
Effect of Feature Subset Selection on Samplings for
Performance Prediction of Configurable Systems

João Marcello Bessa Rodrigues1, Juliana Alves Pereira1

1Pontifı́cia Universidade Católica do Rio de Janeiro
Rio de Janeiro – RJ – Brazil

jrodrigues@inf.puc-rio.br, juliana@inf.puc-rio.br

Abstract. Organizations require personalized solutions to effectively address
users’ needs, and stay competitive in the market. In this context, configurable
systems offer numerous configuration options to meet user-specific functional
and non-functional requirements. However, although configurability makes
these systems flexible and versatile, a simple change can result in serious prob-
lems in different software variants, such as performance bottlenecks and security
issues. Thus, automated approaches based on machine learning have been de-
veloped to facilitate configuration management. Our work aims to expand upon
previous findings in this field by assessing their applicability to other scenar-
ios. By introducing more efficient practices, we can contribute to cost reduction,
higher software quality, and quicker time-to-market. This is particularly rele-
vant in a global context where software plays a crucial role.

1. Introduction

Information systems are highly configurable and offer a wide variety of features. Fea-
tures determine the characteristics and functionality of the system [Teaff et al. 2019,
Heradio et al. 2022]. They can be adjusted to meet the specific needs of users’ functional
and non-functional requirements (NFRs). Functional requirements define what the infor-
mation system should do and how it should respond to different inputs and events. NFRs
refer to the performance, quality, and operational characteristics of the system. They
are related to execution time, memory consumption, security, and many other aspects.
The system’s configurability allows users to customize features to align with their unique
needs and constraints, such as optimizing execution time, reducing memory consumption,
or enhancing security measures. However, finding the appropriate customization can be
a complex task in configurable systems. Configurable systems often offer numerous fea-
tures, leading to an overload of options. Poor configuration decisions can result in various
issues, such as, system failures, service interruptions, financial losses, and performance
bottlenecks. This challenge persists even for experienced users with a deep understanding
of the system’s functionality.

To support users in making informed decisions, automated software approaches
based on machine learning (ML) have been proposed in the literature [Pereira et al. 2021].
These approaches help users understand the implications of their choices and how they
will impact the system’s NFRs. They follow a ”sampling, measuring, learning” pro-
cess [Pereira et al. 2021]. The sampling phase aims to efficiently select a small and rep-
resentative sample set of configurations from the vast space of all possible configurations.

Anais Estendidos do XX Simpósio Brasileiro de Sistemas de Informação (SBSI 2024)

VI Concurso de Teses e Dissertações em Sistemas de Informação (CTDSI 2024) e VI Concurso de Trabalhos de Conclusão 
de Curso em Sistemas de Informação (CTCCSI 2024): Trabalhos de Conclusão de Curso 

164 



The measuring phase involves executing the system for the sample set of selected configu-
rations and measuring the relevant NFRs. The learning phase leverages the data collected
in the measuring phase to train a model and identify patterns between features. For ex-
ample, the model may point out that changing one configuration option may affect the
performance or security of other parts of the system, thus assisting users in understanding
the potential trade-offs associated with different configuration choices.

One challenging issue in this area is the time required for training ML models.
Recently, Acher et al.[Acher et al. 2022] proposed a new approach for selecting a small
and representative subset of features to train a predictive model and thus save time. This
approach is then compared with a set of baseline approaches that use the complete set of
features. The authors found that a very small set of features is need to obtain a highly
accurate model. Furthermore, their study demonstrated the notable superiority of the
proposed approach over other approaches when it comes to training time. The authors
focused solely on the Linux operating system as a case study. In addition, it exclusively
used the random sampling strategy for gathering data and conducting experiments.

