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Abstract. Safety-critical Software Product Lines (SPLs) are required to 
demonstrate compliance with domain-specific safety standards. Different 
component configurations may require the inclusion or exclusion of certain 
features depending on their impact on safety. Additionally, variants may 
present distinct criticality levels which imply in different safety requirements 
during their development and evaluation. Some authors have proposed 
approaches to address safety certification taking into account SPL  
Engineering (SPLE) activities. Those can be however, labor intensive and 
impracticable when dealing with larger and complex product lines. In this 
paper, we propose an ontology-based approach to support safety engineers on  
identifying features and assets relevant for the configuration and certification 
of Safety-Critical Product Lines. The approach was evaluated, considering a 
realistic SPL from the aerospace domain and the DO-178C safety standard. 
As a result, the application of the proposed approach was proven to support 
the traceability of SPL requirements and certification levels, thus, reducing 
the complexity of the deployment of different component configurations. 

1. Introduction 
Critical systems are computer systems in which failures may lead to catastrophic 
consequences. Due to their critical nature, the development of these systems often 
demand compliance with domain-specific safety standards. Standards, such as the DO-
178C [RTCA 2011] for avionics and  ISO26262 [ISO 2018]  for automotive systems, 
establish a set of safety requirements that provide evidence that a piece of software is 
acceptably safe. Safety standards establish a set of safety integrity levels to classify the 
criticality of individual systems and components. Integrity levels are assigned based on 
the results obtained through system safety engineering and analysis activities. 

 Due to the benefits of large-scale reuse, increased quality and reduced 
development costs introduced by Software Product Lines (SPLs), Software Product 
Line Engineering (SPLE) [Pohl et al. 2005] has been widely adopted in many different 
critical industry domains such as automotive, aerospace and railway. Traditional SPLE 
however, does not support safety engineering activities. Therefore, safety engineering, 
analysis and certification activities must be integrated into SPLE when considering 
safety-critical SPLs [Habli and Kelly 2007][Kelly et al. 2016]. 



  

 Safety standards such as the DO-178C only consider the certification of 
individual products thus, being limited when it comes to the certification of variant-
intensive and families of critical systems. Due to that limitation, authors such as Braga 
et. al. [Braga et al. 2012] have proposed ways to incorporate certification aspects into 
SPL Engineering. Despite proven to be effective, existing SPL engineering-based 
approaches for critical systems lack on providing more efficient strategies to manage 
and enable the traceability required to keep track and manage aspects related to system 
design and safety. Such traceability might be crucial when dealing with bigger and 
complex reconfigurable software platforms. 

 In this paper, we present an ontology-based approach to support identification of 
features and safety requirements relevant to the configuration and safety certification of 
Safety-Critical Software Product Lines. The main goal of the approach is to reduce the 
effort related to the deployment of different Safety-Critical software component 
configurations while considering safety and certification. The proposed approach was 
evaluated through a feasibility study using the Tiriba UAV SPL, a realistic Safety-
Critical SPL from the aerospace domain and guidance provided in the DO-178C safety 
standard. The results pointed to the feasibility of the proposed approach. 
 This paper is organized as follows: Section 2 contains the background. Section 
3 discusses the related works. Section 4 provides an overview of the proposed ontology-
based approach. Section 5 illustrates the evaluation of the proposed  approach in a 
realistic safety-critical SPL of the aerospace domain. Finally, Section 6 presents the 
conclusions and future work. 

2. Background 
Critical systems are computer systems in which, failures may result in catastrophic 
consequences. Due to benefits delivered by Software Product Lines [Pohl et al. 2005], 
such as enhanced product quality, large-scale reuse and shorter time-to-market, 
Software Product Line (SPL) Engineering is being increasingly adopted in the industry 
[Villela et al. 2014]. 

 SPL Engineering is split into two phases: Domain and Application Engineering. 
The Domain Engineering phase enables the establishment of the reusable platform by 
supporting the definition of commonalities and variability within the product line. The 
reusable platform includes artifacts such as documentation, requirements, design, 
realization, source code, test cases and the feature model. Feature models are used to 
describe systems in terms of features and to specify their points of variability. Features 
are distinct system characteristics visible to the end user [Lee et al. 2002]. The 
Application Engineering phase supports the configuration and derivation of different 
products based on the information within the reusable platform. It ensures the 
appropriate binding of variability, based on the product requirements [Pohl et al. 2005]. 

