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Abstract. Insects are intimately related to human beings, in both positive and
negative ways. For example, insect pests consume and destroy around US$40
billion worth of food each year. In contrast, insects pollinate at least two-thirds
of all the food consumed in the world, with bees alone responsible for pollinating
one-third of this total. In the last decades, many researchers have developed an
arsenal of chemical, biological, mechanical and educational methods of insect
control. However, to be effectively used, such methods require knowledge of the
spatio-temporal distribution of the insects. Without such knowledge, the use of
these techniques becomes costly and inefficient. A sensor for capturing insect
information is being developed with the aim of being used as a tool to assist
in the control of disease vectors and agricultural pests. The main elements of
this sensor are a laser beam and an array of phototransistors. When an insect
crosses the laser beam, a variation in the light is caused by partial occlusion
of light due to their movements. This variation is stored as a time series and
should be used to count and classify insects that cross the sensor. In this paper,
we investigate the use of different approaches for time series classification that
can be applied to insect recognition by the laser sensor: similarity search and
feature extraction. In an experiment that includes nine species of insects, we
demonstrate that the feature extraction approach can be more accurate that the
similarity search. More specifically, the Support Vector Machine algorithm with
RBF kernel trained with mel-cepstral coefficients achieved the best accuracy in
the insect recognition task.

1. Introduction

Insects are intimately related to human beings, in both positive and negative ways. For
example, insect pests consume and destroy around US$40 billion worth of food each
year [Pimentel 2009]. In contrast, insects pollinate at least two-thirds of all the food con-
sumed in the world, with bees alone responsible for pollinating one-third of this total
[Benedict and Robinson 2003]. Furthermore, many species have been used as bioindi-
cators of environmental quality, since their presence/absence, distribution and density,
indicate the quality of the ecosystem, especially in relation to contaminants in the air, soil
and water [Kevan 1999].

Another example of the relationship between insects and humans are the vectors
of diseases that kill millions of people every year and leave tens of millions sickened. It
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is estimated that dengue, a disease transmitted by mosquitoes of the genus Aedes, affects
between 50 and 100 million people every year and it is considered endemic in more than
100 countries [W.H.O. 2009]. Malaria, transmitted by mosquitoes of the genus Anophe-
les, affects around 6% of the world’s population and it is estimated that there are over 200
million cases per year and about 7 million lethal cases in the last decade [W.H.O. 2012].

For these and other reasons, many researchers have developed an arsenal of chem-
ical, biological, mechanical and educational methods of insect control [Walker 2002].
However, to be effectively used, such methods require knowledge of the spatio-temporal
distribution of the insects. Without such knowledge, the use of these techniques becomes
costly and inefficient, besides aggravating the problems mentioned above.

Currently, studying the spatio-temporal distribution of insects is a costly and time-
consuming task. In general, insect counts are are obtained with traps, usually adhesive,
which are collected periodically and analyzed by experts who manually identify and count
the collected species of insects. Besides being an expensive approach in terms of material
and human resources, there is a delay between the moment when the trap is installed
and when it is analyzed. Even though this range is only a week, which may represent
more than half life of an adult insect, such delay may be enough for the disease to infect
a large number of people until the data be available to the experts [Patnaik et al. 2007].
Therefore, there is a need for automatic and accurate sensors which can detect, classify
and count insects of different species in real time.

In this paper, we describe and analyze the data collected by a laser sensor proposed
to automatically count and classify insects. We also conduct an extensive experimental
evaluation of Machine Learning techniques to accurately identify insects species.

The remaining of this paper is organized as follows. Section 2 presents the related
work about automatic insect identifycation. Section 3 describes the sensor used in this
work, as well the data collecting procedure. Section 4 presents the results obtained by the
application of classification methods. Finally, we present our conclusions and directions
for future work in Section 5.

2. Related Work

The idea of performing automatic classification of insects is not a novelty. In 1945,
Kahn et. al. [Kahn et al. 1945] used a microphone, a signal amplifier, a low-pass filter
and a sound recorder to register and study inaudible sounds produced by disease vec-
tor mosquitoes. They collected the sounds of four species: Anopheles quadrimaculatus,
Aedes aegypti, Aedes albopictus, and Culex pipiens. To perform the sound collection,
an environment without external noise and under ideal conditions of temperature and hu-
midity was necessary. Different sounds that could represent the insect behaviors were
identified. Furthermore, the study shows that the pitch can be used to distinguish male
and female of the same species. This is possible because the sounds produced by male
mosquitoes have a higher frequency than the sounds produced by female mosquitoes.

