Activities: <Sequence>, <Switch>, <While>, <Pick>, <Flow> and 
<Control Link>. Here we present their transformation into GSPN.

o Sequence Structure:  this   structure  contains  one  or  more  activities  that  are 
carried out consecutively. Its representation is shown in Figure 5.

o Switch Structure: this structure supports conditional choices. Where only one of 
the  transitions  (t1  to  tn)  is  fired  when  the  arrival  of  a  token  on  p1.  Its 
representation is shown in Figure 5.

o While Structure: this structure allows one or a series of activities executives: 
none, one or more times. Figure 5 shows the representation of this structure. The 
transitions “t2” to “tn” can fire in a repetitive way, until the transition “t1” fires 
and shuts down the cycle of repetitions.

o Pick Structure: the pick construct awaits the occurrence of one of a set of events 
and then it performs the activity associated with the event that occurred. The 
representation  of  the  pick  structure  is  the  same  as  the  representation  of  the 
switch structure shown in Figure 5.

V Simpósio Brasileiro de Sistemas de Informação

209



o Flow Structure: the BPEL flow lets specify one or more activities to be carried 
out simultaneously. This fact leads to the definition of Flow Structure which is 
shown in Figure 5. In this representation  the weight of the arc output of the 
transition “t0“is “n”, then the transitions “t1” to “tn” can fire simultaneously.

o Control  Link  Translation: more  generally,  the  Flow  activities  allow  the 
dependence of synchronization between the activities that directly or indirectly 
are  nested  within  it.  The  Control  Link  structure  is  used  to  express  these 
dependencies  of  synchronization.  The  sequence  of  representation  of  this 
structure  is  shown  in  Figure  5.  This  representation  shows  that  there  is  a 
synchronism between the transitions t2 and tn. The transition tn will fire after t2 
finishes its processing to be put a token in the place P5 and therefore make the 
transition tn enabled.

The next  section  gives  the  rules  to   calculate  the  Delay Time of  the  GSPN 
transitions.  Note  that  the  fault  handlers  will  not  be  considered  for  purposes  of  the 
calculus of performance because exceptions are not part of the normal behavior of the 
execution of Web Services. Compensation handlers and activities <Compensate> will 
also be ignored, because they can only be activated from failures or other compensation 
handlers.

Figure 5.  Logic of Representation of Structure Activities

3.3.1.3. Attribution Time to GSPN

In the transformation of BPEL codes into GSPN, the firing of transitions is immediate, 
except in the transitions that represent the Basic Activity <Invoke> that recive as Delay 
Time,  the values of PDF of the response time of each of these Service Providers (SP), 
where services is executed.

To model the estochastic behavior of response time of Service Providers (SP´s), 
we will make use of PDF.

V Simpósio Brasileiro de Sistemas de Informação

210



As entries of the PDF, it will be used the Average and Standard Deviation of the 
response time of  Service Providers,  while the output is expected the value of Delay 

Time of the  transition (λ). 

These response times of SP´s provide a sample with unknown distribution with 

Average (μ) and  Standard Deviation (σ ).

The Average (μ) is calculated as the arithmetic average of the response time of 

Service Providers and the  Standard Deviation (σ) is calculated as shown in Figure 6.

Depending on the value of the Coefficient of Variation (CV), wich is calculated 
as shown in Figure 6,  these response times are approximate to one of the distributions: 
Erlang, Hiperexponential  or Hipoexponential.  This makes it possible to represent the 
probable  issue  involved  in  the  approximation  of  these  response  times  of  Service 

Providers for a Delay Time (λ) of the transition that it model.

If the  Coefficient  of Variation is greater than 1 (CV> 1) and the same is an 
integer value, the sample must be empirical approximate with Erlang Distribution. In 

this case the Delay Time (λ)  of the transition that shapes this Service Providers will be 
calculated as shown in Figure 6.

If CV> 1 (CV is not a integer number), the distribution should be approximated 

with Hiperexponecial Distribution and the Delay Time (λ)  of the transition that shapes 
this Service Providers will be calculated as shown in Figure 6.

Figure 6. Calculation  of the σ, CV and λ    

And  if  CV<  1,  the  distribution  should  be  approximated  with 
Hipoexponential Distribution and the Delay Time (λ)  of the transition that shapes 
this Service Providers will be calculated as shown in Figure 6.

