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Abstract. Public on-street car parking is an important shared resource of a city
infrastructure with a significant impact on traffic. This paper proposes a geo-
statistical model aimed to predict parking occupancy rates for different periods
of the day. In the study case, the occupancy representation considers the georef-
erenced position of spots for a particular area of Los Angeles (USA). Different
models are compared and their parameters are estimated using the available
dataset of the parking area. The final model is chosen to generate a kriging map
that helps to understand and predict the occupancy rates. The end goal is to
open doors for modeling and predicting urban phenomenons with Geostatistics
to help with planning public parking policies in high density urban areas.

1. Introduction
On-street Parking is an important city resource not only for mediating goods deliveries
but also for demanding a vast use of land [Inci 2015]. It can represent an important issue
for traffic and greenhouse emissions due to the activity of looking for a parking space by
driving a car. According to [Shoup 2006], on average, 30% of cars in traffic are cruis-
ing for parking in a study made with congested downtown areas from around the world.
Moreover, they spend from 3.5 to 14min (8.1min on average) in this activity. Some stud-
ies show that between 9% and 56% of the traffic is cruising for parking [Zhu et al. 2020]
and it has a negative effect on the travel time of regular traffic.

There is a growing trend of making data publicly available and consuming it in the
context of the Information Systems designed for integrated cities [Bernardini et al. 2017].
From the urban mobility perspective, data driven approaches are made available by IoT
technologies [Al-Turjman and Malekloo 2019], [Lin et al. 2017]. They support drivers
and parking service providers with information about the status of a parking system
(e.g. occupancy, number of vehicles entering and leaving the parking lot). Some works
deal with Intelligent Parking Reservation (IPR) systems which gather the provided in-
formation and help drivers to reduce the time necessary for finding a spot, parking the
vehicle, and paying the fee. However, few of them address the forecast of parking
space [Caicedo et al. 2012].

Our work proposes a geostatistical approach to predict the occupancy of on-street
parking spaces at different hours of the day using historical parking records in particular
urban areas. A spatiotemporal model considers temporal data and spatial interdependence
of parking spots due to poles of attraction (services that usually drive the demand for park-
ing like public services or shopping malls, for instance). To the best of our knowledge, it
is the first time geostatistics is applied to predict parking occupancy.
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2. Related Work
Several works in the literature consider two dimensions for predicting parking places
in an integrated parking system to support users in deciding when and where to find
parking spots. The first dimension usually deals with the prediction of occupancy from
historical data while the second computes the actual parking demand from traffic sensors
or simulated data.

A methodology proposed by [Caicedo et al. 2012] predicts real-time parking
space in IPR architectures. It aggregates simulated drivers’ preferences and parking avail-
ability. A real-time availability forecast (RAF) algorithm combines current and historical
information. The RAF algorithm is a mix of real and simulated information. The results
are compared with a one-by-one approach which simulates the process of searching and
finding a parking place for each vehicle. There are no relevant differences when those
results are compared to the aggregated approach adopted by RAF which is less time-
consuming.

[Vlahogianni et al. 2016], considers two modules: i) a real-time occupancy time-
series prediction based on multilayer perceptron networks, and ii) a static approach for es-
timating the probability of finding a parking space. The first module provides a short-term
prediction by using historical data while the second is based on parametric hazard-based
modeling which deals with estimating the time necessary to restore normal condition after
an incident. The results are generated from data of sensors located in the city of Santander,
Spain, and show that the duration of free parking space follows a Weibull distribution. A
comparative analysis of other Machine Learning (ML) techniques for the same scenario in
Santander can be found in [Awan et al. 2020]. Some works deal with parking forecast by
making predictions of parking demand with neural networks, using incoming sensor data,
and a probability model of parking space utilization, based on historical data. Basically,
they approach the problem as one-dimensional time series forecast. [Camero et al. 2019]
propose a new deep learning technique based on Recurrent Neural Networks (RNN) and
evolutionary algorithms. It is compared with other ML applied to predict the occupancy
of parking lots in Birmingham, UK. The results show similar or better outcomes than
other predictors like polynomial fitting, Fourier series, k-means clustering, and time se-
ries [Stolfi et al. 2017].

Multivariate autoregressive models that take into account both temporal and spa-
tial correlations of parking availability are investigated in [Rajabioun and Ioannou 2015].
The experiments consider real-time parking data in the areas of San Francisco and Los
Angeles. They argue that probability distribution based models are not accurate enough
to capture changes in on-street parking due to multi-dimensional dependencies of parking
data. They also consider spatial correlations of parking data by observing that changes
in one parking facility affect nearby facilities. They propose an autoregressive model by
considering both temporal and spatial correlations simultaneously.

The discussed related works use simulation with temporal data. Differently, this
paper applies geostatistics to address on-street parking supposing that spots are usually
affected by georeferenced points of interest. Although [Rajabioun and Ioannou 2015] ad-
dresses the spatial dimension, it is indirectly considered as a correlation of parking data
measures on nearby facilities. The georeferenced information is not explicitly included in
the model as we propose in our geostatistical model.
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3. Methodology
The present paper proposes a geostatistical method of modeling and predicting the on-
street public parking occupancy rate phenomenon. Each public park spot is georefer-
enced, whereas its occupancy rate in a given period of time is a random variable. The
geostatistical inference builds a probability distribution of parking occupancy according
to the geographical coordinates of parking spots.