In this paper, we conduct a replication of the [Acher et al. 2022] study to inves-
tigate the effect of their proposed approach over different systems and sampling strate-
gies. The goal of our experiments is to determine whether the approach proposed
in [Acher et al. 2022] over a particular subject system is as effective across different ap-
plication scenarios and domains. Several sampling strategies have been devised in recent
years [Pereira et al. 2021]. Our analysis across different sampling and application scenar-
ios is inspired by the research conducted by Kaltenecker et al. [Kaltenecker et al. 2019]
and Pereira et al. [Alves Pereira et al. 2020]. Their study emphasizes the importance of
carefully selecting sampling strategies to ensure the accuracy of the prediction model.

However, these studies did not investigate whether sampling strategies are gener-
alized across different algorithms. They use a single linear regression ML algorithm. By
replicating and expanding on these findings, we intend to offer a more comprehensive un-
derstanding of how the feature selection algorithm proposed in [Acher et al. 2022] adapts
to the sampling strategies in et al. [Kaltenecker et al. 2019, Alves Pereira et al. 2020]. In
this context, we investigate to what extent learning approaches are sensitive to different
configurable systems and different performance properties: Is there a dominant sampling
strategy and learning approach that practitioners can always rely on? We hypothesize that
practitioners can rely on a one-size-fits-all sampling strategy and learning approach that
is cost-effective whatever the factors influencing the distribution of different configura-
tion spaces. On the contrary, another hypothesis is that practitioners should change their
sampling strategy and learning approach each time a system or a performance property
is targeted. To test our hypothesis, we systematically report the influence of sampling
strategies and learning approaches on the accuracy of performance predictions over the
number of features and configurations used to train a model.

We make the following five contributions:

1. The use of different systems is not explored in [Acher et al. 2022]. Thus, we
gather preliminary insights about the effectiveness of their proposal approach
across eight systems.

2. The use of different learning algorithms and parameter tuning are not explored in
[Kaltenecker et al. 2019, Alves Pereira et al. 2020]. These strategies may have a

Anais Estendidos do XX Simpósio Brasileiro de Sistemas de Informação (SBSI 2024)

VI Concurso de Teses e Dissertações em Sistemas de Informação (CTDSI 2024) e VI Concurso de Trabalhos de Conclusão 
de Curso em Sistemas de Informação (CTCCSI 2024): Trabalhos de Conclusão de Curso 

165 



strong influence on the prediction accuracy of different sampling strategies. We
gather preliminary insights about the effectiveness of eight learning algorithms.

3. The use of different systems and sampling strategies is not explored in
[Acher et al. 2022]. Thus, we gather preliminary insights about the effectiveness
of six sampling strategies on eight systems and six performance properties.

4. A comparison of a wide range of ML algorithms and the effects of tree-based
feature selection and sampling strategies over training time.

5. We have made all the artifacts publicly available at [art 2023].

2. Design Study

We follow four learning phases: “sampling, measurement, learning, and evaluation”. We
replicate the sampling studies of [Kaltenecker et al. 2019] and [Alves Pereira et al. 2020].
We build and measure the performance property of each generated sampled configuration.
The sample was partitioned into training and testing sets (10%, 20%, ..., 90%). Through
feature construction, we develop attributes correlated with the target to boost the model’s
effectiveness [Vouk et al. 2023]. In the preprocessing phase, we address feature collinear-
ity by removing mutually exclusive features and refining the model input for better accu-
racy and efficiency. Feature selection employs tree-based algorithms like Random Forest
to prioritize features, enhancing training with top-ranked features (see Section2.3). This
method was evaluated against a baseline that uses the complete set of features and random
sampling. Next, we introduce our research questions, the subject systems used, and the
experiment setup.

2.1. Research Questions

To identify relevant systems beyond the Linux kernel, we relied on a systematic literature
review conducted by [Pereira et al. 2021]. Based on that work, we have selected a set of
eight configurable systems that are suitable for our experiments. We aim at answering the
following three research questions:

RQ1. How accurate is the prediction model with and without feature selection? To an-
swer this question, we will compare the accuracy of the model using a subset of relevant
features as input against the use of the complete set of features as input. Accuracy was
measured using the Mean Absolute Percentage Error (MAPE).

