Utilizando a GPU ARM Mali-G31 para a execucao
do YOLOX com o framework Burn

Luiz F. B. de Araujo, Marcio S. Oyamada
Centro de Ciéncias Exatas e Tecnoldgicas
Universidade Estadual do Oeste do Parand (Unioeste) — Campus de Cascavel
Cascavel-PR, Brazil
{luiz.araujo2, marcio.oyamada} @unioeste.br

Abstract—O presente trabalho investiga a utilizacdo da GPU
ARM Mali-G31, comum em SBCs (single board computer) e
em TVBox de baixo custo, para o processamento de redes
neurais convolucionais utilizando o framework Burn. O estudo
foi conduzido em uma TVBox Amlogic S905X4 descaracterizada,
executando o sistema Debian Bookworm, a fim de avaliar a
viabilidade do uso de hardware reaproveitado em aplicacoes de
computacio na borda. Foram realizados testes de inferéncia com
o modelo YOLOX-Tiny, empregando os backends NdArray (CPU)
e WGPU (GPU) do Burn. Os resultados demonstraram que,
embora o backend WGPU permita a execucao na GPU Mali-G31
via OpenGL, o desempenho foi inferior ao da CPU, apresentando
laténcia aproximadamente quatro vezes maior. Essa diferenca é
atribuida a auséncia de suporte completo ao Vulkan, melhor que
0 OpenGL em tarefas de computacio, e as limitacoes intrinsecas
da arquitetura da GPU. Apesar disso, a execucao bem-sucedida
da inferéncia comprova a compatibilidade do Burn com os drivers
de codigo aberto da GPU ARM Mali-G31, Panfrost e Mesa, e
evidencia o potencial de reutilizacao de dispositivos descartados
em aplicacoes sustentaveis de IA embarcada. O estudo contribui
para a democratizacao de aplicacoes de aprendizado profundo
em plataformas acessiveis e destaca oportunidades de otimizacio
para trabalhos futuros.

Index Terms—Computacao em borda, GPU ARM Mali-G31,
Burn, WGPU

I. INTRODUCAO

A crescente demanda por aplicagdes de inteligéncia artificial
em dispositivos embarcados, que em geral possuem recursos
limitados, tem acelerado a necessidade de solucgdes eficientes
e portateis. A computacdo na borda, em especial, pode se
beneficiar do uso de NPUs e GPUs presentes em SoCs
(System-on-Chip) para acelerar o processamento de modelos
de inferéncia.

Nesse sentido, existem solucdes comerciais, como a linha
NVIDIA Jetson ou Google Coral, que oferecem desempenho
elevado para aplicacOes que fazem uso de redes neurais artifi-
ciais [1] [2], mas a um custo consideravelmente elevado. No
entanto, entre as plataformas embarcadas disponiveis, as GPUs
Arm Mali se destacam por sua ampla ado¢cdo em SBCs de
baixo custo e consumo, presentes até mesmo em dispositivos
do tipo TVBox que podem ser descaracterizados para executar
Linux. A GPU ARM Mali-G31, por exemplo, baseado na
arquitetura Bifrost, oferece suporte teérico ao OpenGL ES
3.1 e ao Vulkan 1.0 por meio dos drivers de cédigo aberto
Panfrost e Mesa, o que viabiliza cargas de trabalho gréficas e
de computacdo acelerada por GPU em sistemas Linux [3].

GPUs de sistemas embarcados, como a ARM Mali-G31,
por se tratarem de arquiteturas mais simples, ndo sdo com-
pativeis com APIs especializadas para GPGPU (computagdo
de propésito geral em unidades de processamento grafico),
como CUDA, OpenVINO ou ROCm. Nesse contexto, o Burn,
um framework em desenvolvimento para aprendizado pro-
fundo escrito em Rust, pode ser utilizado para aproveitar
as capacidades de processamento grafico dessas GPUs para
tarefas de GPGPU utilizando APIs graficas tradicionais em vez
de APIs focadas em computacdo. Ele foi projetado com foco
em flexibilidade, desempenho e portabilidade entre diferentes
backends, como CUDA, ROCm, WGPU, dentre outros. Sua
arquitetura permite a troca de backends de forma transparente,
além de oferecer suporte a execuc¢do assincrona, fusdo de
kernels e gerenciamento inteligente de memoria, o que permite
sua utilizacdo em diferentes perfis de hardware [4].