 Even though the adoption of SPL Engineering in the development of product 
families has its many advantages, additional practices must be taken into account when 
dealing with safety-critical Product Lines [Habli and Kelly 2007]. In safety-critical 
systems, different product configurations must address different certification 
requirements depending on their criticality. Therefore, the integration of safety 
engineering and certification tasks into SPL Engineering is considered crucial [Braga et 
al. 2012][Oliveira et al. 2018]. DEPendableSPLE extends the conventional SPLE 



  

methods, to support safety engineering activities on both the Domain and Application 
Engineering phases of SPL Engineering. It provides guidance for the definition of the 
safety-critical reusable platform, product configuration and product-specific safety 
analysis. It not only enables the specification and binding of variability  at design level 
but also, at safety engineering and assessment level, covering safety engineering phases 
such as Hazard Analysis and Risk Assessment (HARA). A hazard is a potential source 
of harm caused by the malfunctioning behavior of a system, components and its 
functions [ISO 2018]. HARA consists of identifying the potential hazards that may 
affect the behavior of a system or component, estimating their risk and criticality. Such 
criticality can be measured in terms of quality attributes e.g.: severity, controllability 
and quantitative metrics e.g.: availability and reliability. 
 Safety standards provide guidance to ensure the safety of a system and its 
compliance with a targeted criticality level. The DO-178C [RTCA 2011] lists a series of 
requirements to guide the development and assessment of airborne software systems. It 
contains a total of five different criticality levels named Development Assurance Levels 
(DALs) or Software Levels. The rules and recommendations concerning DAL / 
Software Levels allocation are presented in a complementary document, the SAE ARP 
4754A [Aerospace 2010].  

 Criticality levels range from A to E and are allocated to software components, 
according to the risks and severity associated to their hazards. The risk of a hazard is 
calculated based on the number of times it happens per flight hour. Severity is purely 
qualitative and can be set as minor, major, hazardous or catastrophic. Minor hazards 
describe failures that may cause a routine flight plan change. Major hazards describe 
failures that may lead to passenger discomfort or significant increases in crew workload. 
Hazardous failures have a large negative impact on safety by reducing the ability to 
operate the aircraft correctly and may cause serious or fatal injuries to passengers and 
crew. Catastrophic failures are those that may lead to a crash e.g.: loss of control or 
function to safely operate the aircraft. Certification requirements change according to 
the different criticality levels. Therefore, higher Software Levels demand a greater 
number of development and assessment activities thus, increasing development costs 
and effort.  

3. Related Works 
Braga et al. [Braga et al. 2012] describe how certification may impact the feature 
modeling and safety requirement allocation in Safety-Critical Product Lines from the 
Aerospace Domain. The main idea is to identify features that impact the certification of 
component variants while considering DO-178B Software Levels. The approach 
however, does not consider multi-level traceability between different configurations and 
features. When specifying the feature model, the authors have only considered the direct 
relationships between features and, although it is still possible to manually establish 
traces between them, doing so, can prove to be time consuming and labor intensive 
when dealing with bigger and more complex systems. 
 Even though the adoption of a development focused on Software Product Lines 
(SPL), large-scale reuse and families of systems may present many advantages, 
adaptations to the Software Product Line Engineering (SPLE) paradigm are necessary to 
include safety engineering and assessment tasks into the development life-cycle. 



  

Variations in design and context can impact the artifacts generated through safety 
engineering phases such as Hazard Analysis and Risk Assessment (HARA). Moreover, 
different HARA results may also impact the allocation of safety requirements. In order 
to support the SPL Engineering-based development in critical domains, Oliveira et al. 
[Oliveira et al. 2018] present DEPendableSPLE, an adaptation of the traditional SPL 
Engineering methods to include  variability management, reuse and traceability between 
artifacts generated through safety engineering tasks and product design. 
 Filho et al. [Filho et al. 2012], introduce new ways to semantically enrich feature 
models, using ontologies. The approach considers aspects such as multiplicities, 
optionality and the establishment of relationships between features and elements such as 
requirements, code and test cases. Despite doing so, the approach has not been applied 
or extended yet, to consider artifacts and relationships relevant to the development and 
assessment of safety-critical SPLs e.g.: safety engineering, analysis results and the 
allocation of safety requirements.  