3.1. Geostatistical Model
Georeferenced random variables can be represented by a multivariate distribution. In
this work, we use the Gaussian multivariate distribution whose covariance matrix takes
into account distances between points in space associated with georeferenced random
variables. Nearby points have samples with great similarity. The degree of similarity
is controlled by spatial correlation functions (e.g exponential, Gaussian). The statistical
model is then given by Y (xi) = µ + S(xi) + Z(xi), i = 1, . . . , n where Y (xi) is the
variable of interest associated to a particular point xi in geographical space, µ models the
average level of Yi, S(xi) models the correlation between nearby points of xi, and Z(xi)
models the uncertainty in the measure of Y (xi).

The following assumptions are considered:

1. S(xi) is a weakly stochastic process with E[S(xi)] = 0, V ar(S(xi)) = σ2, and
ρ(hij) = Corr{S(xi), S(xj)} for the euclidean distance hij = ||xi − xj||.

2. Z(xi) is normally distributed with N(0, τ 2).

According to [Ribeiro and Diggle 2007], Y is associated to a multivariate Gaus-
sian normal distribution given by (1) in matrix form:

Y ∼ NM(µ1, σ2R + τ 2I) (1)

such that 1 is an n-dimensional vector of 1’s, R is a square matrix of order n with
elements ρ(hij), and I is the identity matrix of order n. Examples of Exponential
and Gaussian correlation functions ρ(hij) are given by ρ(hij) = exp (−hij/ϕ) and
ρ(hij) = exp

(
− (hij/ϕ)

2), respectively.

The parameter ϕ is called range and controls the distance from which the vari-
ables of interest have same variance, i.e., the structured variability in space is no longer
observed. Correlation functions control how the correlation decreases between two points
in space (abruptly or smoothly). The growth of semivariance caused by the decrease of
correlation can be evaluated by a semivariogram.

The semivariogram is characterized by the semivariance γ(h) between two mea-
surements of Y spaced h from each other according to (2).

γ(h) =
1

2n

n∑
i=1

[Y (xi)− Y (xj)]
2 (2)

The statistical model expects that the variance increases as the distance between
the two points increases in any direction (isotropy). The nugget effect γ(0) = τ 2 is due
to point properties. Moreover, after some distance h = ϕ, the semivariance converges to
γ(ϕ) = σ2, i.e., the range ϕ is a threshold that divides the structured field of correlated
samples from the random field of independent samples in space.
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The semivariogram is a descriptive analysis technique to verify the spatial struc-
ture of measurements. If the statistical model expectations are found for a particular
dataset, the variable Y of interest is modeled by (1) which is used for prediction as well.
The prediction T̂ is obtained from theorems of the conditional Gaussian distribution T |Y
according to E[T |Y ] = T̂ = µ + σ2r′(σ2R + τ 2I)−1(Y − µ1). Matrix r correlates the
measured data Y with the predicted point T which generates a data interpolation called
kriging. The loss function LOSS(θ) given by (3) measures the quality of models using
different variogram parameters θ = (ϕ, τ 2, σ2),

LOSS(θ) =
∑
k

nk(γ̂k − γk(θ))
2 (3)

where γ̂k and γk(θ) are values of the empirical and theoretical variograms, respectively,
weighted by nk values of each bin k, according to [Ribeiro and Diggle 2001]. The best
model which minimizes LOSS(θ) is chosen among different correlation functions. The
parameter θ of the best model is estimated by maximum likelihood estimation from (1).

3.2. Dataset

The dataset used for the experiments is publicly provided by Los Angeles (USA) Depart-
ment of Transports [LADOT 2022] with information on the city public on-street parking.
It contains historical occupancy data about several parking spots, each one identified by
a unique ID and a set of information including its geographical position, latitude and
longitude coordinates later converted to UTM.

There is also a set of binary events representing each ID occupancy state on a given
timestamp, such that 1 represents spot taken, and 0 spot free on that given time. From
those events, it is possible to extract the parking spot occupancy as a binary function
of time. This work considers a set of 11 different time periods of the day obtained by
dividing working hours from 08:00 am to 07:00 pm into time windows of one hour size.
For each time window, the probability of occupancy can be calculated as the average of the
reported occupancy rate for each week day. Taking the average over several different days
helps smooth the heterogeneous measurements of the dataset. The reported occupancy is
the fraction of that time window in which the spot occupancy binary function is 1.

The work focuses on a subarea of Los Angeles city to reduce the amount of data to
be processed. Also, a data cleaning procedure ensures that only parking spots with more
transactions than average are selected, removing outliers with low number of collected
transactions. After the initial data cleaning, 690 on-street parking spots, with an average
number of transactions around 6000 each, remain for the chosen time frame. The dataset
considered in this work contains data from January to October 2021, excluding weekends
and holidays.

