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Abstract. Urban digital twins (UDTs) are emerging as critical tools for inte-
grating heterogeneous data and models to support urban decision-making in
areas such as mobility and energy management. However, broader adoption
of these systems in large cities is constrained by scientific challenges in their
architecture related to three interconnected dimensions: (1) scalability, through
multi-modeling and surrogate modeling strategies that balance accuracy and re-
source efficiency; (2) interoperability, via adaptive and opportunistic workflows
that dynamically integrate models and datasets based on context and granular-
ity of decision-making; (3) frugality, by optimizing energy consumption across
model and workflow executions. This paper details innovative data science and
Urban Digital Twin approaches for collecting and analyzing urban data to sim-
ulate complex urban phenomena. By proposing scalable, interoperable, and
energy-efficient architectures, this study seeks to advance systems supporting
evidence-based public policy, promoting broader sustainable development.

1. Introduction
Urban Digital Twins (UDTs) are rapidly emerging as critical tools for integrating
heterogeneous data sources and computational models, aiming to enhance decision-
making processes across multiple urban domains. As epicenters of cultural, human,
and economic capital, cities play a fundamental role in driving global economic growth
and socio-economic advancement. Simultaneously, they are major consumers of re-
sources—particularly energy and materials—and significant contributors to waste and
greenhouse gas (GHG) emissions.

As of 2022, more than half of the global population resided in urban areas, with
projections indicating an increase to 70% by 2050. The case of Latin America is partic-
ularly illustrative, where approximately 80% of the population was urbanized by 2015,
and by 2000, nearly one-quarter of the region’s population was concentrated in just four
megacities. This rapid and often unplanned urbanization has precipitated unsustainable
development trajectories: cities consume up to 80% of the global energy supply and ac-
count for approximately 75% of global carbon emissions, even as they generate about
75% of global GDP [United Nations Human (UN) Settlements Programme 2012].

Smart city technologies have enabled the application of advanced computer sci-
ence methodologies to address these complex urban challenges. However, effectively
managing the scale and intricacy of contemporary megalopolises requires a paradigm shift



toward more decentralized, network-oriented infrastructure planning. This shift requires
moving beyond limited local-scale interventions and toward reimagining urban centers as
components of broader “smart regions.” This regionalized approach aligns with global
sustainability frameworks such as the COP21 Paris Agreement and the 2030 Agenda of
Sustainable Development of the United Nations, both of which emphasize the importance
of sustainable cities and access to clean, efficient, and affordable energy.

Urban Digital Twins (UDTs) function as dynamic, continuously evolving virtual
representations of urban environments. By integrating real-time data streams, Artificial
Intelligence (AI), and the Internet of Things (IoT), UDTs offer actionable insights to
inform evidence-based policymaking. These systems shall be underpinned by data man-
agement architectures that support high-volume, multimodal data ingestion and serve as
the backbone for simulation and analytical models.

Despite their transformative potential, the deployment of UDT systems at the scale
required by megacities remains constrained by several key scientific and technical chal-
lenges. These challenges can be categorized into three interrelated dimensions:

Scalability. Scaling UDT systems from metropolitan to megalopolitan scales
presents significant computational and architectural difficulties. High-fidelity paradigms
such as agent-based models (ABMs), while offering granular expressiveness, are compu-
tationally intensive and require extensive datasets, often limiting their feasibility to large
urban populations.

Interoperability. Current UDT architectures often suffer from fragmented data
schemas, limited interoperability, and inflexible workflows, which inhibit the holistic
modeling of urban systems and the anticipation of emergent, system-wide effects. To
overcome these limitations, UDTs must evolve into interoperable ecosystems capable of
real-time integration across diverse datasets and model types. This entails robust data in-
tegration pipelines that harmonize heterogeneous sources, including IoT sensors, satellite
imagery, transportation systems, and energy networks.