4. The Ontology-based Approach 
This section presents the main aspects regarding the proposed approach. The approach 
comprises the following phases: Reusable Platform Specification, Inference Generation 
and Component Configuration. The output of these phases are used and processed by 
the ontology to generate the desired inferences. The approach is depicted in Figure 1 
and described in the following. 

 
Figure 1 - The proposed ontology-based approach 

4.1. Reusable Platform Specification Phase 
The Reusable Platform Specification phase covers the application of Domain 
Engineering activities to specify the reusable platform of the desired variant-intensive 
software component. In this phase, engineers determine how certain software 
functionalities may be combined into features and how these features relate to each 
other through dependency relationships e.g.:  “Feature1 requires Feature2”. Moreover, 
a preliminary set of dependencies between certification-relevant features, base 
configurations and integrity levels are defined.  
 In the proposed approach, the certification-relevant features are those required, 
excluded or optional by a base configuration, so it achieves a certain integrity level. 
Such relationships are mainly obtained through Hazard Analysis and Risk Assessment 



  

(HARA) techniques such as Reliability estimation, Fault Tree Analysis (FTA) and 
Failure Modes and Effects Analysis (FMEA). If the inclusion of a feature into the 
configuration does not affect the desired Software Level, then such feature can be 
considered optional. If the inclusion of such feature increases the risks associated with 
the considered component and can possibly increase desired Software Level, then this 
feature must be excluded from the desired configuration or classified as 
worksAgainstCert. At last, features that when added reduces the risks associated with a 
component or help to ensure the desired Software Level can be set as requiresForCert 
or worksForCert.  

 Base configurations comprise a set of features that can partially describe a 
software component variant configuration. These configurations are always detailed in 
terms of their base features e.g.: BaseConf1 implements {F1 and F2 and F3} and 
possible criticality levels e.g.: BaseConf1 hasCriticality {A, B}. They can be 
instantiated and further extended in the Component Configuration Phase, to implement 
optional features or include additional certification-relevant features depending on the 
desired Software Level and the feature suggestions provided during the Inference 
Generation Phase. 

4.2. Inference Generation Phase 
The Inference Generation Phase serves as a bridging point between the Reusable 
Platform Specification and the Component Configuration phases. It contains the 
ontology and is responsible for processing the provided information and deriving data 
relevant for the configuration and certification of different software component 
configurations. 
 Competency Questions (CQs) are derived in the earlier stages of ontology 
development and are questions which the ontology should be able to answer [Fernandes 
et al. 2011; Noy and Hafner 1997]. A set of CQs were defined to help us with the 
formalization of the ontology1: CQ1: Which features are relevant for the certification 
process, considering different product configurations and certification levels? CQ2: 
Which process objectives are required by each criticality? CQ3: Which process 
objectives are required by each system variant, considering their expected software 
certification level? CQ4: What are the implicit dependencies between features? CQ5: 
What are the implicit dependencies between product variants and features? 

 In addition to the competency questions, we have also considered the elements 
and feature relationships provided by [Braga et al. 2012] in their experience report when 
specifying the classes, object properties and relationship rules in the ontology. The 
proposed ontology was specified using the Protegè2 tool and is depicted in Figure 2.  

 
Figure 2 - The proposed ontology 

 
1  Available on: https://github.com/bressan3/Tiriba-UAV-SPL-Onthology 
2  https://protege.stanford.edu 



  

 Different component configurations, comprising a set of Feature instances, are 
represented by the Configuration class. The Objective and IntegrityLevel classes 
represent standard-specific aspects. Depending on the critical domain targeted by the 
SPL, different safety standards may be required in order to demonstrate safety 
compliance. Thus, Objective represents the objectives or safety requirements listed in 
the considered standard. Instances belonging to IntegrityLevel class, represent the 
documented criticality or integrity levels e.g.: Automotive Safety Integrity Levels 
(ASILs) in the ISO26262, Software Levels or DALs in the DO-178C. 

