

An ontology-based approach to support the certification of
Safety-Critical Software Product Lines

Lucas Bressan1, Regina Braga1, Fernanda Campos1, André L. de Oliveira1

1Programa de Pós Graduação em Ciência da Computação– Universidade Federal de Juiz
de Fora (UFJF)

Juiz de Fora – MG – Brazil
lucasbressan@ice.ufjf.br, {regina.braga, fernanda.campos}@ufjf.edu.br,

andre.oliveira@ice.ufjf.br

Abstract. Safety-critical Software Product Lines (SPLs) are required to
demonstrate compliance with domain-specific safety standards. Different
component configurations may require the inclusion or exclusion of certain
features depending on their impact on safety. Additionally, variants may
present distinct criticality levels which imply in different safety requirements
during their development and evaluation. Some authors have proposed
approaches to address safety certification taking into account SPL
Engineering (SPLE) activities. Those can be however, labor intensive and
impracticable when dealing with larger and complex product lines. In this
paper, we propose an ontology-based approach to support safety engineers on
identifying features and assets relevant for the configuration and certification
of Safety-Critical Product Lines. The approach was evaluated, considering a
realistic SPL from the aerospace domain and the DO-178C safety standard.
As a result, the application of the proposed approach was proven to support
the traceability of SPL requirements and certification levels, thus, reducing
the complexity of the deployment of different component configurations.

1. Introduction
Critical systems are computer systems in which failures may lead to catastrophic
consequences. Due to their critical nature, the development of these systems often
demand compliance with domain-specific safety standards. Standards, such as the DO-
178C [RTCA 2011] for avionics and ISO26262 [ISO 2018] for automotive systems,
establish a set of safety requirements that provide evidence that a piece of software is
acceptably safe. Safety standards establish a set of safety integrity levels to classify the
criticality of individual systems and components. Integrity levels are assigned based on
the results obtained through system safety engineering and analysis activities.

 Due to the benefits of large-scale reuse, increased quality and reduced
development costs introduced by Software Product Lines (SPLs), Software Product
Line Engineering (SPLE) [Pohl et al. 2005] has been widely adopted in many different
critical industry domains such as automotive, aerospace and railway. Traditional SPLE
however, does not support safety engineering activities. Therefore, safety engineering,
analysis and certification activities must be integrated into SPLE when considering
safety-critical SPLs [Habli and Kelly 2007][Kelly et al. 2016].

 Safety standards such as the DO-178C only consider the certification of
individual products thus, being limited when it comes to the certification of variant-
intensive and families of critical systems. Due to that limitation, authors such as Braga
et. al. [Braga et al. 2012] have proposed ways to incorporate certification aspects into
SPL Engineering. Despite proven to be effective, existing SPL engineering-based
approaches for critical systems lack on providing more efficient strategies to manage
and enable the traceability required to keep track and manage aspects related to system
design and safety. Such traceability might be crucial when dealing with bigger and
complex reconfigurable software platforms.

 In this paper, we present an ontology-based approach to support identification of
features and safety requirements relevant to the configuration and safety certification of
Safety-Critical Software Product Lines. The main goal of the approach is to reduce the
effort related to the deployment of different Safety-Critical software component
configurations while considering safety and certification. The proposed approach was
evaluated through a feasibility study using the Tiriba UAV SPL, a realistic Safety-
Critical SPL from the aerospace domain and guidance provided in the DO-178C safety
standard. The results pointed to the feasibility of the proposed approach.
 This paper is organized as follows: Section 2 contains the background. Section
3 discusses the related works. Section 4 provides an overview of the proposed ontology-
based approach. Section 5 illustrates the evaluation of the proposed approach in a
realistic safety-critical SPL of the aerospace domain. Finally, Section 6 presents the
conclusions and future work.

