
Utilizando a GPU ARM Mali-G31 para a execução
do YOLOX com o framework Burn

Luiz F. B. de Araujo, Marcio S. Oyamada
Centro de Ciências Exatas e Tecnológicas

Universidade Estadual do Oeste do Paraná (Unioeste) – Campus de Cascavel
Cascavel-PR, Brazil

{luiz.araujo2, marcio.oyamada}@unioeste.br

Abstract—O presente trabalho investiga a utilização da GPU
ARM Mali-G31, comum em SBCs (single board computer) e
em TVBox de baixo custo, para o processamento de redes
neurais convolucionais utilizando o framework Burn. O estudo
foi conduzido em uma TVBox Amlogic S905X4 descaracterizada,
executando o sistema Debian Bookworm, a fim de avaliar a
viabilidade do uso de hardware reaproveitado em aplicações de
computação na borda. Foram realizados testes de inferência com
o modelo YOLOX-Tiny, empregando os backends NdArray (CPU)
e WGPU (GPU) do Burn. Os resultados demonstraram que,
embora o backend WGPU permita a execução na GPU Mali-G31
via OpenGL, o desempenho foi inferior ao da CPU, apresentando
latência aproximadamente quatro vezes maior. Essa diferença é
atribuı́da à ausência de suporte completo ao Vulkan, melhor que
o OpenGL em tarefas de computação, e às limitações intrı́nsecas
da arquitetura da GPU. Apesar disso, a execução bem-sucedida
da inferência comprova a compatibilidade do Burn com os drivers
de código aberto da GPU ARM Mali-G31, Panfrost e Mesa, e
evidencia o potencial de reutilização de dispositivos descartados
em aplicações sustentáveis de IA embarcada. O estudo contribui
para a democratização de aplicações de aprendizado profundo
em plataformas acessı́veis e destaca oportunidades de otimização
para trabalhos futuros.

Index Terms—Computação em borda, GPU ARM Mali-G31,
Burn, WGPU

I. INTRODUÇÃO

A crescente demanda por aplicações de inteligência artificial
em dispositivos embarcados, que em geral possuem recursos
limitados, tem acelerado a necessidade de soluções eficientes
e portáteis. A computação na borda, em especial, pode se
beneficiar do uso de NPUs e GPUs presentes em SoCs
(System-on-Chip) para acelerar o processamento de modelos
de inferência.

Nesse sentido, existem soluções comerciais, como a linha
NVIDIA Jetson ou Google Coral, que oferecem desempenho
elevado para aplicações que fazem uso de redes neurais artifi-
ciais [1] [2], mas a um custo consideravelmente elevado. No
entanto, entre as plataformas embarcadas disponı́veis, as GPUs
Arm Mali se destacam por sua ampla adoção em SBCs de
baixo custo e consumo, presentes até mesmo em dispositivos
do tipo TVBox que podem ser descaracterizados para executar
Linux. A GPU ARM Mali-G31, por exemplo, baseado na
arquitetura Bifrost, oferece suporte teórico ao OpenGL ES
3.1 e ao Vulkan 1.0 por meio dos drivers de código aberto
Panfrost e Mesa, o que viabiliza cargas de trabalho gráficas e
de computação acelerada por GPU em sistemas Linux [3].

GPUs de sistemas embarcados, como a ARM Mali-G31,
por se tratarem de arquiteturas mais simples, não são com-
patı́veis com APIs especializadas para GPGPU (computação
de propósito geral em unidades de processamento gráfico),
como CUDA, OpenVINO ou ROCm. Nesse contexto, o Burn,
um framework em desenvolvimento para aprendizado pro-
fundo escrito em Rust, pode ser utilizado para aproveitar
as capacidades de processamento gráfico dessas GPUs para
tarefas de GPGPU utilizando APIs gráficas tradicionais em vez
de APIs focadas em computação. Ele foi projetado com foco
em flexibilidade, desempenho e portabilidade entre diferentes
backends, como CUDA, ROCm, WGPU, dentre outros. Sua
arquitetura permite a troca de backends de forma transparente,
além de oferecer suporte a execução assı́ncrona, fusão de
kernels e gerenciamento inteligente de memória, o que permite
sua utilização em diferentes perfis de hardware [4].

O backend WGPU do Burn atua como uma camada de
abstração sobre APIs gráficas multiplataforma, permitindo
que o mesmo código seja executado sobre Vulkan, Metal,
DirectX ou OpenGL, conforme a disponibilidade do sistema,
utilizando os shaders de computação disponı́veis nas APIs
compatı́veis. Em plataformas ARM com GPUs Mali, como a
utilizada neste trabalho, o WGPU identifica automaticamente o
suporte disponı́vel e utiliza o OpenGL como modo alternativo
(fallback) quando o Vulkan não está plenamente implementado
[5]. Essa caracterı́stica garante portabilidade, mas implica em
perda de desempenho em cargas de trabalho mais intensas,
com as quais o OpenGL é geralmente pior que o Vulkan [6]
[7] [8].