 Instances belonging to the Feature, may require, exclude or make other features 
optional. These relationships, are implemented through requires, makesOptional and 
excludes object properties. Configurations may implement a series of different features 
and therefore, relate to members of the Feature class through the implements property. 

 In addition to the classes and object properties described above, the ontology 
was also enriched with property chain and SWRL rules. If a feature F1 requires F2 and 
F2 requires F3, then it is known that the selection of F1 will automatically imply in the 
selection of both F2 and F3. Thus, the requires object property characterizes the 
transitive property chain in order to address CQ2. Furthermore, if a component 
configuration CompConf1 requires F1 for achieving a certain criticality level and F1 
excludes F2, then CompConf1 will also have to exclude F2. Thus, a SWRL rule to 
describe such relationship was also considered in the ontology so it can infer that rule 
and answer CQ1. 

4.3. Component Configuration Phase 
The component configuration phase implements activities related to the generation of 
different product variants according to information that has been previously provided in 
the Reusable Platform. The first step in this phase is the partial configuration of the 
desired component. As previously described in Section 4.1, different base component 
configurations must be specified in the reusable platform. This partial component 
configuration is fed into the ontology and new suggestions regarding the possible 
certification levels and the implicit feature requirements, are generated.  

 These suggestions will indicate which features are required, recommended or 
excluded by the desired base configuration and will be further used as input towards 
reaching a final software component configuration. With the suggestions generated by 
the ontology, project managers can include features, allocate different criticality levels 
and get real-time suggestions of the new safety requirements and component 
configuration possibilities upon doing so. 

 Features that help a base configuration reach a certain integrity level, can 
sometimes require or exclude other features. When adding them to the partial 
component configuration, the ontology will process the inserted data and return all the 
new configuration requirements and possibilities. As a result, product managers will be 
then able to evaluate the new features that must be added or excluded from the 
configuration against the project requirements. These results can be used to determine if 
it is actually worthwhile to add a recommended feature into the desired component 
configuration or not. Such decision can be made by considering a number of factors 
such as integration effort and costs. 



  

 The proposed ontology also provides information regarding the safety 
requirement compliance needs of component configurations. Project managers can use 
such information, on top of the feature requirements, to estimate the effort required for 
the certification of a component configuration and agree on project decisions. 

5. Evaluation 
In this section, we evaluate the application of the proposed approach in a real world 
scenario, through a viability study. The evaluation was conducted considering the 
description of the Tiriba UAV Software Product Line, its safety certification-related 
attributes provided by Braga et al. [Braga et al. 2012] and the DO-178C safety standard 
[RTCA 2011]. Furthermore we have also considered the guidance provided by Wohlin 
et. al. [Wohlin et al. 2012] in the presented study. The evaluation was divided into five 
steps: study definition, formalization, planning, execution and evidences presentation. 

5.1. Study Definition and Formalization 
In order to define the scope of this feasibility study, we must determine its purpose, 
point of view and the context. The Goal Question Metrics (GQM) approach proposed by 
Basili, Caldiera and Rombach [Basili et al. 1994] was used to define these attributes: 

 

Analyze the ontology-based approach to support the configuration and 
certification of Safety-Critical Software Product Lines with the purpose of 
evaluating its feasibility on extracting implicit relationships that can support the 
configuration of different safety-critical software components with respect to 
safety certification from the point of view of software product lines in the 
context of safety-critical systems. 

  

 Based on the application of the GQM approach, the following research question 
was derived: RQ: How does the proposed approach help engineers on managing and 
configuring Safety-Critical Software Product Lines? Moreover, the following secondary 
research questions were derived: RQ1: How does the proposed approach help on the 
identification of implicit feature requirements when considering certification? RQ2: 
How does the proposed approach supports the identification of implicit feature 
dependencies upon the inclusion of new features into a component configuration? RQ3: 
How does the proposed approach support engineers on estimating the certification 
objective requirements when considering different component configurations? 