RQ2. To what extent does the use of different sampling strategies degrade the accuracy of
a prediction model with and without feature selection? The main goal of this question is
to assess the effectiveness of various sampling strategies derived from a previous study in
the field [Kaltenecker et al. 2019, Alves Pereira et al. 2020]. While the previous studies
consider all features to make predictions, the objective of this study is to analyze the
impact of different sampling approaches on the accuracy of performance predictions with
a restricted set of features taken as input.

RQ3. How many computational resources are saved with feature selection? To assess
computational resources saved with feature selection, we measure the time required to
train each used learning model and sampling strategy. The training time was compared
between models using the complete set of features and the subset of relevant features.

Anais Estendidos do XX Simpósio Brasileiro de Sistemas de Informação (SBSI 2024)

VI Concurso de Teses e Dissertações em Sistemas de Informação (CTDSI 2024) e VI Concurso de Trabalhos de Conclusão 
de Curso em Sistemas de Informação (CTCCSI 2024): Trabalhos de Conclusão de Curso 

166 



2.2. Subject System and Non-Functional Properties

To select subject systems for our study, we employed criteria based on dataset availability
and verifiability from 69 systematic literature review studies [Pereira et al. 2021]. Ini-
tially, 46 studies were excluded due to inaccessible links or missing dataset repositories.
We further disqualified 13 studies lacking an available feature model, crucial for sample
generation as per [Kaltenecker et al. 2019]. This filtration left us with eight systems af-
ter removing two for inadequate dataset details (refer to Table 1). Our selection spans
various domains, feature and configuration counts, and performance metrics, ensuring a
comprehensive analysis framework.

Table 1. Table 1. Overview of Information Systems: Domain, Valid Configurations
(#C), Features (#O), and Performance Metric.

Name Domain #C #F Performance

7Z File archive utility 68,640 45 Compression time
BDB-C Embedded database 2,560 20 Response time
DUNE Multigrid solver 2,304 59 Solving time
HIPAcc Image processing 13,485 56 Solving time
LLVM Compiler 1,024 13 Compilation time
LRZIP File archive utility 432 21 Compression time
POLLY Code optimizer 60,000 41 Runtime
X264 Video encoder 1,152 18 Encoding time

2.3. Selection of Machine Learning Algorithms

In replicating the original study [Acher et al. 2022], we used the same list of ML
algorithms, focusing on eight, including Linear Regression [Jamshidi et al. 2019],
Ridge Regression [Rajan 2022, Chang et al. 2017], and others such as Random For-
est [Amand et al. 2019, Bao et al. 2018], which is central to our methodology for feature
selection. Our goal is to efficiently select essential features for machine learning models
to balance resource usage and accuracy.

2.4. Selection of Sampling Strategies

In replicating the studies of [Acher et al. 2022] and [Kaltenecker et al. 2019], we
used a list of six sampling strategies: Random Sampling [Guo et al. 2013], Solver-
based [Pereira et al. 2021], Rand Solver-based [Chen et al. 2005, Chen et al. 2004],
Coverage-based [Johansen et al. 2012, Marijan et al. 2013], Distance-
based [Kaltenecker et al. 2019], and Div Distance-based [Kaltenecker et al. 2019]

2.5. Experiment Setup

To assess the accuracy of ML models for each system, the authors partition the dataset
into training and test subsets. This division is performed using the cross-validation tech-
nique, where the dataset is randomly split into k subsets. Each subset is used as a test
set once, while the remaining k-1 subsets are used to train the model. Cross-validation
allows for evaluating the generalization and robustness of the trained models, ensuring
that the results are not influenced by a single random data split. To evaluate the ac-
curacy of our models, we employed the Mean Absolute Percentage Error (MAPE) as
our primary metric. We used MAPE to allow us to compare our results with the results
of [Acher et al. 2019].