2. Background
Critical systems are computer systems in which, failures may result in catastrophic
consequences. Due to benefits delivered by Software Product Lines [Pohl et al. 2005],
such as enhanced product quality, large-scale reuse and shorter time-to-market,
Software Product Line (SPL) Engineering is being increasingly adopted in the industry
[Villela et al. 2014].

 SPL Engineering is split into two phases: Domain and Application Engineering.
The Domain Engineering phase enables the establishment of the reusable platform by
supporting the definition of commonalities and variability within the product line. The
reusable platform includes artifacts such as documentation, requirements, design,
realization, source code, test cases and the feature model. Feature models are used to
describe systems in terms of features and to specify their points of variability. Features
are distinct system characteristics visible to the end user [Lee et al. 2002]. The
Application Engineering phase supports the configuration and derivation of different
products based on the information within the reusable platform. It ensures the
appropriate binding of variability, based on the product requirements [Pohl et al. 2005].

 Even though the adoption of SPL Engineering in the development of product
families has its many advantages, additional practices must be taken into account when
dealing with safety-critical Product Lines [Habli and Kelly 2007]. In safety-critical
systems, different product configurations must address different certification
requirements depending on their criticality. Therefore, the integration of safety
engineering and certification tasks into SPL Engineering is considered crucial [Braga et
al. 2012][Oliveira et al. 2018]. DEPendableSPLE extends the conventional SPLE

methods, to support safety engineering activities on both the Domain and Application
Engineering phases of SPL Engineering. It provides guidance for the definition of the
safety-critical reusable platform, product configuration and product-specific safety
analysis. It not only enables the specification and binding of variability at design level
but also, at safety engineering and assessment level, covering safety engineering phases
such as Hazard Analysis and Risk Assessment (HARA). A hazard is a potential source
of harm caused by the malfunctioning behavior of a system, components and its
functions [ISO 2018]. HARA consists of identifying the potential hazards that may
affect the behavior of a system or component, estimating their risk and criticality. Such
criticality can be measured in terms of quality attributes e.g.: severity, controllability
and quantitative metrics e.g.: availability and reliability.
 Safety standards provide guidance to ensure the safety of a system and its
compliance with a targeted criticality level. The DO-178C [RTCA 2011] lists a series of
requirements to guide the development and assessment of airborne software systems. It
contains a total of five different criticality levels named Development Assurance Levels
(DALs) or Software Levels. The rules and recommendations concerning DAL /
Software Levels allocation are presented in a complementary document, the SAE ARP
4754A [Aerospace 2010].

 Criticality levels range from A to E and are allocated to software components,
according to the risks and severity associated to their hazards. The risk of a hazard is
calculated based on the number of times it happens per flight hour. Severity is purely
qualitative and can be set as minor, major, hazardous or catastrophic. Minor hazards
describe failures that may cause a routine flight plan change. Major hazards describe
failures that may lead to passenger discomfort or significant increases in crew workload.
Hazardous failures have a large negative impact on safety by reducing the ability to
operate the aircraft correctly and may cause serious or fatal injuries to passengers and
crew. Catastrophic failures are those that may lead to a crash e.g.: loss of control or
function to safely operate the aircraft. Certification requirements change according to
the different criticality levels. Therefore, higher Software Levels demand a greater
number of development and assessment activities thus, increasing development costs
and effort.

3. Related Works
Braga et al. [Braga et al. 2012] describe how certification may impact the feature
modeling and safety requirement allocation in Safety-Critical Product Lines from the
Aerospace Domain. The main idea is to identify features that impact the certification of
component variants while considering DO-178B Software Levels. The approach
however, does not consider multi-level traceability between different configurations and
features. When specifying the feature model, the authors have only considered the direct
relationships between features and, although it is still possible to manually establish
traces between them, doing so, can prove to be time consuming and labor intensive
when dealing with bigger and more complex systems.
 Even though the adoption of a development focused on Software Product Lines
(SPL), large-scale reuse and families of systems may present many advantages,
adaptations to the Software Product Line Engineering (SPLE) paradigm are necessary to
include safety engineering and assessment tasks into the development life-cycle.