O backend WGPU do Burn atua como uma camada de
abstracdo sobre APIs graficas multiplataforma, permitindo
que o mesmo cddigo seja executado sobre Vulkan, Metal,
DirectX ou OpenGL, conforme a disponibilidade do sistema,
utilizando os shaders de computacdo disponiveis nas APIs
compativeis. Em plataformas ARM com GPUs Mali, como a
utilizada neste trabalho, o WGPU identifica automaticamente o
suporte disponivel e utiliza o0 OpenGL como modo alternativo
(fallback) quando o Vulkan ndo estd plenamente implementado
[5]. Essa caracteristica garante portabilidade, mas implica em
perda de desempenho em cargas de trabalho mais intensas,
com as quais o OpenGL € geralmente pior que o Vulkan [6]
(71 [8].

O modelo utilizado nos experimentos foi o YOLOX-Tiny,
uma variante leve da familia YOLO, desenvolvida pela Megvii
em 2021. O YOLOX adota uma abordagem anchor-free,
dispensando as caixas de ancoragem tradicionais e simplifi-
cando o processo de treinamento [9]. O YOLOX oferece um
bom equilibrio entre velocidade e acuricia, sendo amplamente
adotado em aplicagdes de deteccdo de objetos em tempo real.
Entre suas variantes, o YOLOX-Tiny destaca-se pela eficiéncia
computacional, o que o torna adequado para execu¢do em
dispositivos de borda com recursos limitados, como a TVBox
analisada neste trabalho.

Este trabalho, portanto, faz uma investigacdo inicial acerca
da integracdo do framework Burn com a GPU ARM Mali-
G31, utilizando os drivers de cédigo aberto Panfrost e Mesa.

O objetivo € avaliar a viabilidade desse conjunto de softwares
para acelerar inferéncias na borda, utilizando um modelo de
deteccdo de objetos, e indicar potenciais otimizagdes e destacar
os desafios relacionados a maturidade dos drivers.

II. PREPARAQAO DO TESTE

Os experimentos foram realizados em uma TVBox descar-
acterizada, doada pela Receita Federal a Universidade Estadual
do Oeste do Parana. Trata-se de uma X Plus Pro, equipado com
0 SoC Amlogic S905X4. A Tabela I mostra as especificacdes
do dispositivo, que foi descaracterizado e configurado para
executar uma imagem customizada do Debian Bookworm!
para SoC da Amlogic [10], instalada em um cartdo microSD,
substituindo o sistema operacional original (Android).

Table 1
ESPECIFICACOES DO DISPOSITIVO UTILIZADO NOS EXPERIMENTOS

Componente Especificacao

Modelo X Plus Pro (descaracterizada)
SoC Amlogic S905X4

CPU 4x ARM Cortex-A55 @ 2 GHz
GPU ARM Mali-G31 MP2

Memoéria RAM 4 GB LPDDR4
Armazenamento interno 64 GB eMMC

Sistema operacional Debian Bookworm (devmfc)

