BTRFS vs Ext4: Filesystems Impact on Energy
Consumption of eMMC-Based Embedded
Computers

Brenda Jacomelli
Institute of Mathematics and Computer Science (ICMC)
University of Sdo Paulo (USP)
Sao Carlos, Sao Paulo, Brazil
brendajacomelli @usp.br

Abstract—Advancements in microelectronics have expanded
embedded systems’ capacities, with a significant number now
incorporating processing units supporting Linux-based distribu-
tions. In energy-constrained environments, selecting an energy-
efficient filesystem for embedded devices is imperative, yet many
performance evaluations focus solely on their time efficiency. To
overcome these limitations, this paper proposes a performance
evaluation on eMMC-based embedded computers to understand
the impact of different filesystems on their energy consumption.
We generated a basic Linux image and copied it to the eMMC
storage twice. For each copy, we formatted the root filesystem
partition with different filesystems (EXT4 and BTRFS) and
conducted file operation benchmarks. Measurements of mean
power during each benchmark execution were performed by
an external microcontrolled device. From the results, it can be
inferred that EXT4 is the best overall option for power saving
when executing file operations.

Index Terms—embedded, filesystems, energy consumption,
Linux

I. INTRODUCTION

Embedded Systems are computing systems designed, in
terms of hardware and software, to perform a specific function.
These systems are present in multiple essential industries, such
as the medical equipment industry, the agricultural machinery
industry, and others. Due to the heterogeneity of the projects
that require embedded solutions, it is very common to see
several proposed architectures. Some of them have a micro-
processing unit (MPU) capable of supporting conventional
operating systems, such as Linux-based distributions.

Despite the improving capacity that embedded devices
achieved in the last years, it is important to note that they still
possess limited computing resources compared to conventional
computers. Besides, Internet of Things (IoT) technologies and
other implementations often demand deployment in environ-
ments with constrained energy resources [1]. This underscores
the importance of designing embedded systems that prioritize
better time efficiency and energy consumption for optimal
performance. When it comes to software design of Embedded
Linux systems one important aspect to investigate is the
I/O (input/output) performance of filesystems and its broader
impact on the entire system.

Sarita Mazzini Bruschi
Institute of Mathematics and Computer Science (ICMC)
University of Sao Paulo (USP)
Sao Carlos, Sdo Paulo, Brazil
sarita@icmc.usp.br

Therefore, this paper proposes a performance evaluation
of filesystems on eMMC-based embedded computers to un-
derstand the impact of different filesystems on their en-
ergy consumption. The evaluation focuses on essential file
operations, such as sequential and random reading/writing,
with throughput and energy consumption as key metrics. The
chosen filesystems for this experiment are EXT4 and BTRFS,
that are open-source and supported by the Linux kernel.

II. RELATED WORKS

In [2], the authors benchmarked the JFFS2, UBIFS, and
YAFFS flash filesystems on an Armadeus APF27 embedded
board. They evaluated (un)mount times, file operations, and
compression impact. YAFFS excelled in file searches, UBIFS
in file creation and mounting, and JFFS2 in file deletion.
Compression reduced data size by up to 40% in JFFS2 and
UBIFS but had little effect on YAFFS.

The study in [3] analyzed EXT4, NTFS, and BTRFS on a
workstation with Solid State Drive (SSD) and Hard Disk Drive
(HDD) using the Fio tool to assess sequential and random
read/write operations under different Linux I/O schedulers.
EXT4 consistently outperformed BTRFS on all SSD work-
loads.

In [4], EXT2, EXT3, ReiserFS, and XFS were evaluated
for performance and energy consumption on a CentOS 5.3
server. Results showed that no single configuration fits all
workloads, but tuning mount and format options improved
energy efficiency by 5-149% and 6-136%, respectively.

Our study differs in focusing on Embedded Linux Comput-
ers with Embedded Multimedia Cards (eMMCs) as the main
secondary storage device, which rarely compose the scenario
of filesystems’ evaluation. Besides, it not only considers the
time efficiency of the file operations but also the energy
consumption associated to their execution.