5.2. Study Planning 
An Unmanned Aerial Vehicle (UAV) is an aircraft which is not flown by an onboard 
human operator. UAVs comprise one of the main components within an Unmanned 
Aircraft System (UAS). Apart from including the UAV itself, UASs may also 
implement additional components such as a controlling station, payload and 
communication systems [ICAO 2011]. The Tiriba UAV Software Product Line and its 
feature model, have been modified by Braga et al. [Braga et al. 2012] from its original 
version, in a way which features were separated in different layers, according to their 
purpose based on Kang et al.’s [Kang et al. 1998] work. 



  

 The Usage Context Layer, which is the topmost abstraction in the Tiriba UAV 
feature model, comprises three different feature categories or variation points: 
Application, UAVDimension and Airspace. The Application variation point contains 
features that describe the domain which the UAV will be used in e.g.: Agriculture, 
Environment Monitoring and Defense. The features within UAVDimension are related 
to the size and the weight of the UAV component e.g.: Light, Small or Heavy. At last, 
the Airspace variation point contains features that describe the kind of airspace which 
the UAV will be certified to operate in e.g.: Controlled or Uncontrolled. Variants are 
specified considering the selection of one feature contained in each one of these three 
variation points. Accordingly, some possible configurations, when considering the 
Tiriba UAV software component are: AgricultureSmallControlled, 
DefenseSmallControlled and DefenceLightUncontrolled. 

 Figure 3 shows an excerpt of the Tiriba UAV feature model and its feature-to-
feature relationships. Certain features may require, make optional or exclude others. The 
Mission Abortion feature for example, must be present whenever the Controlled 
airspace feature is selected. Therefore, variants such as AgricultureSmallControlled, 
must always implement the MissionAbortion feature. UAVs falling under the Heavy 
category, cannot be launched by Hand or implement the Parachute Landing 
functionality. Parachute Landing adds a new layer of redundancy in the landing 
procedure thus, making it safer. Therefore, UAV variants with lower Software Levels, 
may require or recommend the inclusion of such feature in their configurations. 

 
Figure 3 - An excerpt of the Tiriba UAV SPL feature model and its feature-to-
feature relationships 

5.3. Execution 
In order to perform this feasibility study, the information regarding the Tiriba UAV 
Software Product Line such as its Features, Feature-to-Feature and Configuration-to-
Feature Certification relationships were loaded into our reusable platform. The 
AgricultureSmallUncontrolled UAV component configuration with Software Level B 
was taken into account for this evaluation. The experiment was performed using  
Protegè and the Pellet reasoner. The ontology was populated with the information 
within the reusable platform, DO-178C software levels, certification phases, their 
objectives and UAV base configurations. 

 The AgricultureSmallUncontrolled UAV base component configuration 
implementing the Agriculture, Small and Uncontrolled context features, was fed into the 
ontology followed by the base configuration for the AgricultureSmallUncontrolled 



  

UAV with expected Software Level B. Table 1 shows the certification and the DO-
178C software level dependencies required by the AgricultureSmallUncontrolled UAV 
configuration to achieve compliance with the DO-178C Software Level B. These 
required, desirable and excluded features were obtained through the results of safety 
analysis activities during Hazard Analysis and Risk Assessment (HARA): 

Table 1 - The list of certification-relevant features required by the 
AgricultureSmallUncontrolled UAV component configuration for achieving 

Software Level B 

Relationship Individual Class 

hasCriticality B Criticality 

requiresForCert SmartSensorInterface Feature 
requiresForCert FlightAreaDelimitation Feature 

worksForCert DataIntegrityChecking Feature 

 

 A preliminary component configuration based off the 
AgricultureSmallUncontrolled UAV configuration with Software Level B was created. 
At last, the Pellet reasoner was executed on the populated ontology, considering its 
instances and relationships. 

5.4. Evidences Presentation 
Once having the inferences generated and back propagated into the ontology by the 
Pellet reasoner, the following feature suggestions and certification requirements were 
generated for the preliminary AgricultureSmallUncontrolled UAV component 
configuration, with Software Level B: 

 
Figure 4 - The preliminary AgricultureSmallUncontrolled UAV configuration and 

its certification and feature requirements 

 The generated results illustrate not only the relationships that had been manually 
modeled in both the AgricultureSmallUncontrolled and the 
AgricultureSmallUncontrolled UAV with Software Level B base configurations but 



  

also, the certification objectives that the desired software component configuration 
should satisfy and its implicit feature requirements. 