A Fig. 1 apresenta o diagrama de blocos do SoC Am-
logic S905X4, mostrando a organizagdo dos seus principais
componentes. O processador integra quatro nicleos ARM
Cortex-AS55 de 64 bits, cada um com cache L1 dedicada
(32 KB para instrugdes e 32 KB para dados) e cache L2
compartilhada, oferecendo suporte a instru¢des NEON e VFP
para aceleracdo de operacdes vetoriais. A unidade grafica
Mali-G31 MP2, baseada na arquitetura Bifrost, é responsavel
pelo processamento grafico e computacional, compartilhando
a controladora de meméria DDR3/DDR4/LPDDR4 e o bar-
ramento de alta largura de banda do sistema. O diagrama
também mostra os blocos auxiliares dedicados a dudio e video,
como o HiFi4 DSP e o AVE-10 Video Engine, além do
mecanismo de seguranca TrustZone, que garante a execugao
isolada de processos sensiveis. As interfaces externas incluem
controladores USB 3.0, PCIe 2.0, Ethernet, HDMI 2.1, 128,
I2C e SPI, permitindo conectividade e suporte multimidia. Em
conjunto, esses modulos tornam o S905X4 um SoC capaz de
executar aplica¢des de inteligéncia artificial e processamento
de video em dispositivos de baixo consumo energético.

Para a execugdo dos testes, foi empregado o framework
Burn em sua versao 0.18.0. O cédigo utilizado foi adaptado a
partir dos exemplos oficiais da Tracel Al [11], incorporando
medi¢des de tempo em cada etapa do pipeline. O cédigo-fonte
completo encontra-se no GitHub?.

Para facilitar os testes, a obten¢do do modelo pré-treinado
segue uma rotina automatizada implementada em Rust, na
qual a estrutura de dados Weights armazena o endereco

'Versdo 6.12.30, disponivel em https:/github.com/devmfc/debian-on-
amlogic/releases/tag/v6.12.30
2Disponivel em: https:/github.com/Ibecher/yolox-burn

S905X4

DDR¥3LM & LPDDR34 | eMMC/SLC NAND SP1
Mamory Controller Flash Controller Flash Controller

System Interface

TOM/ 28
Sterea Audio DAC

Fig. 1. Diagrama de blocos do Amlogic S905X4

do arquivo de pesos e o numero de classes do conjunto
COCO. Quando a funcionalidade pretrained é habilitada,
o médulo downloader verifica a presenga do arquivo na
pasta de cache local do usuério ("/.cache/yolox—burn);
caso o arquivo ainda ndo exista, ele é baixado diretamente
do repositério oficial da Megvii e salvo localmente antes
de ser carregado para inferéncia. Essa abordagem garante
reprodutibilidade e dispensa a necessidade de downloads man-
uais, simplificando a configuragdo do ambiente de testes. No
presente estudo, foi utilizado o modelo YOLOX-Tiny, cujos
pesos pré-treinados (yolox_tiny.pth) foram obtidos a
partir da versdo 0.1.1rcO da implementacdo oficial.

Quanto ao ambiente de compilacdo, este foi configurado
diretamente no Debian Bookworm, utilizando o compilador
Rust 1.90, instalado por meio do rustup. A compilacdo e
execucdo do projeto foi realizada com os comandos:

cargo run -r \
-F pretrained,wgpu-backend \
—-— dog_bike_man. jpg
cargo run -r \
-F pretrained,ndarray-backend \
—— dog_bike_man. jpg

Durante a execugdo, foram coletados os tempos de cada
etapa do processo de inferéncia, incluindo inicializagdo do
dispositivo, carregamento do modelo, pré-processamento, in-
feréncia (forward pass) e pds-processamento. Os testes foram
repetidos para ambos os backends disponiveis no Burn (o
NdArray, que opera exclusivamente na CPU, e o WGPU,
que utiliza a GPU Mali-G31 por meio do OpenGL). Cada
execucdo foi realizada individualmente, com medi¢des au-
tomaticas feitas utilizando funcdes internas de temporizacio
(Instant) da biblioteca padrdo do Rust, garantindo precisdo
temporal em microssegundos. Para reduzir a variabilidade
estatistica e assegurar maior confiabilidade na avaliagdo do

desempenho, o programa foi executado cinco vezes para se
obter a média simples dos tempos de execucdo.

O experimento teve como objetivo principal comparar o
desempenho entre os dois modos de execugdo e verificar
a viabilidade da utilizacio da GPU ARM Mali-G31 como
aceleradora de tarefas de inferéncia de modelos de visdo
computacional.