Frugality. The substantial computational demands of large-scale UDTs risk in-
troducing significant energy consumption and associated environmental impacts, thereby
undermining their role in promoting sustainability. Recognizing that digital technologies
can both mitigate and exacerbate climate change, the project advocates for a carbon-
responsible approach to UDT execution. This involves the design of frugal runtimes that
optimize scheduling decisions based on a triad of constraints: performance, cost, and
carbon emissions.

This paper presents innovative approaches that leverage data science and UDTs
to collect and analyze urban data, enabling the simulation of complex urban phenomena.
By proposing scalable, interoperable, and energy-efficient (frugal) UDT architectures, the
study aims to advance the development of systems capable of supporting evidence-based
public policy design, with a particular focus on reducing greenhouse gas (GHG) emissions
and promoting broader goals of sustainable urban development.



2. Urban Digital Twins for Sustainable Megalopolises Development

2.1. Scaling Up UDT Systems

The scaling up of simulation models is a critical scientific challenge for the broader adop-
tion of Urban Digital Twin systems, particularly in megacities. To effectively address the
complex problems prevalent in these large urban areas, models must possess the capability
to scale up from small regions of neighborhoods to the megalopolis level.

One significant challenge to achieving scalability is the computational cost and
inherent limitations of existing models. Agent-based models (ABMs), despite their high
expressiveness and flexibility for simulating individual and collective behaviors within ur-
ban systems, are computationally intensive and demand substantial data resources. Their
complexity and computational burden frequently grow exponentially as the number of
agents and interactions increase, limiting their feasibility for real-time decision-making
and comprehensive scenario analysis [Michel et al. 2018, Gaudou et al. 2014].

The computational power required to simulate high-fidelity scenarios for
megalopolis-scale Digital Twins can be massive, potentially leading to significant en-
ergy consumption and associated greenhouse gas emissions, which in itself becomes a
sustainability problem. Furthermore, traditional urban models often concentrate on iso-
lated subsystems, lacking comprehensive integration, and are not always developed with
scalability and real-time adaptability as requirements. It is known that the existing tools
and technologies employed by smaller cities for greenhouse gas (GHG) emission neutral-
ization and other sustainability objectives may not be adequate for larger megalopolises.

To overcome these challenges, several strategies and methodologies for scal-
ing can be explored. Multi-modeling and surrogate modeling strategies can effec-
tively balance accuracy and resource efficiency. Surrogate models approximate sys-
tem behavior by learning from a relatively sparse set of high-fidelity simulation
data [De Leeuw et al. 2022, Llacay and Peffer 2025]. By employing various machine
learning techniques, these models can generate fast, low-cost predictions while maintain-
ing an acceptable level of accuracy. Such approaches are particularly beneficial for ex-
tensive parameter exploration, optimization, and uncertainty quantification, which would
often be computationally prohibitive with full agent-based models (ABM) simulations.

Scaling microscopic model simulations also necessitates parallelizing execution
across multiple computing nodes. This requires algorithms capable of dynamically dis-
tributing computational loads and adapting to real-time variations in execution times and
available nodes. Dynamic load balancing continuously adapts to evolving agent interac-
tions and workload imbalances, minimizing inter-process communication and optimizing
resource utilization. Solutions explored to enhance load-balancing efficiency include task
replication, redundancy transitioning, and nature-inspired optimization algorithms. New
topology-aware partitioning methods have also been introduced to optimize large-scale
spiking neural network (SNN) simulations, ensuring efficient distribution of neurons and
connections across nodes [Zeng et al. 2024].

Adaptive simulation execution engines can also be used to adjust to resource avail-
ability dynamically. These engines allow detailed ABM simulations to be executed when
sufficient computational power is available, while machine learning models can serve
as surrogates in low-power or resource-constrained conditions, providing a lightweight



alternative for fast, approximate predictions and significantly reducing computational de-
mands [De Leeuw et al. 2022]. This adaptive strategy facilitates dynamic load balancing
and ensures the system remains robust and efficient even amid fluctuating resources.