Anais Estendidos do XX Simpósio Brasileiro de Sistemas de Informação (SBSI 2024)

VI Concurso de Teses e Dissertações em Sistemas de Informação (CTDSI 2024) e VI Concurso de Trabalhos de Conclusão 
de Curso em Sistemas de Informação (CTCCSI 2024): Trabalhos de Conclusão de Curso 

167 



This study considers different training scenarios by varying the training and test-
ing sizes (10%, 20%, 30%, ..., 90%) and the number of examples used in creating the
feature ranking lists (30%, 40%,50%, 60%). We analyze the MAPE for each setup, both
with and without feature selection, extending Acher et al.’s study (Section 2.1 – RQ1).
Additionally, we examine the impact of different sampling strategies on model accuracy
(Section 2.1 – RQ2). Finally, we measured the computational resources required for train-
ing our models. We focus on evaluating any potential savings achieved through feature
selection (Section 2.1 – RQ3). Then, we repeated the process multiple times and reported
the average performance MAPE, to ensure consistent and reliable results.

2.6. Artifact Availability

The artifacts of our study are available in our supplementary material [art 2023]. Our ma-
terial contains a notebook that is an efficient resource for exploring the available config-
urable system measurements. This notebook is thoughtfully structured into four distinct
sections - sample, measurement, learning, and evaluation.

3. Results

We now present our results and answer the research questions defined in Section 2.

3.1. RQ1. Learning Accuracy with Feature Selection

Table 2 presents the average MAPE of the best statistical learning algorithms for each
system, for various sizes of training set (N), both without and with tree-based feature se-
lection. The sample was obtained using a random sampling strategy, as in the original
study [Acher et al. 2022]. We show the best algorithm from a set of eight algorithms,
which includes Linear Regression, Ridge Regression, Lasso Regression, Polynomial Re-
gression, ElasticNet, Decision Tree, Random Forest, and GBTree.

Table 2. MAPE of the best learning algorithm for the prediction of performance
for each system, without and with tree-based feature selection, with N being the
percentage of the dataset used as training.

System
Without Feature Selection With Feature Selection

Algorithm N=30 N=50 N=70 N=90 Algorithm N=30 N=50 N=70 N=90

7z RandomForest 4.53 3.73 3.45 3.35 RandomForest 5.57 5.06 4.87 4.83
BDB-C DecisionTree 5.98 1.01 0.45 0.58 DecisionTree 0.82 0.67 0.62 0.51
Dune RandomForest 6.73 5.32 4.94 4.61 GBTree 9.34 8.71 8.15 8.30
Hipacc RandomForest 3.59 2.18 1.66 1.54 RandomForest 4.32 3.68 3.64 3.57
Lrzip DecisionTree 12.73 13.39 11.07 2.79 DecisionTree 28.31 29.89 24.44 17.93
LLVM LinearRegression 2.65 2.88 3.18 2.88 GBTree 2.18 1.59 1.32 1.80
Polly RandomForest 1.70 1.24 1.17 1.06 RandomForest 1.35 1.19 1.19 1.20
x264 DecisionTree 2.13 1.40 0.57 0.18 GBTree 1.17 1.04 0.44 0.38

To rank the algorithms, we calculated a weighted value of the MAPE, taking into
account the training percentage. Detailed results for all eight algorithms in each sys-
tem, using training rates from 10% to 90% and feature selection from 30% to 60%, are
available in our supplementary material [art 2023]. Most algorithms met our set time and
memory limits, except Polynomial Regression without feature selection, which did not
scale to degree 2, similar to observations in the original study for the Linux Kernel.

Anais Estendidos do XX Simpósio Brasileiro de Sistemas de Informação (SBSI 2024)

VI Concurso de Teses e Dissertações em Sistemas de Informação (CTDSI 2024) e VI Concurso de Trabalhos de Conclusão 
de Curso em Sistemas de Informação (CTCCSI 2024): Trabalhos de Conclusão de Curso 

168 



3.1.1. What is the best algorithm to learn performance?

In our analysis, Random Forest, Decision Tree, and Linear Regression were identified as
leading algorithms without feature selection, aligning with [Acher et al. 2022]’s findings,
with an exception for Linear Regression. Random Forest excelled in systems with ex-
tensive feature sets, such as DUNE and HIPAcc (see Table 1). Most algorithms showed
performance gains with increased training data, excluding BDB-C and LLVM, which
peaked at 70% and 30% training data, respectively, suggesting feature set size impacts.