A few years later, Kahn & Offenhauser Jr [Kahn and Jr 1949] mentioned that the
fast evolution of eletronic devices for sound recording would make the study of insects
behavior easy, fast and accurate by using the sounds they produce. However, we note a
small evolution related to the automatic identification of insects by acoustic devices.
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More recently, researchers have attempted to identify species and analyze the be-
havior of insects through the use of microphones. The general procedure of these studies
is the use of signal processing techniques for features extraction and the application of
machine learning algorithms. For example, to classify crickets and cicadas, Potamitis
et. al. [Potamitis et al. 2007] used a probabilistic neural network and a gaussian mixture
model from features widely used in speaker recognition applications. In a more recent
study, Le-Qing [Le-Qing 2011] also used features from speaker recognition application
and a probabilistic neural network to classify the different behaviors of insects such as
wings vibration, locomotion and alimentation in soil, wood and in other materials.

Several other studies use the approach of audio recording to analyze insects. For
example, Ganchev et. al. [Ganchev et al. 2007] used this approach to classify 313 species
of crickets, grasshoppers and cicadas. They used cepstral coefficients to generate classi-
fiers based on probabilistic neural network, gaussian mixture models and hidden markov
models. Based on studies of speaker recognition, Chaves et. al. [Chaves et al. 2012] used
the mel-frequency cepstral coefficients (MFCC) and hidden markov models to classify 36
species of grasshoppers.

All the previous related work has performed the audio recordings in an environ-
ment with ideal conditions. Furthermore, most of the analyzed species produce very
evident sounds, such as the songs produced by crickets or cicadas. However, the use of
microphones in non-ideal environments leads to some difficulties. Microphones are very
sensitive to external interference, such as sounds produced by cars transiting near the
location of data collection.

Taking into account these difficulties, Moore et. al. [Moore et al. 1986] proposed
the use of an optical sensor based on a phototransistor. The authors used the sensor
to record the variation of the light caused by passages of insects. They performed an
analysis of the wing-beat frequency of two species of the genus Aedes from both sexes.
The automatic classification considering species and sex was posteriorly presented in
Moore [Moore 1991].

Some years later, Moore [Moore 1998] proposed an insect data collection system.
Basically, he used the previously proposed optical sensor connected to a computer with
multimedia features and tools to process the obtained signal. He placed a transparent
plastic jar with flying insects above the sensor. The light source used in the system is a
halogen lamp located above the transparent jar.

More recently, researchers presented a new optical sensor to automatically identify
flying insects [Batista et al. 2011b]. The basic components of this sensor are a laser light,
an array of phototransistors and a circuit board to filter and record the variation in the
light caused by the insects that cross the light. In this paper, we present results of a larger
experimental evaluation using similarity and feature extraction approached, as well as
combination of classifiers using ensembles.

3. Laser Insect Sensor

The main elements of the sensor are a laser beam and an array of phototransistors. When
an insect crosses the laser beam, a variation of light is caused by partial occlusion of light
due to the wings movements. Such a variation is stored as a short time series. Our main
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goal is to build a classification system that takes such a time series as input and provides
counts of insects discriminated by species.

3.1. Sensor Description

The general design of the sensor used in this work is shown in Figure 1. It consists of a
low-powered planar laser source pointed to an array of phototransistors. When a flying
insect crosses the laser, its wings partially occlude the light, causing small light variations
that are captured by the phototransistors. An electronic circuit board filters and amplifies
the signal and the output is recorded by a digital sound recorder.
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Figure 1. The logical design of the sensor. A planar laser light is directed at an
array of phototransistors. When an insect flies across the laser, a light variation
is registered by the phototransistors as a time series

The sensor signal is very similar to an audio signal captured by a microphone, even
though the data are obtained optically. However, the sensor is totally deaf to any agent
that does not cross the light; therefore, the sensor does not suffer any external interference
such as bird sounds, cars, or airplane noise.

The data captured by the sensor are constituted, in general, of background noise
with occasional “events”, result of the brief moment that an insect flew across the laser.
In the next section, we provide details about the procedure used to collect and preprocess
the data used in this work.