O modelo utilizado nos experimentos foi o YOLOX-Tiny,
uma variante leve da famı́lia YOLO, desenvolvida pela Megvii
em 2021. O YOLOX adota uma abordagem anchor-free,
dispensando as caixas de ancoragem tradicionais e simplifi-
cando o processo de treinamento [9]. O YOLOX oferece um
bom equilı́brio entre velocidade e acurácia, sendo amplamente
adotado em aplicações de detecção de objetos em tempo real.
Entre suas variantes, o YOLOX-Tiny destaca-se pela eficiência
computacional, o que o torna adequado para execução em
dispositivos de borda com recursos limitados, como a TVBox
analisada neste trabalho.

Este trabalho, portanto, faz uma investigação inicial acerca
da integração do framework Burn com a GPU ARM Mali-
G31, utilizando os drivers de código aberto Panfrost e Mesa.



O objetivo é avaliar a viabilidade desse conjunto de softwares
para acelerar inferências na borda, utilizando um modelo de
detecção de objetos, e indicar potenciais otimizações e destacar
os desafios relacionados à maturidade dos drivers.

II. PREPARAÇÃO DO TESTE

Os experimentos foram realizados em uma TVBox descar-
acterizada, doada pela Receita Federal à Universidade Estadual
do Oeste do Paraná. Trata-se de uma X Plus Pro, equipado com
o SoC Amlogic S905X4. A Tabela I mostra as especificações
do dispositivo, que foi descaracterizado e configurado para
executar uma imagem customizada do Debian Bookworm1

para SoC da Amlogic [10], instalada em um cartão microSD,
substituindo o sistema operacional original (Android).

Table I
ESPECIFICAÇÕES DO DISPOSITIVO UTILIZADO NOS EXPERIMENTOS

Componente Especificação
Modelo X Plus Pro (descaracterizada)
SoC Amlogic S905X4
CPU 4× ARM Cortex-A55 @ 2 GHz
GPU ARM Mali-G31 MP2
Memória RAM 4 GB LPDDR4
Armazenamento interno 64 GB eMMC
Sistema operacional Debian Bookworm (devmfc)

A Fig. 1 apresenta o diagrama de blocos do SoC Am-
logic S905X4, mostrando a organização dos seus principais
componentes. O processador integra quatro núcleos ARM
Cortex-A55 de 64 bits, cada um com cache L1 dedicada
(32 KB para instruções e 32 KB para dados) e cache L2
compartilhada, oferecendo suporte a instruções NEON e VFP
para aceleração de operações vetoriais. A unidade gráfica
Mali-G31 MP2, baseada na arquitetura Bifrost, é responsável
pelo processamento gráfico e computacional, compartilhando
a controladora de memória DDR3/DDR4/LPDDR4 e o bar-
ramento de alta largura de banda do sistema. O diagrama
também mostra os blocos auxiliares dedicados a áudio e vı́deo,
como o HiFi4 DSP e o AVE-10 Video Engine, além do
mecanismo de segurança TrustZone, que garante a execução
isolada de processos sensı́veis. As interfaces externas incluem
controladores USB 3.0, PCIe 2.0, Ethernet, HDMI 2.1, I2S,
I2C e SPI, permitindo conectividade e suporte multimı́dia. Em
conjunto, esses módulos tornam o S905X4 um SoC capaz de
executar aplicações de inteligência artificial e processamento
de vı́deo em dispositivos de baixo consumo energético.

Para a execução dos testes, foi empregado o framework
Burn em sua versão 0.18.0. O código utilizado foi adaptado a
partir dos exemplos oficiais da Tracel AI [11], incorporando
medições de tempo em cada etapa do pipeline. O código-fonte
completo encontra-se no GitHub2.

Para facilitar os testes, a obtenção do modelo pré-treinado
segue uma rotina automatizada implementada em Rust, na
qual a estrutura de dados Weights armazena o endereço

1Versão 6.12.30, disponı́vel em https://github.com/devmfc/debian-on-
amlogic/releases/tag/v6.12.30

2Disponı́vel em: https://github.com/lbecher/yolox-burn

Fig. 1. Diagrama de blocos do Amlogic S905X4

do arquivo de pesos e o número de classes do conjunto
COCO. Quando a funcionalidade pretrained é habilitada,
o módulo downloader verifica a presença do arquivo na
pasta de cache local do usuário (˜/.cache/yolox-burn);
caso o arquivo ainda não exista, ele é baixado diretamente
do repositório oficial da Megvii e salvo localmente antes
de ser carregado para inferência. Essa abordagem garante
reprodutibilidade e dispensa a necessidade de downloads man-
uais, simplificando a configuração do ambiente de testes. No
presente estudo, foi utilizado o modelo YOLOX-Tiny, cujos
pesos pré-treinados (yolox_tiny.pth) foram obtidos a
partir da versão 0.1.1rc0 da implementação oficial.