V Simpósio Brasileiro de Sistemas de Informação

211



To illustrate the attribution time to  GSPN, suppose that you have the following 
BPEL code, as shown in Figure 7.

<Process> 
<Receive createInstance="yes" /> 
<Switch> 
      <Case name="Usa"> 
           <Invoke name="install_firmware" /> </Case> 
      <Case name="France">
           <Invoke name="install_firmware" /> </Case>
 </Switch> 
<Reply variabele="status" />
 </Process> 

               Figure 7. BPEL Code

In the code of Figure 7 the basic activities: <Process>, <Receive>, <Switch>, 
<Reply> will be shaped by an immediate transitions (represented in the model with a 
thin  line),  as  shown  in  Figure  8.  Already  the  transitions  that  shape  the  activities 
<Invoke> (in the model  represented by a rectangle) will  receive as Delay Times the 
values of PDF of the response time of each of Service Providers (SP), where invoked 
services will be executed, as shown in Figure 8.

Figura 8. GREATSPN Tool

As a result of the Transformation Layer we have the necessary files to load the 
GSPN Nets in a GSPN tools.

3.4. The Petri Net Layer

The Petri Net Layer is composed of the GSPN obtained by transformation algorithms 
of  the  previous  layer.  This  GSPN  should  be  loaded  into  a  GSPN  tool,  the  other 
component of this Layer. At first time the tool user is the GEATSPN.

V Simpósio Brasileiro de Sistemas de Informação

212



The  Figure  8.  shows  the  GSPN  of  the  BPEL  code  presented  in  Figure  7, 
modeling inside the GREATSPN Tool [PE group (2006)].

3.5. The Performance Evaluation Layer

The Performance Evaluation Layer is defined as the layer responsible for the viewing 
(Graphics and Display) of the GSPN Nets and for the performance Analysis that the 
model will be submitted to investigate the evaluation of performance of WS based on 
the execution of orchestrated processes 

4. Analysis of Framework “SOASPE” 

With the  Framework “SOASPE” defined,  this  section presents  a  case study  – “WS 
SodaSys” with the objective to verify the usability and validity of it. The Bpel code of 
“WS SodaSys” is showed in Figure 7.

The analysis of the case study was performed in a machine with Intel Core Duo 
1.86 GHz processor, motherboard with on-board and with 2 GB RAM. The installed 
operating system is Windows XP Professional.

In the implementation of Web Services, various artefacts of software were used. 
The Web Services (written in Java) were available in a Tomcat server, version 5.0.28. 
Additionally, we used the Ant (Apache AntUnit - version 1.6), the module SOAP for 
Apache (Java Web Services - version 2.3.1) and Apache Axis (Version 1.4). All these 
softwares are needed for the implementation of Web Services.  Additional information 
about  the  need  of  them  and  how  to  use  them  can  be  found  in  "Java  Web 
Services" [Hendricks et al. 2002]. 

To enable the orchestration of  the “WS SodaSys”, an engine of BPEL was used. 
For the reason of being Open-Source, the ActiveBPEL engine (version 1.2) is adopted.

4.1. Performance of “WS SodaSys”

The “WS SodaSys” is orchestrated by a BPI, which invokes the services of two Service 
Providers: WS (USA) and WS (France).

We measured the  response times for Business Process Integrator (BPI) and for 
the Service Providers of an individual way. The response time of the BPI extends from 
the time in which an <Invoke> is made by the issuance of its response, including the 
execution time of its own Service Providers.

The measure of the response times of the Service Providers:  WS (USA) was 
5,191 ms  and WS (France) was 4,919 ms.

Figure 10. shows the graph of measures of the response times for the Business 
Process Integrator of “WS SodaSys”, when it meets with a number of requests ranging 
from 130 to 290 requests.

4.2. Performance of The Model Generated by Framework “SOASPE”

This section deals the use of the Framework “SOASPE” to simulate the evaluation of 
performance of “WS SodaSys”. 

V Simpósio Brasileiro de Sistemas de Informação

213



As it has been said, the Transformation Layer receives as input: the BPEL code 
of the Business Process Integrator (BPI), the  BPEL's codes of the Orchestrated Services 
and the Probability  Distribution Function  of the Service Providers (WS) that execute 
the Basic Services.