3.2. Collecting and Preprocessing Data

We use data collected in laboratory, for which ground-truth labels are available. We need
to know the true class labels of each insect passage to assess the classification procedures.
These data were collected in several containers (‘“insectaries”), each with an individual
sensor attached and containing insects of a single species. Figure 2 shows some examples
of these insectaries.
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Figure 2. Examples of boxes for data collection (insectaries)

After collecting the data, we preprocessed the recordings and detected the insect
passages in raw data. We designed a detector responsible for identifying the events of
interest and separating them from background noise. The general idea of the detector is
to move a sliding window across the raw data and calculate the spectrum of the signal
inside the window. As most insects have wing beat frequencies which range from 100Hz
to 1000Hz, we used the maximum magnitude of the signal spectrum in this range as the
detector confidence.

The detector uses a sliding window and calculates the magnitude of signal compo-
nents within the window. Then, the maximum magnitude is taken as a confidence value
for the detector. The larger the magnitude, the higher the confidence that the signal is
not background noise. All signals with magnitude above a user-specified threshold are
considered an event generated by an insect. The high signal to noise ratio of the data
collected by the sensor allows the user to specify low values for the threshold without the
risk of false positives. Figure 3 illustrates how the detector works.

The detector outputs audio fragments which usually last for a few tenths of a
second and have at least one insect passage. Due to the simplicity of the design of the
electronic circuit, there is some noise combined with the insect signals. So, we filtered
most of the noise using a digital filter based on spectral subtraction, responsible for the
removal of certain frequency ranges of signal [Boll 1979].

4. Experimental Results

In this section, we present experimental classification results using the strategies of simi-
larity comparison and feature extraction.

4.1. Dataset description

In the experiments presented in this paper, we included four species of mosquitoes: Aedes
aegypti (vector of filariasis, dengue, yellow fever, and West Nile virus), Anopheles gam-
biae (vector of malaria), Culex quinquefasciatus (vector of lymphatic filariasis) and Culex
tarsalis (vector of St. Louis Encephalitis and Western Equine Encephalitis); three species
of flies: Drosophila melanogaster also known as fruit fly, Musca domestica or house fly
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Figure 3. General design of the wing-beat detector [Batista et al. 2011a]

and Psychodidae diptera popularly known as moth fly; the beetle Cotinis mutabilis and the
bee Apis mellifera. The number of examples of each species varies between 172 (0.95%)
and 5, 309 (29.31%), for the species Cotinis mutabilis and Culex tarsalis, respectively.

The data set was divided into standard training and test partitions. This division
was performed in a stratified approach, leaving 33% of the examples in the training set
and the remaining in the test set.

4.2. Similarity Search

The similarity search is a simple approach for classification. In our domain, two design
decisions can significantly influence the classifier performance: the distance measure and
the data representation. In this section, we evaluate different distance measures applied to
the spectrum and the cepstrum of the signals. The time domain was not used because the
signals have different lengths and also because the alignment of important pieces of the
signals (peaks and valleys) is a very sensitive issue. We start our analysis by comparing
the use of different distances applied to cepstrum and spectrum. The results are presented
in Table 1.

The results achieved by similarity on the spectrum were slightly superior then the
ones obtained by the cepstrum. Given these results, we decided to extend the evaluation of
the classification by similarity only to the spectral domain. Table 2 presents the distance
measures and the classification accuracy.
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Table 1. Result of classification by similarity over the spectrum and the cepstrum

Distance Accuracy (%)

Measure Spectrum  Cepstrum
Euclidean 76.14 78.66
Manhattan 80.09 67.24
Cosine 77.25 76.29
Correlation 76.60 75.34

Table 2. Result of classification by similarity in the frequency domain

Distance Measure Accuracy (%)
Canberra 72.28
Chebyshev 71.20
Jaccard 77.26
Topsoe 81.54
Clark 75.59
Average L1 Lo 80.09
Squared 2 81.38
Additive Symmetric x? 81.01
DTW (band-width = 5 observations) 81.04

4.3. Feature Extraction

The feature extraction approach uses different representations of signals to identify fea-
tures, which are used as input to machine learning algorithms.

In this work, we use temporal and spectral features. The interested reader can
find a detailed review of these features in [Park 2004]. We use temporal features and
spectral features to refer to feature vectors extracted from time and frequency domains,
respectively. Table 3 lists the features that compose each of these vectors.