III. FLASH MEMORIES

Concerning embedded computers, it is crucial to consider
secondary storage devices that are not only non-volatile but

also boast low energy consumption, robustness, and compact-
ness. Nowadays, this characteristics are typically achieved with
the use of NAND Flash Memories. These devices store large
amounts of data in small chips, operate on a single power
supply, and have no moving parts. They can also be written
and erased through software and usually outperform HDDs in
speed. However, their write/erase mechanism limits robustness
and data integrity: memory is divided into erase blocks, and
changing a single bit from O to 1 requires erasing an entire
block. This block-based write-cycle defines flash lifetime, and
a suboptimal read/write algorithm can significantly accelerate
their failure [5].

Wear Leveling, for example, is one of the most crucial
mechanisms for increasing the NAND flash lifetime. This tech-
nique ensures that erase and write operations are distributed
across all memory blocks as equally as possible, preventing the
failure of certain cells from affecting the overall memory func-
tion. Additionally, having mechanisms to detect and correct
errors, identify bad blocks, and prevent data loss during power
failures is essential. Consequently, there are two approaches:
using raw NAND Flash memories and relying on the OS and
device drivers to handle these problems, or utilizing managed
NAND. Managed Flash memories combine memory chips
with a microcontroller that runs a firmware known as Flash
Translation Layer (FTL), which is responsible for managing
NAND access problems, facilitating communication with the
entire system, and allowing the use of conventional block
filesystems.

Both Secure Digital Cards (SD Cards) and eMMCs
are managed NAND flash devices widely used in embedded
microprocessor-based systems. Their hardware architectures
are similar, typically employing a 4-wire Serial Peripheral
Interface (SPI) for system access. The main difference lies
in packaging: eMMCs are soldered directly to the board, while
SD Cards use a removable connector. Memory quality depends
not only on hardware but also on the firmware algorithms
controlling access, which directly affect lifespan. This paper
focuses on eMMC-based embedded computers due to their
prevalence in embedded, mobile, and infotainment systems.

IV. BLOCK FILESYSTEMS

Given that the read/write mechanism of flash memories
differs from another types of secondary memory devices,
implement it requires a bit more care from the OS. Therefore,
not only the device driver must be suitable for this type of
memory, but also the filesystem, due to its importance in file
operation syscalls and permanent data safety. So, filesystems
dedicated to flash devices can be called Flash Filesystems,
some examples are JFFS2, YAFFS2 and UBIFS, and they con-
sider important aspects such as write-cycle and wear leveling.
Alternatively, we have Block Filesystems, that are appropriate
for non-flash devices or, simply, block devices. They are
conventional filesystems, utilized by HDDs and managed flash
devices. Despite SSDs, SD Cards and eMMCs being flash-
based, their controller allows the use of Block Filesystems
since it handles and abstracts all the read/write cycles. The

following subsections will delve into two Block Filesystems
that will be utilized in this paper’s performance evaluation.

A. EXT4

The EXT4, also known as the Fourth Extended Filesystem
is, as indicated by its name, the fourth major rewrite of the
Extended Filesystem (EXT), that has been the most used
filesystem on Linux devices since 1992. Just like its prede-
cessor, the EXT3, the fourth version is a journaled filesystem.
The necessity of updating the third version of EXT emerged
mainly by the fact that at the time that EXT4 was released,
in kernel version v2.6.1 on 2008, the EXT3 was limited to
filesystems of about 16 TB and enterprise workloads disks
were already approaching this limit [6].

The fourth version of EXT not only upgraded the filesystem
limit to 1EB with 4 KB block size, but also implemented a lot
of new features that increased its file operation performance
compared to its predecessor [7], such as journal checksum-
ming, discard/TRIM, fast fsck, delayed allocation [§].

Besides all that, the EXT4 implementation enhances the
compatibility with the EXT3, i.e EXT3 can be mounted
as EXT4 without reformatting or reinstalling your OS and
software environment. Popular Linux distributions, like Debian
and Ubuntu, uses EXT4 as default.

