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Abstract. Hybrid synchronization provides more in-depth details about real dis-
tributed systems. However, several advances in algorithms to provide synchro-
nization between local processes brings new difficulties to integrate into exist-
ing simulation architectures. This paper explores an alternative architecture to
provide hybrid synchronization for decreasing resource wastings. We present
optimistic and conservative synchronization primitives and design mechanisms
to enable logical processes (LPs) to cooperate during the execution of a simu-
lation. The results show that our primitives improve the simulation in terms of
rollback-time and idleness.

1. INTRODUCTION
Parallel Discrete Event Simulation (PDES) has been utilized as a technique to verify a
broad range of complex systems. This has made a whole new field of research for com-
puter science and several interdisciplinary areas. Employing distributed architectures to
perform the simulation can scale the execution of specific scenarios. A distributed simu-
lation is composed of logical processes (LPs) as units of execution that exchange times-
tamped messages for communicating. In runtime, synchronization primitives guarantee
that event order is preserved, leading simulations to accurate results. Time synchroniza-
tion can take many forms: (1) the utilization of lookahead to lock/free synchronous LPs;
(2) the use of checkpoint/rollback techniques to restore asynchronous LPs to consistent
states. In both cases, the Global Virtual Time (GVT) computation is an essential aspect
of performance. It must be performed frequently enough to ensure simulation progress
and free memory [Steinman et al. 1995].

Since Jefferson proposed time-warp and utilization of virtual time to synchro-
nize distributed simulation systems, several optimizations for GVT computation have
been proposed [Jefferson 1985, Jefferson 1990]. Mainly, the usage of time buckets
to make lookahead flexible provided advances for conservative strategies. The uti-
lization of failure prediction has shown efficiency in achieving faster results on opti-



mistic scenarios [Bouguerra et al. 2013]. Usually, the choice between these two tech-
niques is made during modeling, and a hybrid strategy is not yet fully implemented
[Jefferson and Barnes Jr 2017]. As such, creating several difficulties for modeling, once
the developer cannot know in modeling time, which synchronization strategy would
perform better in terms of CPU/Memory. This points to hybrid simulation strategies
that support LPs running different synchronization primitives as the simulation executes
[Eldabi et al. 2016] [Mikida and Kale 2019]. Such characteristics would keep simulation
results accurate, saving resources in terms of checkpoints, rollbacks, and messages ex-
changed.

We present a hybrid synchronization architecture for distributed simulations. The
architecture aims to provide different synchronization mechanisms that can interact dur-
ing the simulation. Our main goal is to provide lookahead and checkpoint mechanisms
and a coherent managing system to allow the cooperation between these mechanisms in
runtime. Lookahead mechanisms are configured statically with periodic values. Dynam-
ically, the architecture enables LPs to exchange control messages and change lookahead
values according to the simulation’s needs by each synchronous LP. At the same time,
checkpoint algorithms for asynchronous LPs are configured with periodic values. Dy-
namically, each LP uses model-based heuristics to change the interval between check-
points, aiming to reduce the number of rollbacks. Both algorithms have a reference for
GVT values, and the algorithms for GVT calculation are adaptive.

The rest of this paper is organized as follows: Section 2 presents a brief back-
ground of synchronization for simulation and related work. Section 3 presents proposed
hybrid synchronization in details. Section 4 describes implementation details, case stud-
ies and the experimental evaluation. Finally, Section 5 presents conclusions remarks and
future work.

2. Background and Related Work

Several prior studies addressed strategies for improving methods and techniques at op-
timistic and conservative time synchronization on distributed simulation and integrating
them into hybrid synchronization solutions. In general, the main challenge discussed by
those works is how to preserve the order of the events without allowing time violation
when exchanging event messages between optimistic and conservative LPs.

Simulation Architectures. Jefferson et al. [Jefferson and Barnes Jr 2017] pro-
posed the Unified Virtual Time (UVT) architecture. Each LP can execute conservatively
or optimistically, depending on the quality of the available lookahead information. The
authors highlighted the dependency between the performance and the quality of the looka-
head algorithms. However, the architecture focus only on parallel discrete event simula-
tions. There are additional issues concerning distributed simulations to achieve the hybrid
synchronization among distributed parts or LPs of a single model or even connecting dis-
tinct models [Fujimoto 2015]. Prior studies on distributed simulation have been mainly to
focus on methods to reduce the distributed management cost by increasing the efficiency
of rollback and lookahead operations. In this work, we introduce a distributed architecture
that supports the hybrid synchronization among distributed and heterogeneous LPs. This
architecture is based on two of our partial contributions, an optimistic synchronization
method, and a dynamic estimation of lookahead.



Checkpoint Management. Reducing rollback costs while managing checkpoints
efficiently is an open problem in the optimistic synchronization field. The Quaglia
[Quaglia 1999] checkpointing algorithm works based on the probability of rollback oc-
currences in a specific time interval. The algorithm is able to decide if a new checkpoint
should be created or not. However, useless checkpoints are not completely avoided. Saker
and Agbaria [Saker and Agbaria 2015] proposed a checkpoint protocol that coordinates
only with the LPs that it has communicated with since the last checkpoint. This solution
reduces the coordination effort as well as the checkpointing frequency. However, local
coordination still keeps some overhead when compared with non-coordinated solutions.