4. Results

This section presents the results of the geostatistical analysis on the Los Angeles (USA)
public parking available data. The same procedure was repeated for each time window.

The results have been generated using geoR [Ribeiro and Diggle 2001], a geo-
statistics library of the software package R. The addressed data has been loaded into a
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Figure 1. Exploratory analysis of parking data (09:00-10:00 am). The four plots
on the left: i) distribution of parking spots of LA (upper left); ii) occupancy rate
data against Y coordinates (upper right); iii) occupancy rate data against X coor-
dinates (lower left); iv) histograms of the occupancy rate (lower right). The four
plots on the right: similar meaning with bias filtered in coordinate Y.

specific library object of type geodata to facilitate the geostatistical analysis. The proce-
dure starts with an exploratory analysis, see results in Figure 1. Color plots show on-street
public parking spots with their respective UTM positions. The data is divided into quar-
tiles following the default geoR color code with blue representing the lowest occupancy
rate and red the higher one. The occupancy rate data is then plotted against axes X and Y
(B&W plots of parking spots in Figure 1). These plots help to identify any uni-directional
bias that might be affecting the data. Histograms of the occupancy rate are also plotted to
understand and verify the normality of data distributions. The plot of occupancy rate data
against Y coordinates in Figure 1 shows a slight linear data bias in direction Y, an effect
observed in all time windows.

The semivariogram is then generated and checked against four correlation func-
tions: Exponential, Mattern, Spherical and Gaussian, as shown in Figure 2. The best cor-
relation function is chosen by computing the loss value according to (3) for each model,
with parameters adjusted by the maximum likelihood estimation function variofit of geoR.

Figure 3 shows the loss of each model with different correlation functions for each
period of the day relative to the worst model (bars are proportional to the loss difference
between the considered model and the worst one). It is possible to observe that there is no
better correlation function for all time windows, although the Exponential function has
the best value (i.e. lowest relative loss value) in 8 of 11 time windows, coming tightly
close to the best value on 2 of the remaining 3 windows.

After choosing the exponential correlation function, the estimated model param-
eters θ = (ϕ, τ 2, σ2) are computed for each period of the day as shown in Table 1. The
range ϕ allows a better understanding of how far a parking spot occupancy can affect a
different spot occupancy during the day, as shown in Figure 4.
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Figure 2. Semivariogram for the data from 09:00-10:00 am and for the four models
with different correlation functions

Figure 3. Loss of each model with different correlation functions for each period
of the day. Bars are proportional to the normalized difference to the worst model
(big bars are better)

Table 1. Estimated model parameters for each time period of the day.
Time period σ2 τ 2 ϕ Time period σ2 τ 2 ϕ
08:00-09:00 0.0305 0.0026 51.94 14:00-15:00 0.0190 0.0103 94.56
09:00-10:00 0.0347 0.0037 75.47 15:00-16:00 0.0306 0.0083 75.29
10:00-11:00 0.0305 0.0071 96.85 16:00-17:00 0.0475 0.0059 70.57
11:00-12:00 0.0231 0.0099 107.7 17:00-18:00 0.0511 0.0045 81.03
12:00-13:00 0.0201 0.0105 108.7 18:00-19:00 0.0527 0.0052 87.22
13:00-14:00 0.0179 0.0109 105.2

The kriging map of the considered area is presented in Figure 5. It is computed
with the krige.conv function of geoR using the chosen model for 09:00-10:00 am. A
simulation of 1000 predictions is made in a grid of points that are 75 m distant from
each other, according to the range of 75.74 m obtained for this time window. When the
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Figure 4. Parking occupancy spatial structure range (ϕ) during the day

map is overlapped with the Los Angeles city map, it is possible to understand the parking
occupancy as heat map and visualize where the occupancy rate is low (green area) or high
(red area). The kriging map is an important result of geostatistical analysis. It allows the
prediction of unknown occupancy rate of parking spots with coordinates known inside the
modeled area. The selected kriging area overlapped with the city map corresponds to the
so called Los Angeles Fashion District. This area contains a high concentration of fashion
stores, which may explain the high parking occupancy in this area.

Figure 5. Kriging map of parking occupancy between 09:00-10:00 am for LA area

5. Conclusion
This work presented a geostatistical model for predicting occupancy of on-street car park-
ing facilities in the city of Los Angeles. Four correlation functions were evaluated with
the Exponential function giving the best results. A total of 11 periods of the day were con-
sidered from 08:00 am to 07:00 pm with different estimated parameters for each one. The
range of parking occupancy presented peak values around 12:00 pm. It probably means
that crowded areas extend the spatial structure correlations around 100 m at peak hours,
which is compatible with a circular area of 200 m (or one block on a street). The obtained
kriging map has shown an occupancy partially constrained by the topology of streets. The
results have limitations such as the small number of spots with available data, and poorly
distributed parking spots. The issues could be further investigated in the future, not least
using data from different cities for the development of a robust model. We expect that the
proposed approach could be used for optimizing the delivery of goods in urban areas with
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restricted parking hours and places, reinforcing the trend of using historical parking data
analysis to guide public policies and decisions related to parking fee adjustment.
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