2.2. Interoperability of Data and Models

Cities are inherently complex, and to effectively address their intricate problems, UDTs
must integrate diverse data and models in a dynamic and flexible manner. Achieving this
interoperability is challenging due to the fragmented data models and limited integration
capabilities within existing UDT architectures [Malleson et al. 2022]. These limitations
restrict the system’s capacity to fully capture city-wide interactions and anticipate the
systemic effects of public policies.

The heterogeneity of urban data sources presents another major challenge. Data
originates from numerous sources, including IoT sensors, satellite imagery, trans-
portation networks, and energy grids [Mehmood et al. 2017]. Differences in data for-
mats, spatiotemporal resolutions, and semantic meanings complicate efficient integra-
tion [Al-Yadumi et al. 2021]. Furthermore, scaling up UDTs is difficult because adding
new data and models often requires rebuilding existing workflows, thereby limiting adapt-
ability and slowing down updates.

A persistent challenge in integrated urban system modeling is ensuring con-
sistency across different models, especially when confronted with data heterogeneity.
Achieving seamless interoperability between various heterogeneous models remains an
open research question. Concerns also persist regarding data reliability and minimizing
biases within integrated datasets.

To overcome these obstacles, UDTs must evolve into interoperable ecosystems
capable of dynamically integrating diverse datasets and models while ensuring scalabil-
ity, adaptability, and efficiency. A cornerstone of this evolution is the implementation of
robust data integration pipelines [Agarwal 2024], which harmonize heterogeneous data
sources through efficient Extract, Transform, Load (ETL) processes. These pipelines
should support (near-)real-time workflows for continuous data updates from distributed
sources such as IoT devices, mobile sensors, and external databases [Weil et al. 2023].
Additionally, they must address data quality by detecting and correcting inconsistencies,
missing values, and anomalies to ensure reliability and usability [Ilyas and Chu 2019].
Approaches such as knowledge graphs and semantic data models further enhance inter-
operability between diverse urban datasets [Voelz et al. 2023, Rocha et al. 2019].

Beyond syntactic harmonization, semantic interoperability is essential for mean-
ingful integration of urban data. Semantic approaches leverage knowledge graphs to en-
code the contextual meaning of data elements, relationships, and constraints, enabling
systems to interpret and interlink data across domains [Hogan et al. 2021]. Knowledge
graphs represent data as interconnected entities and relationships, enabling rich query-
ing capabilities and inference over heterogeneous urban datasets [Wang et al. 2024]. For
example, Consoli et al. (2015) demonstrate how semantic data models can be applied to
integrate transportation, environmental, and demographic data, providing a unified knowl-
edge base that enhances the reasoning capacity of UDTs. Similarly, Consoli et al. (2017)
illustrate the use of linked data to bridge different urban information systems, in order to
facilitate cross-domain interoperability and support comprehensive urban analytics. Such



semantic enrichment enables UDTs not only to integrate raw data but also to understand
and model complex urban phenomena more effectively.

Finally, creating a repository of reusable datasets and models is crucial, ensur-
ing proper versioning and accessibility across different Digital Twin applications, and
requiring the definition of standardized interfaces for model and data integration to fa-
cilitate cross-domain simulations and multi-model interactions. By centralizing validated
datasets and well-documented models, repositories facilitate cross-domain simulations
and multi-model interactions, which are crucial for capturing the systemic dynamics of
complex urban environments [Jeddoub et al. 2024]. Ensuring interoperability at this level
demands the adoption of standardized interfaces and APIs that abstract model functional-
ities and data schemas, enabling different Digital Twin components to communicate and
integrate seamlessly.

