skip to main content
10.1145/3466933.3466946acmotherconferencesArticle/Chapter ViewAbstractPublication PagessbsiConference Proceedingsconference-collections
research-article

Tellus-Onto: uma ontologia para classificação e inferência de solos na agricultura de precisão: Tellus-Onto: an ontology for soil classification and inference in precision agriculture

Published:08 July 2021Publication History

ABSTRACT

Soil analysis laboratories demand large volumes of data used in precision agriculture. Among them, parameters that represent soil fertility such as texture and organic matter guide the fertilization process. However, this process can take time, thus limiting its usefulness. Therefore, this article proposes an ontology called Tellus-Onto that extends the state of the art in the classification of Brazilian soils according to the organic and textural composition. A series of axioms and semantic rules provided consultations and inferences about their instantiated basis. In order to test the ontology, we added 98 soil sample results and their classifications were inferred precisely and automatically.

Laboratórios de análises de solos demandam volumes grandes de dados empregados na agricultura de precisão. Dentre eles, parâmetros que representam fertilidade de solos como textura e matéria orgânica orientam o processo de adubação. No entanto, este processo pode se tornar demorado, limitando assim sua utilidade. Sendo assim, este artigo propõe uma ontologia denominada Tellus-Onto que estende o estado da arte na classificação de solos brasileiros de acordo com a composição orgânica e textural. Uma série de axiomas e regras semânticas foram empregadas para proporcionar a realização de consultas e inferências sobre sua base instanciada. Para testar a ontologia foram instanciados 98 resultados de amostras de solos e inferidos suas classificações de modo preciso e automático.