Quanto ao ambiente de compilação, este foi configurado
diretamente no Debian Bookworm, utilizando o compilador
Rust 1.90, instalado por meio do rustup. A compilação e
execução do projeto foi realizada com os comandos:

cargo run -r \
-F pretrained,wgpu-backend \
-- dog_bike_man.jpg

cargo run -r \
-F pretrained,ndarray-backend \
-- dog_bike_man.jpg

Durante a execução, foram coletados os tempos de cada
etapa do processo de inferência, incluindo inicialização do
dispositivo, carregamento do modelo, pré-processamento, in-
ferência (forward pass) e pós-processamento. Os testes foram
repetidos para ambos os backends disponı́veis no Burn (o
NdArray, que opera exclusivamente na CPU, e o WGPU,
que utiliza a GPU Mali-G31 por meio do OpenGL). Cada
execução foi realizada individualmente, com medições au-
tomáticas feitas utilizando funções internas de temporização
(Instant) da biblioteca padrão do Rust, garantindo precisão
temporal em microssegundos. Para reduzir a variabilidade
estatı́stica e assegurar maior confiabilidade na avaliação do



desempenho, o programa foi executado cinco vezes para se
obter a média simples dos tempos de execução.

O experimento teve como objetivo principal comparar o
desempenho entre os dois modos de execução e verificar
a viabilidade da utilização da GPU ARM Mali-G31 como
aceleradora de tarefas de inferência de modelos de visão
computacional.

III. RESULTADOS E DISCUSSÕES

A Fig. 2 apresenta a imagem de entrada utilizada no teste,
contendo um homem, uma bicicleta e um cachorro. A Fig. 3
mostra o resultado da inferência, com as detecções sobrepostas
e as respectivas classes identificadas.

Fig. 2. Imagem de entrada utilizada para inferência.

O Burn, como visto na Fig. 3, utilizando o modelo pré-
treinado YOLOX-Tiny, identificou corretamente três objetos
principais na Fig. 2, mantendo-se consistente entre as in-
ferências realizadas nos dois backends. A primeira detecção
corresponde ao homem, com confiança de 0,87 e coordenadas
delimitadas em [219,56, 24,69, 433,04, 452,30]. A segunda
detecção refere-se a bicicleta, com confiança de 0,96 e coor-
denadas [79,50, 220,71, 639,86, 567,23]. Por fim, o modelo
reconheceu um cachorro, com confiança de 0,89 e coordenadas
[339,69, 374,77, 463,62, 585,26].

Fig. 3. Resultado da inferência gerado pelo modelo YOLOX-Tiny.

Quanto às métricas de desempenho, a Tabela II resume os
tempos médios registrados para cada etapa do processo de
inferência em ambos os backends. Observa-se que o tempo
total de execução utilizando WGPU foi superior ao do NdAr-
ray, apresentando um tempo de execução cerca de quatro
vezes maior. Há duas prováveis causas para essa diferença
considerável. Uma delas é a falta de suporte ao Vulkan para
GPUs ARM Mali no driver Mesa disponı́vel nos repositórios
oficiais do Debian Bookworm, forçando o WGPU a utilizar
o OpenGL como fallback, que é menos eficiente do que o
Vulkan para tarefas de computação mais exigentes. A outra
é a simplicidade da arquitetura da GPU ARM Mali-G31,
que pode ser incapaz de realizar tarefas de computação tão
eficientemente quanto a CPU do Amlogic S905X4, constituı́da
de quatro núcleos ARM Cortex-A55 de 2 GHz.

Além disso, ao analisar as etapas individualmente, observa-
se que as fases mais crı́ticas para o desempenho são a
inferência (forward) e o pós-processamento. Juntas, elas rep-
resentam mais de 95% do tempo total no backend WGPU,
enquanto no NdArray a inferência sozinha já é responsável
por aproximadamente 88% do tempo total. Isso indica que a
otimização deve se concentrar nessas duas etapas, especial-
mente na execução do modelo e nas rotinas de filtragem e
supressão não máxima, que envolvem operações intensivas em
ponto flutuante e paralelismo irregular.

As demais etapas, como leitura de imagem, redimensiona-
mento e conversão para tensor, possuem impacto relativamente
pequeno no tempo total (menos de 2% cada), indicando que,
para o cenário avaliado, o gargalo computacional não está
na preparação dos dados, mas na própria execução e pós-
tratamento da rede neural.

Table II
COMPARATIVO DE TEMPOS MÉDIOS DE EXECUÇÃO ENTRE OS backends.