In the case study on the issue, the Transformation Layer receives the BPEL code 
of BPI of the “WS SodaSys” and the response time of Service Providers (Basic services) 
of  WS  (USA and  France).  With  these  data  as  entry the  Transformation  algorithms 
generate the GSPN that model the “WS SodaSys” in accordance with the guidelines set 
out in section 3.3.1.

The calculation of  the  Delay Time of  the transitions  that  compose the Basic 
Activities  <Invoke> of the “WS SodaSys” is shown next. 

Each  invoked  Service  Provider  sends  a  SOAP  message  containing  a  list  of 
response times of this service. With the list of response time of each Service Provider, 
the  value of the Coefficient of Variation (CV) is calculated. With the CV it is possible 
to  make  an  approximation  of  these  response  times  by  a  Probability  Distribution 
Function and thus have one close value to Delay Time of the transition that shape this 
Service Provide.

Figure  9  shows  the  Average,  Standard  Deviator,  Coefficient  of  Variation, 
Approximation and Delay Time of Service Providers of the  “WS SodaSys”.

μ σ CV Approximation λ (in ms)
WS (Usa) 5,351 3,37 0,63 Hipoexponential 4,337812499 
WS (France) 4,819 2,505 0,52 Hipoexponential 2,998373314

Figure 9. μ, σ, CV, approximation and λ of Service Providers.

Ended the activities carried out by the Transformation Layer is obtained the files 
needed  to  load  the  specification of  GSPN  for  a  GSPN  tool.  The  files generated 
contained the format of the GSPN to be loaded on GREATSPN tool.

With the Petri  Net loaded on GREATSPN tool it  begins the activities of the 
Performance Evaluation Layer. 

The performance analysis  of the model is made from simulations with the same 
amount of requests made in the “WS SodaSys”. 

Figure 10. presents the graph of response time of the GSPN model of the “WS 
SodaSys” when it meets with a amount of requests ranging from 130 to 290 requests

These results shows that the response times of the model generated by the 
Framework "SOASPE" and the response times of the “WS SodaSys” not differ by more 
than 5.3%, proving itself as the usability and validity of the Framework “SOASPE” in 
Performance Analysis of Web Services.

V Simpósio Brasileiro de Sistemas de Informação

214



Response Time 

165

170

175

180

185

190

195

130 150 165 170 190 200 210 230 240 255 270 290

 Number of  Requests

WS SodaSys

GSPN Model

Figure 10. Response Time of  “WS SodaSys” and Response Time of Model of the “WS 
SodaSys”

5. Concluding Remarks and Future Work

The SOA model  brings several new benefits  to software design and architecture by 
enabling  re-use  and  sharing  of  components  through  dynamic  discovery.  Service 
orchestrations enable complex applications to be put together in a variety of ways. Each 
possible service selection of services brings different levels of QoS. Thus, there is a 
need to devise fast and efficient mechanisms that can be used for performance analysis 
of  WS   among  a  set  of  service  providers.  This  paper  presented  such  an  efficient 
mechanism that, in all experiments reported, comes very close to the real response time 
of WS (less than 6% worse) after having compare with the time of the model generated 
by the Framework  “SOASPE”.

As future work, we want to continue the issues seen in this work, particularly a 
more deeper refinements in view of modeling other aspects that were not included in 
this  article,  such  as  the  extension  of  this  work  to  support  Grid  Services,  recent 
technology that adds new features to the design of Web Services.

References

W3C. (2002). Web Services Description Requirements.
OASIS. (2007). Web Services Business Process Execution Language 2.0.
Menascé, D. A. and Almeida, V. F. (2001). Capacity Planning for Web Service:
    metrics, models, and métodos. Prentice Hall. 608p. 
Rud D., Schmietendorf A. and Dumke R (2006). Performance modeling of WS-BPEL-
    based web service compositions. In Proceedings of the IEEE Service Computing
    Workshops (SCW 2006), pages 140-147, Los Alamitos, CA, USA, September 2006.
Silva, A. N. And Lins, F. A. (2006). Avaliação de Desempenho da Composição de 
    Web Services Usando Redes de Petri. In: SBRC, 2006, Curitiba. 24o. Simpósio 
    Brasileiro de Redes de Computadores.
PE group (2006) . GreatSPN User’s Manual (version 2.0.2). University of Torino, Italy. 
     http://www.di.whito.it/greatspn
Hendricks, M. et al. (2002). “Java  Web Services”, Alta Books.

V Simpósio Brasileiro de Sistemas de Informação

215