Variations in design and context can impact the artifacts generated through safety
engineering phases such as Hazard Analysis and Risk Assessment (HARA). Moreover,
different HARA results may also impact the allocation of safety requirements. In order
to support the SPL Engineering-based development in critical domains, Oliveira et al.
[Oliveira et al. 2018] present DEPendableSPLE, an adaptation of the traditional SPL
Engineering methods to include variability management, reuse and traceability between
artifacts generated through safety engineering tasks and product design.
 Filho et al. [Filho et al. 2012], introduce new ways to semantically enrich feature
models, using ontologies. The approach considers aspects such as multiplicities,
optionality and the establishment of relationships between features and elements such as
requirements, code and test cases. Despite doing so, the approach has not been applied
or extended yet, to consider artifacts and relationships relevant to the development and
assessment of safety-critical SPLs e.g.: safety engineering, analysis results and the
allocation of safety requirements.

4. The Ontology-based Approach
This section presents the main aspects regarding the proposed approach. The approach
comprises the following phases: Reusable Platform Specification, Inference Generation
and Component Configuration. The output of these phases are used and processed by
the ontology to generate the desired inferences. The approach is depicted in Figure 1
and described in the following.

Figure 1 - The proposed ontology-based approach

4.1. Reusable Platform Specification Phase
The Reusable Platform Specification phase covers the application of Domain
Engineering activities to specify the reusable platform of the desired variant-intensive
software component. In this phase, engineers determine how certain software
functionalities may be combined into features and how these features relate to each
other through dependency relationships e.g.: “Feature1 requires Feature2”. Moreover,
a preliminary set of dependencies between certification-relevant features, base
configurations and integrity levels are defined.
 In the proposed approach, the certification-relevant features are those required,
excluded or optional by a base configuration, so it achieves a certain integrity level.
Such relationships are mainly obtained through Hazard Analysis and Risk Assessment

(HARA) techniques such as Reliability estimation, Fault Tree Analysis (FTA) and
Failure Modes and Effects Analysis (FMEA). If the inclusion of a feature into the
configuration does not affect the desired Software Level, then such feature can be
considered optional. If the inclusion of such feature increases the risks associated with
the considered component and can possibly increase desired Software Level, then this
feature must be excluded from the desired configuration or classified as
worksAgainstCert. At last, features that when added reduces the risks associated with a
component or help to ensure the desired Software Level can be set as requiresForCert
or worksForCert.

 Base configurations comprise a set of features that can partially describe a
software component variant configuration. These configurations are always detailed in
terms of their base features e.g.: BaseConf1 implements {F1 and F2 and F3} and
possible criticality levels e.g.: BaseConf1 hasCriticality {A, B}. They can be
instantiated and further extended in the Component Configuration Phase, to implement
optional features or include additional certification-relevant features depending on the
desired Software Level and the feature suggestions provided during the Inference
Generation Phase.

4.2. Inference Generation Phase
The Inference Generation Phase serves as a bridging point between the Reusable
Platform Specification and the Component Configuration phases. It contains the
ontology and is responsible for processing the provided information and deriving data
relevant for the configuration and certification of different software component
configurations.
 Competency Questions (CQs) are derived in the earlier stages of ontology
development and are questions which the ontology should be able to answer [Fernandes
et al. 2011; Noy and Hafner 1997]. A set of CQs were defined to help us with the
formalization of the ontology1: CQ1: Which features are relevant for the certification
process, considering different product configurations and certification levels? CQ2:
Which process objectives are required by each criticality? CQ3: Which process
objectives are required by each system variant, considering their expected software
certification level? CQ4: What are the implicit dependencies between features? CQ5:
What are the implicit dependencies between product variants and features?

 In addition to the competency questions, we have also considered the elements
and feature relationships provided by [Braga et al. 2012] in their experience report when
specifying the classes, object properties and relationship rules in the ontology. The
proposed ontology was specified using the Protegè2 tool and is depicted in Figure 2.