Table 3. List of features that compose temporal and spectral feature vectors

Domain Feature

Mean amplitude, Root mean square, Short-time energy, Interval, Temporal centroid, Zero-crossing rate,

Complexity estimate [Batista et al. 2011c], Variance,Standard deviation, Skewness, Kurtosis, Duration

Fundamental frequency, Inharmonicity, Tristimulus (1, 2 and 3), Flux, Spectral centroid, Energy,

Spectral Spectral irregularity, Modified spectral irregularity, Variance, Standard deviation, Skewness, Kurtosis,
Mean magnitude, Roll-off, Flatness

Temporal

Moreover, we also use Mel-Frequency Cepstrum Coefficients (MFCC), Linear
Prediction Coefficients (LPC) and Line-Spectral Frequencies (LSF). Certain feature sets,
such as MFCC, use a scale based on the human perception of sound. However, there is
no a priori reason to limit our approach to the limited frequency range and resolution
of human hearing. To circumvent this issue, we also evaluated the Linear-Frequency
Cepstrum (LFC) and the Log-Linear Frequency Cepstrum (LLFC).

We evaluate several machine learning techniques using these features. Most learn-
ing algorithms have parameters that can significantly influence their performance. Our
first experiment consists of a search for the parameters that maximize classification ac-
curacy. Since the use of test data is restricted to the final classifiers evaluation, we used
10-fold cross-validation on the training data to search the parameter values.

In the case of Support Vector Machine, we use grid search [Hsu et al. 2003] to
vary the parameters of the base algorithm and of the kernel. Given values of minimum,

1146



XXXIV Congresso da Sociedade Brasileira de Computacdo — CSBC 2014

maximum and step size, we evaluate the cross-validation accuracy of each combination of
parameters. This search is performed with coarse estimate, using 2-fold cross-validation.
The search is then refined in regions with better results.

The learning algorithms, as well as parameter ranges, are described in Table 4.

Table 4. Learning algorithms with their respective parameter ranges

Algorithm Acronym Parameters Parameters range (initial:step:final)
Decision Tree (J48 implementation) J48 Pruning factor P=0.1:0.1:0.5

Gaussian Mixture Models GMM Number of components N =3:2:21

K-Nearest Neighbors KNN Number of neighbors K=1:2:25

Naive Bayes NB - -

Random Forest RF Number of trees N =5:2:75

Support Vector Machine - Polynomial Kernel ~ SVM Poly ~ Complexity C / Degree ~ C=10%i=-7:1:5/D=1:1:3

Support Vector Machine - RBF Kernel SVM RBF  Complexity C/~y C=10%i=-7:1:5/v=10%i=-4:1:0

Table 5 presents the results of the first experiment. For reasons of readability, we
omit results obtained by Naive Bayes and J48 classifiers, since they achieved the worst
results across all feature sets. Additionally, we only show the results for SVM RBF since
SVM Poly had inferior results. Finally, we also omited the results obtained by using LPC
and temporal features, because they are significantly worse than the ones obtained by
other feature vectors.

Table 5. Accuracy results per classifier and feature set. and optimal parameter
values. The best result in each feature set is highlighted

Feature Algorithm Selected Parameter Accuracy
Set Configuration (%)
KNN #c=T5. k=17 81.71
LFC RF #c=80.T =175 83.49
SVMRBF #c=95.¢=10y=1 86.93
GMM #c=100. G =9 83.17
KNN #c=15. k=7 74.70
RF #c= 20. 1" = 60 76.30
LLFC SVM RBF  #c=70.c = 104.7 =0.01 79.05
GMM #e=20. G = 17 74.03
KNN #c=30. k=5 83.61
RF #c=35.T =75 85.39
MFCC SVMRBF #c=40.c =10y =1 87.33
GMM #c=45. G =13 82.42
KNN #c=95. k=5 80.23
LSF RF #c=05.1" =175 84.25
SVMRBF #c=100.c=10y=1 84.97
GMM #c=T75.G =17 75.28
KNN k=5 70.51
Spectral RF T =50 79.38
SVMRBF ¢=10%y=0.1 76.24
GMM G=21 63.73

The best results were obtained with MFCC, being that LFC and LSF achieved
slightly lower accuracy rates, and the spectral feature set and LLFC also slightly lower.
The results obtained with temporal features and LPC were substantially lower than the
other features. The best single classifier performance, 87.33%, was obtained with the
SVM RBF classifier applied to MFCC, and seems to be a respectable accuracy rate
given the complexity of the application. The best result obtained by similarity search
was 81.87%.
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We evaluated the hypothesis that the combination of different representations can
provide enough diversity to improve the classification accuracy. We performed experi-
ments with different combinations of feature sets using the same induction algorithm. To
combine the results, we used the sum of classification scores.