Minimal MAPE variance was observed between 50%–70% and 70%–90% train-
ing data increments across systems, with lrzip being an exception. Linear Regression and
GB-Tree delivered comparable results for LLVM, with MAPEs between 2.86 and 3.26.
High MAPE rates were noted in BDB-C and Lrzip across algorithms, barring Decision
Tree and Random Forest, which notably excelled, especially in feature-rich systems with
ample training data.

3.1.2. How many features do we need to learn performance?

Figure 1 demonstrates the impact of feature selection on system accuracy with a 70%
training set. It specifically shows Random Forest’s performance for feature selections
between 30% and 60%, indicating stable accuracy, especially between 50% and 60%,
where the mean absolute percentage error (MAPE) remains under 10%, except for lrzip
at N=90%. These findings, summarized in Table 2 for a 50% feature selection scenario,
confirm that a limited number of features significantly affect system performance.

Figure 1. Value of MAPE for the percentage of selected features with the training
set N=70% for the best algorithm mentioned in Table 2.

3.1.3. What is the effect of feature selection?

Table 2 reveals that models trained with 50% of top-ranked features exhibit diverse MAPE
outcomes, with Tree-based algorithms (Random Forest, GBTree, Decision Tree) showing
enhanced performance, aligning with [Acher et al. 2022]’s Linux Kernel analysis. No-
tably, larger training sets didn’t consistently lower MAPE. Some systems experienced
minor MAPE increases (up to 0.15%) with training data expansion from 70% to 90%,
except for lrzip and LLVM, particularly in feature-rich systems (7z, Dune, Hipacc).

Anais Estendidos do XX Simpósio Brasileiro de Sistemas de Informação (SBSI 2024)

VI Concurso de Teses e Dissertações em Sistemas de Informação (CTDSI 2024) e VI Concurso de Trabalhos de Conclusão 
de Curso em Sistemas de Informação (CTCCSI 2024): Trabalhos de Conclusão de Curso 

169 



Feature selection’s impact varied: it reduced average MAPE in feature-sparse sys-
tems (LLVM, BDB-C, x264) but was less beneficial in systems with over 30 features.
Linear regression variants (Lasso, Ridge, Elasticnet) underperformed in both scenarios,
underscoring the complexity of performance prediction. A notable observation was at
70% training data for LLVM, where MAPE spiked by 2.48 points (1.32% vs 3.18%) with
tree-based selection, hinting at improved precision. MAPE stability from 70% to 90%
training data was consistent, setting a 70% standard training set size for future inquiries,
with lrzip as an exception at 90%.

3.2. RQ2. Sampling Strategies Accuracy

Table 3 compares the MAPE of different sampling strategies for models trained with
and without feature selection (50% and 100% of features, respectively), using 70% of
configurations for training. The best MAPEs, indicating the lowest error percentage for
each system, are highlighted in bold, based on the best algorithms identified in RQ1.

Table 3. Systems best learning algorithm MAPE for sampling strategies using
50% or 100% of selected features with 70% of the dataset used as training.