The integration of data with digital twins, facilitated by modern data inte-
gration architectures such as data meshes [Goedegebuure et al. 2024] and data lake-
houses [Harby and Zulkernine 2025], that merge the scalability of data lakes with the
benefits of traditional data warehouses, can yield new knowledge to support the devel-
opment of public policies for more carbon-efficient megalopolises. This hybrid model
supports the large-scale ingestion of raw urban data alongside structured, curated datasets,
enabling complex analytical queries and machine learning tasks essential for Digital Twin
operations [Schneider et al. 2024].

2.3. Frugal Urban Digital Twins

A major challenge for applying Urban Digital Twins to large cities is the high computa-
tional cost of large-scale simulations and their environmental impact, particularly those
relying on paradigms like agent-based modeling.

In the context of UDTs, frugality refers to a foundational design principle aimed
at minimizing computational, data transfer, and energy costs without compromising the
functional adequacy of the system. It includes a form of computational sustainability,
where resources are used efficiently, workflows are dynamically adapted to contextual
constraints, and the overall environmental footprint of large-scale simulations is reduced
[Kim et al. 2023, Violos et al. 2025, Knebel et al. 2020]. Examples of frugal UDT ap-
proaches include implementing strategies to optimize energy consumption across several
dimensions: by learning surrogate models, evaluating the energy cost associated with
specific workflows, and optimizing the execution of those workflows.

A key methodology involves proposing adaptive and opportunistic workflow so-
lutions that combine data and models intelligently. These solutions are designed to
generate suitable workflows based on analytical needs, considering factors like simula-
tion granularity and frugality. Recent studies emphasize the importance of adaptive hy-
brid workflows in Urban Digital Twins, which dynamically combine high-fidelity mod-
els (e.g., ABMs) with lightweight surrogate models, based on contextual needs and re-
source constraints. This approach enables systems to adapt model granularity in real
time, optimizing both computational cost and analytical accuracy. Ullrich et al. (2024)
present a hybrid workflow connecting network-based and agent-based models for pre-
dictive pedestrian movement. The system dynamically selects the appropriate model
type based on data availability and performance requirements, illustrating a concrete



instantiation of context-aware model switching in urban simulation tasks. When com-
putational power is ample, detailed agent-based model (ABM) simulations can be exe-
cuted to capture intricate dynamics [Cheng et al. 2025, Shin et al. 2025]. Conversely, un-
der low-power or resource-constrained conditions, surrogate models—which are faster,
low-cost approximations learned from high-fidelity data—provide a lightweight alterna-
tive, significantly reducing computational demands while maintaining acceptable accu-
racy [De Leeuw et al. 2022, Llacay and Peffer 2025].

This adaptive strategy also allows for dynamic load balancing, ensuring the sim-
ulation system remains robust and efficient even with fluctuating resource availabil-
ity [Ahmadzadeh and Sarbazi-Azad 2024, Chippagiri et al. 2024]. Efficient load balanc-
ing in distributed simulation environments is crucial for optimizing resource utilization,
particularly in dynamic environments like traffic simulations, where agent interactions
can vary unpredictably [Mastio et al. 2017].

A computational platform for running megalopolis-scale digital twins should
adopt a hybrid Computing Continuum approach, integrating the high-performance, scal-
able infrastructure of cloud computing with the low-latency, privacy-preserving features
of edge computing. A frugal Digital Twin runtime within this continuum must be Carbon
Responsible, requiring scheduling algorithms that balance performance, cost, and emis-
sions while adapting to resource and power constraints [Nafus et al. 2021]. GreenScale
[Kim et al. 2023] is a state-of-the-art framework designed for carbon-aware schedul-
ing across edge cloud infrastructures. It dynamically allocates tasks based on time
and location-specific carbon intensity, reducing emissions by up to 29% compared to
performance-focused schedulers. Ecovisor [Souza et al. 2023] introduces a concept of
virtual energy systems, exposing power usage and renewable generation controls to ap-
plications. This enables UDT runtimes to optimize operations based on grid carbon in-
tensity and energy availability. EASE [Perin et al. 2022] illustrates resource allocation in
edge environments with renewable energy. Using model-predictive control and consensus
protocols, EASE achieves near carbon-neutral operations while maintaining QoS.