B. BTRFS

The B-tree filesystem, better known as BTRFS, is a copy on
write (COW) filesystem designed for Linux. Unlike journaled
filesystems, it addresses crash-consistency problems by always
allocating a new location for modified blocks. In other words,
when a block is modified, BTRFS allocates a new location on
disk, makes the modifications, writes it to the new location,
and then frees the old location. The old location is only freed
at the end of the process, ensuring that this filesystem always
maintains its consistency [9].

As suggested by its name, BTRFS stores data using the
b-tree data structure. Its structure is composed of nodes,
leaves, and one or more levels. In each node, there is the
disk location of the next-level nodes or leaves, and the
actual data is stored in the leaves. One advantage of this
implementation over other filesystems is that the inode of a
file can be allocated next to the contents of that file. This
significantly improves performance for operations with small
files, as memory fragmentation can be avoided by allocating
inodes in empty spaces [9]. Besides the important features
that BTRFS shares with EXT4, such as delayed allocation
and TRIM/Discard, it has implemented particular ones like
snapshot and checksumming [10].

The Fedora distribution uses BTRFS as its default filesys-
tem.

V. MATERIALS
A. Embedded Computer

We conducted our performance evaluation on the embedded
computer composed by the System on Module (SoM) Colibri

i.MX6ULL and the carrier board Aster from Toradex manu-
facturer. This system is equipped with a NXP i MX6ULL CPU
(ARM architecture, one core and 900 MHz frequency clock)
and a 1 GB DDR3L 16 bits RAM. The secondary storage is
a 4 GB eMMC, the MX52LMO04A11 chip manufactured by
Macronix.

B. Energy Meter

The energy meter device is composed of the STM32
Black Pill board and the INA219 power monitor module.
The communication between the module and the board is
done by the I2C interface, through the data and the clock
wires, SDA and SCL respectively. The STM32 Black Pill
is a board based on the STM32F411CEU6 microcontroller
from STMicroeletronics. It features an Arm Cortex-M4 CPU,
512KB of flash, 128KB of RAM, multiple interfaces,and
offers good cost-benefit, which makes it suitable for many
applications.

The INA219 component from Texas Instruments is a bidi-
rectional current sensor that can be used to monitor the power
of buses up to 26V. An external resistor called a shunt resistor
is used for its operation. One of its terminals is connected to
the current supply and to the IN+ terminal of the INA219 and
the load and IN- terminal are connected to the other.

The voltage between the terminals of the shunt resistor is
known as the shunt voltage. Similarly, the voltage measured
between IN- and ground is referred to as the bus voltage [11].
In this project, we are using a module based on the INA219
with a shunt resistor of 100mf2. It has a I2C interface and
measures currents up to 3.2 A, in the positive and negative
directions, with a resolution of 0.8 mA.

VI. METHODS
A. File Operations

We used Fio [12], a flexible synthetic benchmark tool,
to assess the I/O performance of EXT4 and BTRFS. Both
sequential and random read and write operations were tested.
To enable energy consumption measurement, we modified the
tool with a patch to notify the Energy Meter before and after
each test, through a UART interface. Fio was configured with
the following parameters: a single thread, S00MB I/O size
and the block size (the amount of data transferred in each I/0
operation) ranging from 16KB to 64KB. We generated a basic
Linux image with two partitions (boot and root filesystem) and
copied it to the eMMC storage with the root filesystem of in-
terest. Each operation’s throughput benchmark was performed
only once per filesystem, so the results represent single-run
measurements. The Linux image that ran on the Embedded
Computer was generated using the Yocto Project, with the
kernel version 6.1.42. Both filesystems, ext4 and BTRFS,
were mounted using the kernel’s default parameters, without
additional mount options.

B. Energy Consumption

In order to measure the power delivered by the Aster power
supply, which provides 5V /3 A, we needed to rip the VCC

wire, connect the IN+ terminal of the INA219 in the supply
side and the IN- terminal in the connector side.