Distance-based Div Distance-based Rand Solver-based Random Sampling Solver-based Coverage-based

System Algorithm 50 100 50 100 50 100 50 100 50 100 50 100

7z RandomForest 3.94 3.45 4.21 4.09 5.51 5.09 4.87 5.28 4.07 3.89 4.07 3.98
DBC-C DecisionTree 0.53 0.45 0.55 0.64 1.56 1.45 0.62 0.78 0.54 0.51 0.98 0.81
Dune GBTree 6.00 6.68 7.02 7.33 9.76 9.28 8.15 7.36 8.02 7.78 8.98 7.63

RandomForest 5.49 4.94 7.03 5.51 9.38 7.07 8.33 6.33 8.46 6.12 8.75 6.17
Hipacc RandomForest 3.25 1.66 4.01 2.40 3.98 2.25 3.64 2.20 3.55 1.88 3.28 2.03
Lrzip DecisionTree 36.10 11.07 52.82 3.52 56.05 2.99 24.44 3.45 6.30 2.68 43.82 4.29
LLVM GBTree 2.93 2.86 1.89 2.21 1.25 1.26 1.32 1.50 2.14 2.19 1.81 1.86

LinearRegression 3.15 3.18 2.83 2.97 1.20 1.24 2.42 2.48 2.51 2.45 2.19 2.44
Polly RandomForest 1.18 1.17 1.29 1.31 0.89 1.67 1.19 1.15 1.06 1.06 1.28 1.33
x264 DecisionTree 1.10 0.57 1.45 1.30 1.13 0.24 0.68 1.01 0.20 0.27 0.76 0.70

GBTree 0.82 0.81 0.75 0.83 0.65 0.30 0.44 0.84 0.22 0.16 0.57 0.48

Distance-based sampling excelled in four systems (7z, BerckleyDBC, Dune, and
Hipacc) using tree-based learning algorithms. Hipacc had nearly twice the accuracy with
feature selection. Solver-based sampling was more effective for Polly, Lrzip, and x264,
with x264 showing lower error rates both with and without feature selection. We can also
observe that Solver-based obtained the best values for two of the three systems where De-
cision Tree was the training algorithm with the highest accuracy, with Lrzip (with feature
selection) having significantly better results in comparison to other sampling strategies.
The Rand Solver-based strategy stood out in three systems (LLVM, Polly, and x264),
with results below 1.3% MAPE for tree-based algorithms and linear regression. Distance-
based, Rand Solver-based, and Solver-based sampling strategies result in the most accu-
rate performance models for the eight subject systems and dataset sizes. We identified that
Rand Solver-based sampling obtained the best MAPEs. Rand Solver-based also stood out
for the best results on four distinct types of learning algorithms.

3.3. RQ3. Training Time

The computational resources used for training with and without feature selection were
analyzed in a controlled environment1, where all the processing time information was
obtained for all systems, sample algorithms, and training sets. For training sets without

1We used an Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz, with 96GB RAM, and an SSD of 1TB.

Anais Estendidos do XX Simpósio Brasileiro de Sistemas de Informação (SBSI 2024)

VI Concurso de Teses e Dissertações em Sistemas de Informação (CTDSI 2024) e VI Concurso de Trabalhos de Conclusão 
de Curso em Sistemas de Informação (CTCCSI 2024): Trabalhos de Conclusão de Curso 

170 



feature selection, considering the total computational time for the six sampling strategies
used, ranged from 45 to 4,091 seconds. Figure 2 (left) shows the computation times of
these systems for each sampling algorithm, considering all system features and using 70%
of the database for training. For Random Forest, we reported for x264 a 45-second com-
putation over 19 features and 212 rows of the dataset. 7z took 546 seconds computational
over 4,091 dataset rows for 46 features. BDB-C, Dune, Hipacc, Lrzip, LLVM, and Polly
reported 79, 189, 486, 88, 60, and 234 seconds of computation time, respectively.

[100% of the selected characteristics.] [50% of the selected characteristics.]

Figure 2. Algorithm training time considering 100% and 50% of the selected fea-
tures with training set N=70% for the best algorithm mentioned in Table 2.

The graph in Figure 2 (right) presents the system improvement rate with feature
selection. It also shows that for systems under 30 features, tree-based feature selection
increased the training time from 8% to 105%. However, despite the highest rates of
increase in training time, the smaller systems improved their accuracy by up to 200%, as
can be seen with the LLVM system. The systems that achieved improvement in training
time were not able to achieve rates as significant as those obtained in the original study
for the Linux system. Dune, 7z, Polly, and Hipacc improved by 34%, 31%, 30%, and
20% respectively for 50% of the selected features, while the Linux system reached values
above 1,600% for 5.7% of the selected features.