References

  1. Samuel Andrés, Damien Arvor, Isabelle Mougenot, Thérèse Libourel, and Laurent Durieux. 2017. Ontology-based classification of remote sensing images using spectral rules. Computers & Geosciences 102 (may 2017), 158–166. https://doi.org/10.1016/j.cageo.2017.02.018Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Muñoz Andrés, Soriano-Disla José; M., and Janik Leslie J.2017. An Ontology-Based Approach for an Efficient Selection and Classification of Soils. Ambient Intelligence and Smart Environments 22, Intelligent Environments 2017(2017), 69–78. https://doi.org/10.3233/978-1-61499-796-2-69Google ScholarGoogle Scholar
  3. Juscimara Gomes Avelino and Patrício De Alencar Silva. 2020. Ontologia de Redes de Valor Verdes. iSys - Brazilian Journal of Information Systems 13, 2 (April 2020), 168–197. https://doi.org/10.5753/isys.2020.767Google ScholarGoogle Scholar
  4. Sociedade Brasileira de Ciência do Solo. Comissão de Química e Fertilidade do Solo. 2016. Manual de adubação e de calagem para os Estados do Rio Grande do Sul e de Santa Catarina. SBCS, Porto Alegre. 400 pages.Google ScholarGoogle Scholar
  5. Sociedade Brasileira de Ciência do Solo SBCS. 2008. Tipo de solo: Instrução Normativa N° 2, de 9 de outubro de 2008 - Classe textural. Sociedade Brasileira de Ciência do Solo - SBCS.Google ScholarGoogle Scholar
  6. Sociedade Brasileira de Ciência do Solo SBCS. 2019. CELA - SBCS. https://sbcs-nepar.org.br/celaGoogle ScholarGoogle Scholar
  7. Sociedade Brasileira de Ciência do Solo SBCS. 2020. SBCS - Núcleo Região Sul. http://www.sbcs-nrs.org.br/index.php?secao=rolasGoogle ScholarGoogle Scholar
  8. Zigomar Menezes de Souza, Domingos Guilherme Pellegrino Cerri, Marcelo José Colet, Luiz Henrique Antunes Rodrigues, Paulo Sérgio Graziano Magalhães, and Rafael Junqueira Araújo Mandoni. 2010. Análise dos atributos do solo e da produtividade da cultura de cana-de-açúcar com o uso da geoestatística e árvore de decisão. Ciência Rural 40, 4 (April 2010), 840–847. https://doi.org/10.1590/s0103-84782010005000048Google ScholarGoogle ScholarCross RefCross Ref
  9. Chandan Kumar Deb, Sudeep Marwaha, and R.N. Pandey. 2020. Ontology Learning Algorithm for Development of Ontologies from Taxonomic Text and USDA Soil Taxonomy Ontology. Journal of the Indian Society of Agricultural Statistics 1, 74(2020), 77––84. https://www.researchgate.net/profile/Chandan_Deb2/publication/343472368_Ontology_Learning_Algorithm_for_Development_of_Ontologies_from_Taxonomic_Text_and_USDA_Soil_Taxonomy_Ontology/links/5f508b59299bf13a3199d8d1/Ontology-Learning-Algorithm-for-Development-of-Ontologies-from-Taxonomic-Text-and-USDA-Soil-Taxonomy-Ontology.pdfGoogle ScholarGoogle Scholar
  10. R. Doluschitz, M. Kunisch, T. Jungbluth, and C. Eider. 2005. agroXML - A Standardized Data Format for Information Flow in Agriculture. In Proceedings of the EFITA/WCCA 2005 Joint Conference (Vila Real, Portugal) (EFITA/WCCA 2005). Universidade de Trás-os-Montes e Alto Douro, 439–443.Google ScholarGoogle Scholar
  11. Heshan Du, Vania Dimitrova, Derek Magee, Ross Stirling, Giulio Curioni, Helen Reeves, Barry Clarke, and Anthony Cohn. 2016. An Ontology of Soil Properties and Processes. In Lecture Notes in Computer Science. Springer International Publishing, 30–37. https://doi.org/10.1007/978-3-319-46547-0_4Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Alberto Cargnelutti Filho, Lindolfo Storck, and Hardi Rene Bartz. 1996. Estatísticas dos resultados das análises de laboratório de solo. Ciência Rural 26, 3 (Dec. 1996), 401–406. https://doi.org/10.1590/s0103-84781996000300010Google ScholarGoogle Scholar
  13. Stephanos D. V. Giakoumatos and Anastasios K. T. Gkionakis. 2021. Development of an Ontology-Based Knowledge Network by Interconnecting Soil/Water Concepts/Properties, Derived from Standards Methods and Published Scientific References Outlining Infiltration/Percolation Process of Contaminated Water. Journal of Geoscience and Environment Protection 09, 01(2021), 25–52. https://doi.org/10.4236/gep.2021.91003Google ScholarGoogle ScholarCross RefCross Ref
  14. E. S. Gualberto, R. T. Souza Jr., F. E. G. Deus, and C. G. Duque. 2013. Proposição de uma Ontologia de Apoio à Gestão de Riscos de Segurança da Informação. iSys – Revista Brasileira de Sistemas de Informação 6, 1(2013), 30 – 43.Google ScholarGoogle Scholar
  15. Gilson Augusto Helfer, Jorge Luis Victória Barbosa, Ronaldo dos Santos, and Adilson Ben da Costa. 2020. A computational model for soil fertility prediction in ubiquitous agriculture. Computers and Electronics in Agriculture 175 (aug 2020), 105602. https://doi.org/10.1016/j.compag.2020.105602Google ScholarGoogle Scholar
  16. Z. Hochman, P.S. Carberry, M.J. Robertson, D.S. Gaydon, L.W. Bell, and P.C. McIntosh. 2013. Prospects for ecological intensification of Australian agriculture. European Journal of Agronomy 44 (2013), 109 – 123. https://doi.org/10.1016/j.eja.2011.11.003Google ScholarGoogle ScholarCross RefCross Ref
  17. iGreen Projekt. 2012. Welcome to the AgroRDF RDFLib LOD Server. http://data.igreen-services.com/agrordfGoogle ScholarGoogle Scholar
  18. Soil Quality Pty Ltd. 2021. Measuring Soil Texture in the Laboratory. http://soilquality.org.au/factsheets/soil-texture-measuring-in-the-labGoogle ScholarGoogle Scholar
  19. Mark A. Musen. 2015. The protégé project: a look back and a look forward. AI Matters 1, 4 (2015), 4–12. https://doi.org/10.1145/2757001.2757003Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Narali Marques Da Silva and Rafaela Marques S. Tadra. 2017. Geologia e pedologia. InterSaberes, Curitiba. 320 pages.Google ScholarGoogle Scholar
  21. Embrapa Solos. 2016. Tecnologia inovadora analisa solos em apenas 30 segundos - Portal Embrapa. https://www.embrapa.br/busca-de-noticias/-/noticia/17162564/tecnologia-inovadora-analisa-solos-em-apenas-30-segundos/Google ScholarGoogle Scholar
  22. Zeynal Tümsavaş, Yücel Tekin, Yahya Ulusoy, and Abdul M. Mouazen. 2019. Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy. Biosystems Engineering 177 (2019), 90 – 100. https://doi.org/10.1016/j.biosystemseng.2018.06.008 Intelligent Systems for Environmental Applications.Google ScholarGoogle ScholarCross RefCross Ref
  23. Martin Wiesmeier, Livia Urbanski, Eleanor Hobley, Birgit Lang, Margit von Lützow, Erika Marin-Spiotta, Bas van Wesemael, Eva Rabot, Mareike Ließ, Noelia Garcia-Franco, Ute Wollschläger, Hans-Jörg Vogel, and Ingrid Kögel-Knabner. 2019. Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma 333(2019), 149 – 162. https://doi.org/10.1016/j.geoderma.2018.07.026Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    SBSI '21: Proceedings of the XVII Brazilian Symposium on Information Systems
    June 2021
    453 pages
    ISBN:9781450384919
    DOI:10.1145/3466933

    Copyright © 2021 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 8 July 2021

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate181of557submissions,32%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format