The energy meter firmware recorded the instant power
every millisecond and the noise from current measurements
was mitigated by a 10-position moving average filter. All the
measured data was accessible through another UART interface.
The initiation or termination of an I/O benchmarking are
communicated to the meter and forwarded to the user. The
device firmware was developed using the Zephyr RTOS.

Using all power samples collected during the operation, it
was possible to estimate the average power and subsequently
the energy consumed to perform a file operation for each
Mebibyte (MiB) transferred:

to N
E :/ p(t),dt = P (ty —t) ~ ZPH~At [J] (D)
t1 n=1

Given that:

o P, is the instantaneous power at sample n

o At is the time interval considered to calculate the energy

o N is the total number of samples

Since the benchmark returns the throughput (7},,.,) in
Mebibytes per second (MiB/s), it is possible to compute the
energy per MiB by evaluating the time required to process one
MiB:

o 1 J
Buin =S Po- |2 2
MiB nz::l Torm |:M1B:| (2)

VII. RESULTS AND DISCUSSION

As shown in Tables I and II, EXT4 surpasses BTRFS
in throughput for all tested file operations and block sizes,
processing at least 6% more data per second. For sequential
and random reads, EXT4 reaches up to 86% higher throughput.
This difference results from BTRFS’s internal structure, which
includes COW behavior, metadata duplication, and checksum-
ming. While these mechanisms enhance data safety, they add
latency and reduce throughput, especially in workloads with
frequent small writes such as logging.

Both filesystems showed higher read than write perfor-
mance, as expected for eMMC-based systems, since eMMCs
are controlled NAND flash devices requiring block erasure
before writing. Larger block sizes improved read performance
for both, reducing I/O overhead and enhancing efficiency,
particularly in sequential operations.

As seen in Tables III and IV, mean power remained stable
across block sizes, with low standard deviation. Power depends
mainly on operation type and filesystem mechanisms rather
than block size, which affects execution time but not the
energy consumed per second. BTRFS consistently showed
higher mean power than EXT4 in all operations.

According to Tables V and VI, derived as described in
Subsection VI-B, BTRFS also consumed more energy per 1
MiB transferred in all operations. Its higher mean power leads
to greater total energy usage, confirming EXT4’s superior
efficiency in both power and energy consumption.

Although these results come from eMMC-based hardware
under specific workloads and block sizes, and may not repre-
sent all scenarios, they indicate that EXT4 is better suited for
energy-constrained systems. BTRFS, despite lower efficiency,
provides valuable features such as snapshotting, checksum-
ming, and enhanced data integrity. Therefore, the choice
between EXT4 and BTRFS should balance energy efficiency
and the reliability features required by each application.

TABLE I
FILE OPERATION THROUGHPUT FOR EXT4 (MiB/s)

ENERGY CONSUMPTION PER MIB TRANSFERRED FOR EXT4 (mJ/MiB)

ENERGY CONSUMPTION PER MIB TRANSFERRED FOR BTRFS (mJ/MiB)

TABLE V

Block ext4
size read write | random read | random write
16K 28.12 | 92.00 83.92 116.16
32K 28.44 | 92.74 60.50 105.50
64K 29.03 | 92.00 47.43 95.83
TABLE VI

Block BTRFS

size read write random read | random write
16K 57.08 | 100.85 118.27 144.03
32K 37.23 | 103.48 89.86 147.15
64K 3390 | 105.31 78.21 111.01

Block extd
size read | write | random read | random write
16K 44.8 12.5 14.3 9.9
32K 44.3 124 20.0 10.9
64K 43.4 12.5 25.3 12.0
TABLE 11

FILE OPERATION THROUGHPUT FOR BTRFS (MiB/s)

Block BTRFS
size read write | random read | random write
16K 24.0 11.8 10.4 8.5
32K 37.6 11.5 13.8 8.2
64K 41.00 11.3 15.6 10.9
TABLE III

MEAN POWER FOR EXT4 FILESYSTEM OPERATIONS (WATTS)

Block extd
size read write random read | random write
16K 1.26+0.6 1.15+0.06 1.20+0.01 1.15£0.07
32K 1.26+0.07 | 1.15+0.07 1.21%0.02 1.15+0.07
64K 1.26+0.07 | 1.15+0.07 1.20+0.03 1.15£0.07

Values are expressed as mean + standard deviation over the samples.