4. Discussion

This research extends the current understanding of ML approaches’ effectiveness in sys-
tem configuration, thus carrying a variety of practical implications for different stakehold-
ers. It validates that for systems with more than 30 features, tree-based feature selection
approaches can offer computational savings and improve model accuracy. Conversely,
for smaller systems with fewer features, these approaches might extend the training pe-
riod without significantly enhancing performance, suggesting that ML approach selection
should be adapted to the system’s specific characteristics.

Regarding sampling strategies, results vary significantly depending on the system,
properties, and learning algorithms used. While distance-based sampling is shown to be
more effective for medium to large sample sets, and random sampling is preferred for half
of the systems, there is not a universally superior dominant strategy across all contexts.
Coverage-based sampling presents promising results in terms of balancing sample size

Anais Estendidos do XX Simpósio Brasileiro de Sistemas de Informação (SBSI 2024)

VI Concurso de Teses e Dissertações em Sistemas de Informação (CTDSI 2024) e VI Concurso de Trabalhos de Conclusão 
de Curso em Sistemas de Informação (CTCCSI 2024): Trabalhos de Conclusão de Curso 

171 



and prediction model accuracy. Additionally, the study also highlights a significant limi-
tation in replicating sampling strategies in complex systems like the Linux kernel, due to
the lack of available feature models. Future exploration of the use of transfer learning as
a potential solution when feature models are not available is suggested.

By replicating the research across eight systems beyond Linux, it was found that
the trends and methodologies observed could be applied to other configurable systems,
although results may vary. The text emphasizes the importance of feature selection in-
fluenced by both sampling method analysis and consideration of static software metrics,
suggesting a path for future investigations into the interplay between static software met-
rics and the feature selection process.

5. Conclusion
We investigate the advantages of using a subset of options when configuring information
systems to obtain faster, simpler, and more accurate performance models. This study
investigates six sampling strategies [Kaltenecker et al. 2019, Alves Pereira et al. 2020] to
build upon the precedents established by successful implementations in complex systems,
like the Linux kernel [Acher et al. 2022]. Our work has made a substantial contribution
by offering research artifacts that improve the dependability and reproducibility of ML
applications in configurable systems.

In the context of Information Systems (IS), our findings hold substantial relevance.
The approach offers a strong foundation for incorporating innovative ML approaches into
the system development lifecycle, which promotes and raises the level of software so-
lutions for IS practitioners and developers. It directly contributes to the operational ef-
ficiency and effectiveness of IS through the simplification of configuration management
processes. Thus, reducing computational resources and facilitates a more intuitive under-
standing of configuration impacts on performance.

References
(2023). Effect of feature subset selection on samplings (artifact). https://anonymous.

4open.science/r/FSE2024-785D/. Accessed: 2023-09-28.

Acher, M., Martin, H., Lesoil, L., Blouin, A., Jézéquel, J.-M., Khelladi, D. E., Barais, O., and
Pereira, J. A. (2022). Feature subset selection for learning huge configuration spaces: the
case of linux kernel size. In Proceedings of the 26th ACM International Systems and Software
Product Line Conference-Volume A, pages 85–96.

Acher, M., Martin, H., Pereira, J. A., Blouin, A., Jézéquel, J.-M., Khelladi, D. E., Lesoil, L., and
Barais, O. (2019). Learning very large configuration spaces: What matters for linux kernel
sizes. PhD thesis, Inria Rennes-Bretagne Atlantique.

Alves Pereira, J., Acher, M., Martin, H., and Jézéquel, J.-M. (2020). Sampling effect on perfor-
mance prediction of configurable systems: A case study. page 277–288, New York, NY, USA.
Association for Computing Machinery.