Figure 2 - The proposed ontology

1 Available on: https://github.com/bressan3/Tiriba-UAV-SPL-Onthology
2 https://protege.stanford.edu

 Different component configurations, comprising a set of Feature instances, are
represented by the Configuration class. The Objective and IntegrityLevel classes
represent standard-specific aspects. Depending on the critical domain targeted by the
SPL, different safety standards may be required in order to demonstrate safety
compliance. Thus, Objective represents the objectives or safety requirements listed in
the considered standard. Instances belonging to IntegrityLevel class, represent the
documented criticality or integrity levels e.g.: Automotive Safety Integrity Levels
(ASILs) in the ISO26262, Software Levels or DALs in the DO-178C.

 Instances belonging to the Feature, may require, exclude or make other features
optional. These relationships, are implemented through requires, makesOptional and
excludes object properties. Configurations may implement a series of different features
and therefore, relate to members of the Feature class through the implements property.

 In addition to the classes and object properties described above, the ontology
was also enriched with property chain and SWRL rules. If a feature F1 requires F2 and
F2 requires F3, then it is known that the selection of F1 will automatically imply in the
selection of both F2 and F3. Thus, the requires object property characterizes the
transitive property chain in order to address CQ2. Furthermore, if a component
configuration CompConf1 requires F1 for achieving a certain criticality level and F1
excludes F2, then CompConf1 will also have to exclude F2. Thus, a SWRL rule to
describe such relationship was also considered in the ontology so it can infer that rule
and answer CQ1.

4.3. Component Configuration Phase
The component configuration phase implements activities related to the generation of
different product variants according to information that has been previously provided in
the Reusable Platform. The first step in this phase is the partial configuration of the
desired component. As previously described in Section 4.1, different base component
configurations must be specified in the reusable platform. This partial component
configuration is fed into the ontology and new suggestions regarding the possible
certification levels and the implicit feature requirements, are generated.

 These suggestions will indicate which features are required, recommended or
excluded by the desired base configuration and will be further used as input towards
reaching a final software component configuration. With the suggestions generated by
the ontology, project managers can include features, allocate different criticality levels
and get real-time suggestions of the new safety requirements and component
configuration possibilities upon doing so.

 Features that help a base configuration reach a certain integrity level, can
sometimes require or exclude other features. When adding them to the partial
component configuration, the ontology will process the inserted data and return all the
new configuration requirements and possibilities. As a result, product managers will be
then able to evaluate the new features that must be added or excluded from the
configuration against the project requirements. These results can be used to determine if
it is actually worthwhile to add a recommended feature into the desired component
configuration or not. Such decision can be made by considering a number of factors
such as integration effort and costs.

 The proposed ontology also provides information regarding the safety
requirement compliance needs of component configurations. Project managers can use
such information, on top of the feature requirements, to estimate the effort required for
the certification of a component configuration and agree on project decisions.

5. Evaluation
In this section, we evaluate the application of the proposed approach in a real world
scenario, through a viability study. The evaluation was conducted considering the
description of the Tiriba UAV Software Product Line, its safety certification-related
attributes provided by Braga et al. [Braga et al. 2012] and the DO-178C safety standard
[RTCA 2011]. Furthermore we have also considered the guidance provided by Wohlin
et. al. [Wohlin et al. 2012] in the presented study. The evaluation was divided into five
steps: study definition, formalization, planning, execution and evidences presentation.

5.1. Study Definition and Formalization
In order to define the scope of this feasibility study, we must determine its purpose,
point of view and the context. The Goal Question Metrics (GQM) approach proposed by
Basili, Caldiera and Rombach [Basili et al. 1994] was used to define these attributes:

Analyze the ontology-based approach to support the configuration and
certification of Safety-Critical Software Product Lines with the purpose of
evaluating its feasibility on extracting implicit relationships that can support the
configuration of different safety-critical software components with respect to
safety certification from the point of view of software product lines in the
context of safety-critical systems.