A promising strategy involves integrating the moldable task scheduling model
with follow-the-renewables approaches, such as follow-the-sun (assigning tasks to lo-
cations with greater solar energy availability) or follow-the-moon (prioritizing locations
with lower energy demand), to enable more efficient utilization of renewable energy
sources [Liu et al. 2011]. This also includes adjusting the fidelity of the digital twin dy-
namically based on environmental performance metrics, using surrogate models.

3. System Architecture for UDTs

Figure 1 presents the system architecture for our vision of Urban Digital Twins. In
this architecture, a Smart City Platform is required to collect data from sensors de-
ployed around the city and invoke actuators, sensors’ dynamic counterparts. State-of-
the-art examples of such platforms are the FIWARE project1 and the InterSCity plat-
form [Del Esposte et al. 2019].

All data collected from the smart city platform is fed to the Data Broker. This
component is responsible for filtering the data relevant to the deployed UDTs, thus helping

1https://www.fiware.org/

https://www.fiware.org/
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Figure 1. Proposed system architecture for megalopolises-scale UDTs.

to ensure frugality and to integrate the relevant data into the data mesh/data lakehouse
systems as presented in Section 2.2 and indicated as the City Data in the figure.

The UDT Workflow Engine is a core component of the architecture. It will or-
chestrate the different simulations executed by UDTs, integrate the data being monitored
using robust integration pipelines, manage the repository of reusable datasets and mod-
els (both Workflow Models and Simulation Models), while ensuring the interoperability
between digital twins with the use of Knowledge graphs and semantic data models.

Tasks from the workflow will be executed by the Frugal Execution Manager. This
component is responsible for managing all computational resources needed to run, ex-
plore, diagnose, and optimize the simulated models. Tasks will be scheduled on resources
in the Cloud–Edge Continuum in a carbon-responsible way [Nafus et al. 2021], i.e., tasks
will be assigned to the resources that minimize the GHG emissions associated with the
execution. The runtime can also ask the workflow engine to reconfigure the execution
based on the measured impact of the execution. For instance, if the GHG emissions are
increasing city-wide, the runtime can reconfigure the parameters of the execution of the
workflow engine, that, in turn, can decide to freeze the execution of the workflow or to
replace the simulated model by the task with a Surrogate model that will provide a sim-
ple (but less accurate) model to be executed. This component could be based on existing
projects such as the OpenMOLE model exploration platform [Reuillon et al. 2013].

The execution manager will choose the resource(s) to execute the simulation. The
Simulation Platform will then launch the execution of the simulation model using the
appropriate framework. Depending on the model being simulated, the execution man-
ager could apply different simulation strategies. Taking urban mobility simulations, for
instance, the simulation could be carried out by an agent-based model platform such as
GAMA [Gaudou et al. 2014], giving detailed information for all elements of the simula-
tion, or using a mesoscopic simulation strategy that uses fewer computational resources,
but provides less accurate results, such as the InterSCSimulator [Rocha et al. 2021]. The
data stream resulting from the simulations will be stored in the City Data data mesh/data
lakehouse and immediately made available to the system, which will allow continuous
ingestion, transformation, and real-time analysis of streaming data.



4. Conclusions

The technological solutions discussed in this paper represent a significant step toward in-
tegrating environmental efficiency into managing megalopolises through advanced com-
puting technologies. By leveraging interdisciplinary tools, it establishes a robust frame-
work for sustainable urban development. The development and deployment of digital
twins for large cities will not only enhance our capacity to assess environmental impacts
and test potential solutions efficiently but also reduce the computational and economic
costs associated with large-scale simulations. Furthermore, the solutions align with the
principles of digital sufficiency by advocating for a more intentional and environmentally
conscious use of technology.
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