Etapa NdArray WGPU Speedup
Inicialização 4.7 µs 10.0 µs 2.13× mais lento
Carregamento do modelo 1.48 s 2.09 s 1.41× mais lento
Leitura da imagem 27.1 ms 51.4 ms 1.90× mais lento
Redimensionamento 120.5 ms 117.7 ms 1.02× mais rápido
Conversão para tensor 18.6 ms 45.9 ms 2.47× mais lento
Inferência (forward) 12.7 s 51.7 s 4.07× mais lento
Pós-processamento 37.7 ms 1.75 s 46.4× mais lento
Total 14.42 s 55.80 s 3.87× mais lento

IV. CONSIDERAÇÕES FINAIS

Os resultados obtidos neste estudo demonstram que é
possı́vel executar tarefas de inferência de modelos de visão
computacional utilizando o framework Burn em dispositivos
embarcados equipados com a GPU ARM Mali-G31, mesmo
em uma TVBox Amlogic S905X4. Embora o desempenho
apresentado pelo backend WGPU (GPU) tenha sido inferior
ao do NdArray (CPU), a execução bem-sucedida da inferência
confirma uma compatibilidade mı́nima do Burn com o ecos-
sistema gráfico dos drivers Panfrost e Mesa.

A diferença de desempenho observada evidencia, entretanto,
a necessidade de amadurecimento do suporte à GPGPU nas
GPUs ARM Mali-G31. A ausência de suporte ao Vulkan no



driver Mesa dos repositórios oficiais do Debian Bookworm
resultou em maior latência e subaproveitamento da GPU,
aliada à sua arquitetura que, por si só, é bastante limitada.

Ainda assim, o experimento reforça o potencial de utilização
de dispositivos descartados ou apreendidos (como TVBox) em
aplicações de computação em borda e inteligência artificial
distribuı́da, oferecendo uma alternativa sustentável e de baixo
custo para ambientes acadêmicos e de pesquisa. O uso do Burn
em conjunto com drivers e bibliotecas abertas representa um
passo importante em direção à democratização do acesso a
ferramentas de aprendizado profundo em hardware acessı́vel,
que geralmente não possuem APIs especı́ficas destinadas a
GPGPU.

Trabalhos futuros podem explorar otimizações no com-
pilador de shaders do Panfrost/Mesa, completar o suporte
ao Vulkan para GPUs ARM Mali-G31 e otimizações no
próprio Burn/WGPU. Além disso, pretende-se investigar o
desempenho do Burn em hardwares com suporte consolidado
ao Vulkan, bem como comparar seu tempo de execução com
soluções proprietário ou especı́ficas de fabricantes de chips,
como CUDA, OpenVINO e ROCm. Esses avanços podem
contribuir para o desenvolvimento de soluções portáteis e
sustentáveis de IA na borda, ampliando o escopo de aplicação
do Burn em arquiteturas ARM.

REFERENCES

[1] NVidia. (2025) Nvidia jetson for robotics and edge ai. NVidia. [Online].
Available: https://developer.nvidia.com/embedded-computing

[2] Google. (2025) Coral. Google. [Online]. Available: https://www.coral.ai/
[3] Mesa3D. (2025) Panfrost. [Online]. Available:

https://docs.mesa3d.org/drivers/panfrost.html
[4] TracelAI. (2025) Train and deploy ai models efficiently on any device.

TracelAI. [Online]. Available: https://burn.dev/
[5] WGPU. (2025) Wgpu: portable graphics library for rust. WGPU.

[Online]. Available: https://wgpu.rs/
[6] S. I. Gunadi and P. Yugopuspito, “Real-time gpu-based sph fluid

simulation using vulkan and opengl compute shaders,” in 2018 4th
International Conference on Science and Technology (ICST). IEEE,
2018, pp. 1–6.

[7] O. Ferraz, P. Menezes, V. Silva, and G. Falcao, “Benchmarking vulkan
vs opengl rendering on low-power edge gpus,” in 2021 International
Conference on Graphics and Interaction (ICGI). IEEE, 2021, pp. 1–8.

[8] I. Gil, “Performance improvement methods for hardware accelerated
graphics using vulkan api,” in 2022 VI International Conference on
Information Technologies in Engineering Education (Inforino). IEEE,
2022, pp. 1–5.

[9] G. Jocher. (2025) Yolov8 vs. yolox: Uma análise técnica detalhada.
[Online]. Available: https://docs.ultralytics.com/pt/compare/yolov8-vs-
yolox/

[10] devmfc. (2025) Debian linux image for android tv boxes with amlogic
soc’s. [Online]. Available: https://github.com/devmfc/debian-on-amlogic

[11] TracelAI. (2025) Models. TracelAI. [Online]. Available:
https://github.com/tracel-ai/models