 Based on the application of the GQM approach, the following research question
was derived: RQ: How does the proposed approach help engineers on managing and
configuring Safety-Critical Software Product Lines? Moreover, the following secondary
research questions were derived: RQ1: How does the proposed approach help on the
identification of implicit feature requirements when considering certification? RQ2:
How does the proposed approach supports the identification of implicit feature
dependencies upon the inclusion of new features into a component configuration? RQ3:
How does the proposed approach support engineers on estimating the certification
objective requirements when considering different component configurations?

5.2. Study Planning
An Unmanned Aerial Vehicle (UAV) is an aircraft which is not flown by an onboard
human operator. UAVs comprise one of the main components within an Unmanned
Aircraft System (UAS). Apart from including the UAV itself, UASs may also
implement additional components such as a controlling station, payload and
communication systems [ICAO 2011]. The Tiriba UAV Software Product Line and its
feature model, have been modified by Braga et al. [Braga et al. 2012] from its original
version, in a way which features were separated in different layers, according to their
purpose based on Kang et al.’s [Kang et al. 1998] work.

 The Usage Context Layer, which is the topmost abstraction in the Tiriba UAV
feature model, comprises three different feature categories or variation points:
Application, UAVDimension and Airspace. The Application variation point contains
features that describe the domain which the UAV will be used in e.g.: Agriculture,
Environment Monitoring and Defense. The features within UAVDimension are related
to the size and the weight of the UAV component e.g.: Light, Small or Heavy. At last,
the Airspace variation point contains features that describe the kind of airspace which
the UAV will be certified to operate in e.g.: Controlled or Uncontrolled. Variants are
specified considering the selection of one feature contained in each one of these three
variation points. Accordingly, some possible configurations, when considering the
Tiriba UAV software component are: AgricultureSmallControlled,
DefenseSmallControlled and DefenceLightUncontrolled.

 Figure 3 shows an excerpt of the Tiriba UAV feature model and its feature-to-
feature relationships. Certain features may require, make optional or exclude others. The
Mission Abortion feature for example, must be present whenever the Controlled
airspace feature is selected. Therefore, variants such as AgricultureSmallControlled,
must always implement the MissionAbortion feature. UAVs falling under the Heavy
category, cannot be launched by Hand or implement the Parachute Landing
functionality. Parachute Landing adds a new layer of redundancy in the landing
procedure thus, making it safer. Therefore, UAV variants with lower Software Levels,
may require or recommend the inclusion of such feature in their configurations.

Figure 3 - An excerpt of the Tiriba UAV SPL feature model and its feature-to-
feature relationships

5.3. Execution
In order to perform this feasibility study, the information regarding the Tiriba UAV
Software Product Line such as its Features, Feature-to-Feature and Configuration-to-
Feature Certification relationships were loaded into our reusable platform. The
AgricultureSmallUncontrolled UAV component configuration with Software Level B
was taken into account for this evaluation. The experiment was performed using
Protegè and the Pellet reasoner. The ontology was populated with the information
within the reusable platform, DO-178C software levels, certification phases, their
objectives and UAV base configurations.

 The AgricultureSmallUncontrolled UAV base component configuration
implementing the Agriculture, Small and Uncontrolled context features, was fed into the
ontology followed by the base configuration for the AgricultureSmallUncontrolled

UAV with expected Software Level B. Table 1 shows the certification and the DO-
178C software level dependencies required by the AgricultureSmallUncontrolled UAV
configuration to achieve compliance with the DO-178C Software Level B. These
required, desirable and excluded features were obtained through the results of safety
analysis activities during Hazard Analysis and Risk Assessment (HARA):

Table 1 - The list of certification-relevant features required by the
AgricultureSmallUncontrolled UAV component configuration for achieving

Software Level B

Relationship Individual Class

hasCriticality B Criticality

requiresForCert SmartSensorInterface Feature
requiresForCert FlightAreaDelimitation Feature

worksForCert DataIntegrityChecking Feature

 A preliminary component configuration based off the
AgricultureSmallUncontrolled UAV configuration with Software Level B was created.
At last, the Pellet reasoner was executed on the populated ontology, considering its
instances and relationships.