 By analyzing Figure 4, we can observe that the CatapultLaunching and 
WeatherRadar features are optional in the configuration we have so far. Since these 
features may impact in additional feature requirements, new features can become 
mandatory, upon integrating them into the current configuration. Figure 5 displays the 
new feature requirements brought up by integrating the CatapultLaunching and 
WeatherRadar features into the preliminary AgricultureSmallUncontrolled UAV 
Software Component configuration: 

 
Figure 5 - The new implicit feature requirements upon adding new features to 

the preliminary AgricultureSmallUncontrolled UAV configuration 

Considering the results obtained throughout the evaluation so far, we can now answer 
the research questions listed earlier in Section 5.1: 

RQ1 - How does the proposed approach help on the identification of implicit 
feature requirements when considering certification? The approach support the 
identification of implicit certification feature requirements by displaying all the features 
that contribute, work against or are required so a configuration can achieve a certain 
software level. Figure 4  lists a set of features and relationships which, although not 
being explicitly modeled into the base model, are implicitly required or desirable by the 
AgricultureSmallUncontrolled UAV so it can achieve Software Level B. 

RQ2 - How does the proposed approach help on the identification of implicit 
feature dependencies upon the inclusion of new features into a component 
configuration? The approach also support the estimation of feature requirements that 
are not necessarily linked to certification. As previously shown in Figure 5, the 
inclusion of new features into the preliminary component configuration provides 
product managers with real-time information regarding the new implicit feature 
requirements that should also be considered alongside their decision. 

RQ3 - How does the proposed approach help on estimating the certification 
objective requirements when considering different component configurations? The 
safety certification objectives can be gathered from as far back as when configuring the 
base model that will relate a software component configuration to an specific integrity 
level. As pictured in Figures 4 and 5, the ontology is able to provide, through its 
reasoning, the standard objectives that must be accomplished, in order to achieve the 
safety certification of the desired software component configuration. 
RQ - How does the proposed approach help engineers on managing and 
configuring Safety-Critical Software Product Lines? At last, by considering the 
answers provided in RQ1, RQ2 and RQ3 and the collected evidence, we can conclude 
that the presented ontology-based approach, does indeed provide the intended support 
for the configuration, deployment and certification of different safety-critical software 
component configurations. 



  

 The first characteristic that sustains such affirmation has to do with the fact that 
the ontology, can provide project managers with relevant information regarding the 
different configuration possibilities and needs a software component can have. By doing 
so, it helps them decide if a certain feature should be added into a configuration or not. 
In the case of a feature that if included, would help a component achieve its desired 
integrity level, this decision can be made upon analyzing the impact that adding the 
suggested feature would have on certification and measuring if the benefits it introduces 
into the configuration, would justify the extra time and effort needed to integrate it. In 
addition, analysts can also use of the inferred information such as safety standard 
objectives and the certification feature requirements to better estimate the effort 
necessary to integrate, deploy and certify the desired component configuration. 

6. Concluding Remarks and Future Work 
This paper has presented an ontology-based approach to support the identification of 
features and safety requirements relevant to the configuration and safety certification of 
Safety-Critical Software Product Lines. We have considered a previous experience 
applied during the definition of a critical SPL of the aerospace domain, and presented an 
ontology-based approach to support project managers on configuring and deploying 
different software component configurations based on it. 
 The approach was evaluated through a feasibility study. A set of research 
questions were determined using the GQM method. The approach was then evaluated 
considering a realistic aerospace Safety-Critical Software Product Line and the DO-
178C safety standard. As a result, we believe that, integrating the proposed approach 
into the reusable platform specification and resolution phases of Safety-Critical SPLs 
may reduce even more, the time and effort needed to analyze and make decisions when 
configuring, deploying and certifying different component or product configurations. 

 As future work, we will extend the proposed approach to support the automatic 
Hazard Analysis and Risk Assessment of base configurations through its integration 
with external safety analysis tools and a smarter and more automated estimation of the 
possible base configuration criticality levels and their specific certification relationships 
and requirements. 
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