Amand, B., Cordy, M., Heymans, P., Acher, M., Temple, P., and Jézéquel, J.-M. (2019). To-
wards learning-aided configuration in 3d printing: Feasibility study and application to defect
prediction. In Proceedings of the 13th International Workshop on Variability Modelling of
Software-Intensive Systems, page 7. ACM.

Anais Estendidos do XX Simpósio Brasileiro de Sistemas de Informação (SBSI 2024)

VI Concurso de Teses e Dissertações em Sistemas de Informação (CTDSI 2024) e VI Concurso de Trabalhos de Conclusão 
de Curso em Sistemas de Informação (CTCCSI 2024): Trabalhos de Conclusão de Curso 

172 



Bao, L., Liu, X., Xu, Z., and Fang, B. (2018). Autoconfig: automatic configuration tuning for
distributed message systems. pages 29–40.

Chang, X., Lin, S.-B., and Zhou, D.-X. (2017). Distributed semi-supervised learning with kernel
ridge regression. The Journal of Machine Learning Research, 18(1):1493–1514.

Chen, T. Y., Leung, H., and Mak, I. K. (2005). Adaptive random testing. In Maher, M. J., editor,
Advances in Computer Science - ASIAN 2004. Higher-Level Decision Making, pages 320–329,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Chen, T. Y., Merkel, R., Wong, P., and Eddy, G. (2004). Adaptive random testing through dy-
namic partitioning. In Fourth International Conference onQuality Software, 2004. QSIC 2004.
Proceedings., pages 79–86. IEEE.

Guo, J., Czarnecki, K., Apel, S., Siegmund, N., and Wasowski, A. (2013). Variability-aware
performance prediction: A statistical learning approach. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 301–311. IEEE.

Heradio, R., Fernandez-Amoros, D., Galindo, J. A., Benavides, D., and Batory, D. (2022). Uni-
form and scalable sampling of highly configurable systems. Empirical Softw. Engg., 27(2).

Jamshidi, P., Cámara, J., Schmerl, B., Kästner, C., and Garlan, D. (2019). Machine learning
meets quantitative planning: Enabling self-adaptation in autonomous robots. arXiv preprint
arXiv:1903.03920.

Johansen, M. F., Haugen, Ø., and Fleurey, F. (2012). An algorithm for generating t-wise covering
arrays from large feature models. In SPLC’12, pages 46–55.

Kaltenecker, C., Grebhahn, A., Siegmund, N., Guo, J., and Apel, S. (2019). Distance-based
sampling of software configuration spaces. In Proceedings of the International Conference on
Software Engineering (ICSE).

Marijan, D., Gotlieb, A., Sen, S., and Hervieu, A. (2013). Practical pairwise testing for software
product lines. In Proceedings of the 17th International Software Product Line Conference,
SPLC ’13, page 227–235, New York, NY, USA. Association for Computing Machinery.

Pereira, J. A., Acher, M., Martin, H., Jézéquel, J.-M., Botterweck, G., and Ventresque, A. (2021).
Learning software configuration spaces: A systematic literature review. Journal of Systems and
Software, 182:111044.

Rajan, M. (2022). An efficient ridge regression algorithm with parameter estimation for data
analysis in machine learning. SN Computer Science, 3(2):171.

Teaff, J., Young, B., and Clements, P. (2019). Applying feature-based systems and software prod-
uct line engineering in unclassified and classified environments. INCOSE International Sym-
posium, 29:269–283.

Vouk, B., Guid, M., and Robnik-Šikonja, M. (2023). Feature construction using explanations of
individual predictions. Engineering Applications of Artificial Intelligence, 120:105823.

Anais Estendidos do XX Simpósio Brasileiro de Sistemas de Informação (SBSI 2024)

VI Concurso de Teses e Dissertações em Sistemas de Informação (CTDSI 2024) e VI Concurso de Trabalhos de Conclusão 
de Curso em Sistemas de Informação (CTCCSI 2024): Trabalhos de Conclusão de Curso 

173 