First, we checked if different frequency scales used to extract cepstral coefficients
can be complementary. So, we created combinations of LFC, LLFC and MFCC. We
also used LSF and spectral features in combination with MFCC, since they are the best
known and most used cepstral features and achieved some of the best results in our first
experiment, and LFC, which obtained competitive results in comparison to MFCC. In
addition, we also evaluated the combination of all feature sets (LFC, LLFC, MFCC, LSF
and spectral).

The combination of different feature sets provided a significant number of accu-
racy improvements. In total, 31 (64.58%) of the analyzed cases showed some improve-
ment. It is worth noting that the combination of all feature sets improves the accuracy
over the base classifiers in all cases. The best result, 83.70%, was achieved by combining
the five feature sets using the sum of SVM RBF outputs.

This result may lead the reader to questions about the real contribution of each
feature in classifier combinations. So far, we only used combinations of classifiers out-
puts, obtained by using different features. To know the real contribution of the different
types of features, we built a data set with all features with the largest number of coeffi-
cients used previously. In other words, we built a dataset with 529 features: 100 LFC, 100
LLFC, 100 MFCC, 100 LSF, 100 LPC, 12 temporal features and 17 spectral features.

Due to the high dimensionality of this dataset, feature selection techniques
were applied on it. Specifically, we used the Correlation-Based Feature Selection
(CFS) [Hall 1999] and the Relief [Kononenko 1994] algorithms. In the case of Relief,
the algorithm just creates a ranking of features according to their quality. We must then
choose how many features will be used and select them according to the order established
by the algorithm. To do this, we used 27, 53, 106 and 159 features (5%, 10%, 20% and
30% of total). The CFS algorithm does require have this parameter, and this algorithm
automatically selected 74 features.

Interestingly, the MFCC are always selected in a large number. In all cases, CFS
and variations of Relief, the feature vector with larger number of selected coefficients
was always the MFCC. LFC and LSF were also taken in large numbers by the feature
selection algorithms. The same happened for the spectral attributes. In contrast, the LPC
and temporal features were mostly discarded.

The learning algorithms used in this phase were the KNN, SVM with RBF and
Random Forest. This choice was made because these algorithms have provided the best
results in previous experiments. The results are shown in Table 6.

The use of all features does not systematically improve the performance of classi-
fiers. In one of the analyzed classifiers, this strategy achieved a lower performance than
the classifier trained with only one feature vector. The same does not happen when a
feature selection strategy is used. In the case of CFS, its application improved classifica-
tion performance in all cases. The same happened for the algorithm Relief with certain
number of selected features. In this case, 20% (106) and 30% (159) of the total.
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Table 6. Classification result with all feature sets and feature selection tech-
niques. The highlighted values are relative to those with better performance than
the base classifier considering the best feature set for it

Learning  Individual All CFS Relief Relief Relief Relief
Algorithm Accuracy (%) Features 5% 10% 20% 30%
KNN 83.61 83.51 86.19 83.07 8276 83.85 85.23
RF 85.39 86.98 88.37 85.63 86.16 86.86 87.54
SVM RBF 87.33 89.14 88.78 85.88 86.96 87.38 89.55

5. Conclusion

The sensor presented in this paper is important for a range of applications. For the effec-
tive operation of the sensor, it is necessary to investigate techniques for signal classifica-
tion that can be used in this application. Thus, the aim of this study was to conduct and
present a comprehensive investigation on these methods. We conducted our research with
two approaches for time series classification: similarity search and feature extraction.
Both approaches were applied using different representations.

We demonstrated the influence of different distance measures in our data. Thirteen
distance measures were evaluated with classification by similarity in frequency domain
and the accuracy ranged from 71.20% to 81.54%.

With the feature extraction approach, we evaluated features from temporal, spec-
tral and cepstral representations, as well as features based on linear predictions coeffi-
cients and its variant LSF. We observed that, in different configurations of features and
classifiers, the feature extraction approach is more accurate than the classification based
on similarity search. More specifically, the Support Vector Machine algorithm with RBF
kernel trained with MFCC achieved accuracy of 87.33%. This result represents an im-
provement of nearly 7% compared to the best classifier based on similarity search.

We also evaluated different ways to combine classifiers and features. The com-
bination of different feature vectors as input to the same learning algorithm usually im-
proves the results. In this case, the best accuracy was 88.70%. In the case of the features
being used together, creating a new data set with feature subset selection techniques, the
accuracy achieved 89.55%.
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