III. RESULTADOS E DISCUSSOES

A Fig. 2 apresenta a imagem de entrada utilizada no teste,
contendo um homem, uma bicicleta e um cachorro. A Fig. 3
mostra o resultado da inferéncia, com as detec¢des sobrepostas
e as respectivas classes identificadas.

Fig. 2. Imagem de entrada utilizada para inferéncia.

O Burn, como visto na Fig. 3, utilizando o modelo pré-
treinado YOLOX-Tiny, identificou corretamente trés objetos
principais na Fig. 2, mantendo-se consistente entre as in-
feréncias realizadas nos dois backends. A primeira deteccio
corresponde ao homem, com confianga de 0,87 e coordenadas
delimitadas em [219,56, 24,69, 433,04, 452,30]. A segunda
deteccdo refere-se a bicicleta, com confianca de 0,96 e coor-
denadas [79,50, 220,71, 639,86, 567,23]. Por fim, o modelo
reconheceu um cachorro, com confianga de 0,89 e coordenadas
[339,69, 374,77, 463,62, 585,26].

Fig. 3. Resultado da inferéncia gerado pelo modelo YOLOX-Tiny.

Quanto as métricas de desempenho, a Tabela II resume os
tempos médios registrados para cada etapa do processo de
inferéncia em ambos os backends. Observa-se que o tempo
total de execugdo utilizando WGPU foi superior ao do NdAr-
ray, apresentando um tempo de execucdo cerca de quatro
vezes maior. H4 duas provaveis causas para essa diferenga
considerdvel. Uma delas € a falta de suporte ao Vulkan para
GPUs ARM Mali no driver Mesa disponivel nos repositorios
oficiais do Debian Bookworm, forcando o WGPU a utilizar
o OpenGL como fallback, que é menos eficiente do que o
Vulkan para tarefas de computacdo mais exigentes. A outra
€ a simplicidade da arquitetura da GPU ARM Mali-G31,
que pode ser incapaz de realizar tarefas de computacdo tao
eficientemente quanto a CPU do Amlogic S905X4, constituida
de quatro niicleos ARM Cortex-A55 de 2 GHz.

Além disso, ao analisar as etapas individualmente, observa-
se que as fases mais criticas para o desempenho sido a
inferéncia (forward) e o pés-processamento. Juntas, elas rep-
resentam mais de 95% do tempo total no backend WGPU,
enquanto no NdArray a inferéncia sozinha ji é responsavel
por aproximadamente 88% do tempo total. Isso indica que a
otimiza¢do deve se concentrar nessas duas etapas, especial-
mente na execu¢do do modelo e nas rotinas de filtragem e
supressdao nao maxima, que envolvem operacdes intensivas em
ponto flutuante e paralelismo irregular.

As demais etapas, como leitura de imagem, redimensiona-
mento e conversdo para tensor, possuem impacto relativamente
pequeno no tempo total (menos de 2% cada), indicando que,
para o cendrio avaliado, o gargalo computacional nio esta
na preparagdo dos dados, mas na prépria execu¢do e pos-
tratamento da rede neural.

Table II
COMPARATIVO DE TEMPOS MEDIOS DE EXECUGCAO ENTRE 0S8 backends.

Etapa NdArray WGPU Speedup

Inicializagdo 4.7 ps 10.0 ps 2.13x mais lento
Carregamento do modelo 148 s 2.09 s 1.41x mais lento
Leitura da imagem 27.1 ms 51.4 ms 1.90x mais lento
Redimensionamento 120.5 ms 117.7 ms 1.02x mais rapido
Conversdo para tensor 18.6 ms 45.9 ms 2.47x mais lento
Inferéncia (forward) 12.7 s 51.7 s 4.07x mais lento
P6s-processamento 37.7 ms 1.75 s 46.4x mais lento
Total 1442 s 55.80 s 3.87x mais lento

IV. CONSIDERACOES FINAIS

Os resultados obtidos neste estudo demonstram que ¢é
possivel executar tarefas de inferéncia de modelos de visdo
computacional utilizando o framework Burn em dispositivos
embarcados equipados com a GPU ARM Mali-G31, mesmo
em uma TVBox Amlogic S905X4. Embora o desempenho
apresentado pelo backend WGPU (GPU) tenha sido inferior
ao do NdArray (CPU), a execug@o bem-sucedida da inferéncia
confirma uma compatibilidade minima do Burn com o ecos-
sistema grafico dos drivers Panfrost e Mesa.