TABLE IV
MEAN POWER FOR BTRFS FILESYSTEM OPERATIONS (WATTS)

Block BTRFS
size read write random read | random write
16K 1.37£0.9 1.19+£0.07 1.23+0.02 1.23+0.10
32K 1.40+0.08 | 1.19+0.08 1.24+0.06 1.21+0.11
64K 1.39+£0.10 | 1.18+0.07 1.22+0.06 1.21£0.09

Values are expressed as mean + standard deviation over the samples.

VIII. CONCLUSION

In this paper, we presented key data on the impact of
different root filesystems (EXT4 and BTREFS) on the en-
ergy consumption of eMMC-based embedded Linux systems.
EXT4 consistently outperforms BTRFS in throughput, power,
and energy consumption across various block sizes and file
operations. Although BTRFS provides advanced features such
as data integrity and snapshot capabilities, these come with

additional performance and energy overheads that may limit
its suitability in energy-constrained environments. Therefore,
EXT4 is the recommended filesystem for embedded systems
using controlled NAND flash storage when energy efficiency
is critical. However, there is no one-size-fits-all solution. This
study focuses on a specific use case and aims to assist develop-
ers and engineers in selecting the most suitable filesystem for
their particular needs. Future work could explore optimizations
for BTRFS, consider data safety mechanisms, evaluate other
filesystem candidates, and include repeated benchmark runs to
enable more robust statistical analysis.

REFERENCES

[1] C. Guo, S. Ci, Y. Zhou, and Y. Yang, “A survey of energy consumption
measurement in embedded systems,” IEEE Access, vol. 9, pp. 60516—
60530, 2021.

[2] P. Olivier, J. Boukhobza, and E. Senn, “On benchmarking embedded
linux flash filesystems,” ACM SIGBED Rev., vol. 9, no. 2, pp. 43-47,
2012.

[3] G. Rakshith et al., “Performance analysis of secondary storage media
through filesystems benchmarking,” in Proc. 3rd Int. Conf. Trends in
Electronics and Informatics (ICOEI), 2019, pp. 1222-1226.

[4] P. Sehgal, V. Tarasov, and E. Zadok, “Evaluating performance and energy
in filesystem server workloads,” in Proc. USENIX Conf. File and Storage
Technol. (FAST), 2010, pp. 253-266.

[5] Christopher Hallinan. Embedded Linux Primer: A Practical Real-
World Approach. 2nd edition, Prentice Hall Press, USA, 2010. ISBN:
0137017839.

[6] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dil-
ger, Alex Tomas, and Laurent Vivier. The new ext4 filesystem: current
status and future plans. In Proceedings of the Linux symposium,
volume 2, pages 21-33, 2007.

[7]1 Mingming Cao, Suparna Bhattacharya, and Ted Ts’o. Ext4: The Next
Generation of Ext2/3 Filesystem. In LSF, 2007.

[8]1 Ext4 (and Ext2/Ext3) Wiki, 2019. Available at: https://ext4.wiki.kernel.
org/index.php/Ext4_Howto#EXT4_features. Accessed: 2024-01-19.

[9] Josef Bacik. Btrfs: the Swiss army knife of storage. USENIX Login,

37:7-15, 2012.

BTRFS documentation Available at: https://btrfs.readthedocs.io/en/

latest/. [Accessed: Jun. 02, 2025].

Texas Instruments. [INA219 Zerp-Drift, Bidirectional Current/Power

Monitor With I2C Interface. Technical Report SBOS448G, March 2015.

Rev. 7.

[12] fio — Flexible I/O tester Available at: https://fio.readthedocs.io/en/latest/.

[Accessed: Jun. 02, 2025].

[10]

(11]