5.4. Evidences Presentation
Once having the inferences generated and back propagated into the ontology by the
Pellet reasoner, the following feature suggestions and certification requirements were
generated for the preliminary AgricultureSmallUncontrolled UAV component
configuration, with Software Level B:

Figure 4 - The preliminary AgricultureSmallUncontrolled UAV configuration and

its certification and feature requirements

 The generated results illustrate not only the relationships that had been manually
modeled in both the AgricultureSmallUncontrolled and the
AgricultureSmallUncontrolled UAV with Software Level B base configurations but

also, the certification objectives that the desired software component configuration
should satisfy and its implicit feature requirements.

 By analyzing Figure 4, we can observe that the CatapultLaunching and
WeatherRadar features are optional in the configuration we have so far. Since these
features may impact in additional feature requirements, new features can become
mandatory, upon integrating them into the current configuration. Figure 5 displays the
new feature requirements brought up by integrating the CatapultLaunching and
WeatherRadar features into the preliminary AgricultureSmallUncontrolled UAV
Software Component configuration:

Figure 5 - The new implicit feature requirements upon adding new features to

the preliminary AgricultureSmallUncontrolled UAV configuration

Considering the results obtained throughout the evaluation so far, we can now answer
the research questions listed earlier in Section 5.1:

RQ1 - How does the proposed approach help on the identification of implicit
feature requirements when considering certification? The approach support the
identification of implicit certification feature requirements by displaying all the features
that contribute, work against or are required so a configuration can achieve a certain
software level. Figure 4 lists a set of features and relationships which, although not
being explicitly modeled into the base model, are implicitly required or desirable by the
AgricultureSmallUncontrolled UAV so it can achieve Software Level B.

RQ2 - How does the proposed approach help on the identification of implicit
feature dependencies upon the inclusion of new features into a component
configuration? The approach also support the estimation of feature requirements that
are not necessarily linked to certification. As previously shown in Figure 5, the
inclusion of new features into the preliminary component configuration provides
product managers with real-time information regarding the new implicit feature
requirements that should also be considered alongside their decision.

RQ3 - How does the proposed approach help on estimating the certification
objective requirements when considering different component configurations? The
safety certification objectives can be gathered from as far back as when configuring the
base model that will relate a software component configuration to an specific integrity
level. As pictured in Figures 4 and 5, the ontology is able to provide, through its
reasoning, the standard objectives that must be accomplished, in order to achieve the
safety certification of the desired software component configuration.
RQ - How does the proposed approach help engineers on managing and
configuring Safety-Critical Software Product Lines? At last, by considering the
answers provided in RQ1, RQ2 and RQ3 and the collected evidence, we can conclude
that the presented ontology-based approach, does indeed provide the intended support
for the configuration, deployment and certification of different safety-critical software
component configurations.

 The first characteristic that sustains such affirmation has to do with the fact that
the ontology, can provide project managers with relevant information regarding the
different configuration possibilities and needs a software component can have. By doing
so, it helps them decide if a certain feature should be added into a configuration or not.
In the case of a feature that if included, would help a component achieve its desired
integrity level, this decision can be made upon analyzing the impact that adding the
suggested feature would have on certification and measuring if the benefits it introduces
into the configuration, would justify the extra time and effort needed to integrate it. In
addition, analysts can also use of the inferred information such as safety standard
objectives and the certification feature requirements to better estimate the effort
necessary to integrate, deploy and certify the desired component configuration.