A diferenga de desempenho observada evidencia, entretanto,
a necessidade de amadurecimento do suporte a GPGPU nas
GPUs ARM Mali-G31. A auséncia de suporte ao Vulkan no

driver Mesa dos repositérios oficiais do Debian Bookworm
resultou em maior laténcia e subaproveitamento da GPU,
aliada a sua arquitetura que, por si s6, é bastante limitada.

Ainda assim, o experimento refor¢a o potencial de utilizacao
de dispositivos descartados ou apreendidos (como TVBox) em
aplicacdes de computacdo em borda e inteligéncia artificial
distribuida, oferecendo uma alternativa sustentavel e de baixo
custo para ambientes académicos e de pesquisa. O uso do Burn
em conjunto com drivers e bibliotecas abertas representa um
passo importante em dire¢do a democratizagdo do acesso a
ferramentas de aprendizado profundo em hardware acessivel,
que geralmente ndo possuem APIs especificas destinadas a
GPGPU.

Trabalhos futuros podem explorar otimiza¢des no com-
pilador de shaders do Panfrost/Mesa, completar o suporte
ao Vulkan para GPUs ARM Mali-G31 e otimizagdes no
proprio Burn/WGPU. Além disso, pretende-se investigar o
desempenho do Burn em hardwares com suporte consolidado
ao Vulkan, bem como comparar seu tempo de execu¢do com
solugdes proprietdrio ou especificas de fabricantes de chips,
como CUDA, OpenVINO e ROCm. Esses avangos podem
contribuir para o desenvolvimento de solugdes portiteis e
sustentaveis de IA na borda, ampliando o escopo de aplicacdo
do Burn em arquiteturas ARM.

REFERENCES
[

—

NVidia. (2025) Nvidia jetson for robotics and edge ai. NVidia. [Online].
Available: https://developer.nvidia.com/embedded-computing
[2] Google. (2025) Coral. Google. [Online]. Available: https://www.coral.ai/
[3] Mesa3D. (2025) Panfrost. [Online]. Available:
https://docs.mesa3d.org/drivers/panfrost.html
[4] TracelAl (2025) Train and deploy ai models efficiently on any device.
TracelAl [Online]. Available: https://burn.dev/
[5] WGPU. (2025) Wgpu: portable graphics library for rust. WGPU.
[Online]. Available: https://wgpu.rs/
[6] S. I. Gunadi and P. Yugopuspito, “Real-time gpu-based sph fluid
simulation using vulkan and opengl compute shaders,” in 2018 4th
International Conference on Science and Technology (ICST). 1EEE,
2018, pp. 1-6.
[7]1 O. Ferraz, P. Menezes, V. Silva, and G. Falcao, “Benchmarking vulkan
vs opengl rendering on low-power edge gpus,” in 2021 International
Conference on Graphics and Interaction (ICGI). 1EEE, 2021, pp. 1-8.
[8] I. Gil, “Performance improvement methods for hardware accelerated
graphics using vulkan api,” in 2022 VI International Conference on
Information Technologies in Engineering Education (Inforino). 1EEE,
2022, pp. 1-5.
[91 G. Jocher. (2025) Yolov8 vs. yolox: Uma anélise técnica detalhada.
[Online]. Available: https://docs.ultralytics.com/pt/compare/yolov8-vs-
yolox/
[10] devmfc. (2025) Debian linux image for android tv boxes with amlogic

soc’s. [Online]. Available: https://github.com/devmfc/debian-on-amlogic
[11] TracelAl. (2025) Models. TracelAl [Online]. Awvailable:
https://github.com/tracel-ai/models