6. Concluding Remarks and Future Work
This paper has presented an ontology-based approach to support the identification of
features and safety requirements relevant to the configuration and safety certification of
Safety-Critical Software Product Lines. We have considered a previous experience
applied during the definition of a critical SPL of the aerospace domain, and presented an
ontology-based approach to support project managers on configuring and deploying
different software component configurations based on it.
 The approach was evaluated through a feasibility study. A set of research
questions were determined using the GQM method. The approach was then evaluated
considering a realistic aerospace Safety-Critical Software Product Line and the DO-
178C safety standard. As a result, we believe that, integrating the proposed approach
into the reusable platform specification and resolution phases of Safety-Critical SPLs
may reduce even more, the time and effort needed to analyze and make decisions when
configuring, deploying and certifying different component or product configurations.

 As future work, we will extend the proposed approach to support the automatic
Hazard Analysis and Risk Assessment of base configurations through its integration
with external safety analysis tools and a smarter and more automated estimation of the
possible base configuration criticality levels and their specific certification relationships
and requirements.

7. References
Aerospace, S. A. E. (2010). SAE ARP 4754A: Guidelines for development of Civil
Aircraft and Systems. SAE International.
Basili, V. R., Caldiera, G. and Rombach, H. D. (1994). The goal question metric
approach. Encyclopedia of Software Engineering, v. 2, p. 528–532.

Braga, R. T. V., Trindade, O., Branco, K. R. L. J. C. and Lee, J. (12 sep 2012).
Incorporating certification in feature modelling of an unmanned aerial vehicle product
line. . Association for Computing Machinery (ACM).

Fernandes, P. C. B., Guizzardi, R. S. S. and Guizzardi, G. (2011). Using Goal Modeling
to Capture Competency Questions in Ontology-based Systems. Journal of Information
and Data Management, v. 2, n. 3, p. 527.

Filho, J., Barais, O., Baudry, B., Viana, W. and Andrade, R. M. C. (2012). An approach
for semantic enrichment of software product lines. In ACM International Conference

Proceeding Series.

Habli, I. and Kelly, T. (sep 2007). Challenges of Establishing a Software Product Line
for an Aerospace Engine Monitoring System. In 11th International Software Product
Line Conference (SPLC 2007). . IEEE.

ICAO (2011). Unmanned Aircraft Systems (UAS). ICAO Cir 328, Unmanned Aircraft
Systems (UAS)

ISO (2018). Road vehicles -- Functional safety. . ISO, Geneva, Switzerland.
Kang, K. C., Kim, S., Lee, J., et al. (jan 1998). FORM: A feature-;oriented reuse
method with domain-;specific reference architectures. Annals of Software Engineering,
v. 5, n. 1, p. 143.

Kelly, T., Habli, I., Masiero, P. C., et al. (2016). Model-based safety analysis of
software product lines. International Journal of Embedded Systems, v. 8, n. 5/6, p. 412.

Lee, K., Kang, K. C. and Lee, J. (2002). Concepts and guidelines of feature modeling
for product line software engineering. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
v. 2319, n. April, p. 62–77.

Noy, N. F. and Hafner, C. D. (1997). The state of the art in ontology design: A survey
and comparative review. AI Magazine, v. 18, n. 3, p. 53–74.

Oliveira, A. L., Braga, R. T. V., Masiero, P. C., et al. (2018). Variability Management in
Safety-Critical Software Product Line Engineering. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics). . Springer Verlag.

Pohl, K., Böckle, G. and Van der Linden, F. J. (2005). Software Product Line
Engineering: Foundations, Principles, and Techniques. Springer.

RTCA (2011). DO-178C Software Considerations in Airborne Systems and Equipment
Certification. Radio Technical Commission for Aeronautics.

Villela, K., Silva, A., Vale, T. and De Almeida, E. S. (2014). A Survey on Software
Variability Management Approaches. In Proceedings of the 18th International Software
Product Line Conference - Volume 1. , SPLC ’14. ACM.

Wohlin, C., Runeson, P., Hst, M., et al. (2012). Experimentation in Software
Engineering. Springer Publishing Company, Incorporated.