Lookahead Flexibilization. Besides, when considering hybrid synchronization,
the limitations of the conservative LPs usually decrease the general performance of the
simulation. Prior works proposed strategies to accelerate the performance of conservative
LPs by introducing new algorithms to calculate the lookahead. Fu et. al. [Fu et al. 2013]
presents the conditional lookahead (CLA) approach. Assuming that the lookahead be-
tween LPs is decreased temporarily on distributed discrete event simulations, the au-
thors proposed a method to accelerate the simulation through the dynamic estimation
of process-to-process lookahead. This approach can increase the lookahead ability by
exchanging the CLA when it is stochastically too short.

In this work, we proposed a method to make the lookahead dynamic with low
overhead. Each LP can calculate an individual lookahead based on the simulation mes-
sage information. It allows getting closer to an ideal size of lookahead in a decentralized
and flexible way. The next section presents the techniques, methods, and mechanisms that
make up our hybrid synchronization architecture.

3. Hybrid Synchronization
In this section we describe the architecture for hybrid synchronization, which is general
enough to include synchronous and asynchronous setups.

3.1. Overview
A simulation is composed as a set of Logical Processes (LPs), one per physical process.
An LP behaves as a simulated logical process. All the interactions between physical
processes are associated with a timestamp, which corresponds to a specific LP event.
Ordering is required to preserve the causality of the simulation model. To achieve event
ordering, all the conservatives LPs are synchronized with a Global Virtual Time (GVT).
Each LP also has a Local Virtual Time (LVT), which is a reference for the actual simulation
time the process is running. A hybrid synchronization architecture is responsible for
two main tasks: providing barrier mechanisms for synchronous LPs and sate saving and
restoration for asynchronous LPs. The GVT works as an upperbound barrier to the LVT
for conservatives and a lower-bound for rollback operations. The architecture must be able
to host the cooperation between synchronous and asynchronous processes. To this end,
the architecture must have well-defined communication signals between each instance of
the synchronization primitives.

3.2. Cooperation
The system performs several verifications to ensure the model does not create out-of-order
operations. The verifications are made in two different ways: conservatively or optimisti-



cally. The conservative approach blocks the execution of synchronous components with
the lookahead’s aid to perform the check and avoid inconsistencies. The optimistic ap-
proach leverages checkpoint and rollback to restore the system after the model creates
out-of-order events. Finally, a cooperation mechanism enables logical processes to run
different primitives to preserve each simulation LP’s main constraints.

Figure 1. Hybrid synchronization overview

A completely hybrid behavior of the system depends on mechanisms to enable
collaboration among synchronous and asynchronous processes. The challenge of this
collaboration is defining the synchronous LPs actions when receiving messages from an
asynchronous one, and vice versa. The architecture introduces an error-checking com-
ponent while enabling the cooperation between LPs. The error-checking works transpar-
ently to the model, and verify inconsistencies before delivering a message to the receiver
(reactively) and before sending error-prone messages (pro-actively):

• Reactive: The system discards violating messages, and an anti-message is sent to
the origin (Figure 1, Step 1) to enable conservative processes to receive messages
from optimistic LPs. The anti-message mechanism is used to “un-send” messages
sent by the rolled-back events. The reasoning for this is as follows: once a conser-
vative process cannot process earlier messages, we require the optimistic source to
cancel it (e.g., by rolling back). Way say that the system performs verifications re-
actively: an LP that receives messages run verifications (conversely to performing
it on the sender).
• Pro-Active: We need another mechanism to optimistic processes regarding com-

puting messages from conservatives. As presented earlier, receiving a violating
message requires the system to rollback (Figure 1, Step 2). In practice, a rollback
operation loads messages received in a rollback interval and re-execute them in
the correct order with the help of anti-messages. However, we decided that dur-
ing a rollback, an LP sends anti-messages only for optimistic sources (Figure 1,



Step 3). We call such behavior a Pro-Active verification once it avoids errors be-
fore sending messages. Despite this may incur on synchronous LPs processing
discarded messages, it ensures that ordering is preserved.

The architecture employs techniques to reduce the overhead of the hybrid syn-
chronization. Next, we discuss these mechanisms in detail.

3.3. Wait-Free Synchronization

The system leverages checkpoint/rollback management mechanisms to deal with asyn-
chronous LPs. Initially, the checkpoint configuration is made statically to define the
time intervals to tentative checkpoints. Dynamically, each LP shares checkpoint IDs
with dependent processes to identify secure states. Besides that, model-based heuristics
[Elnozahy et al. 2002] are employed to decrease the number of useless checkpoints.

All the mechanisms have the following basic properties [Carvalho 2015]:

• Each LP stores the state locally.
• Checkpoints are managed by a process that runs in a background way concerning

the LP.
• Each checkpoint saves all the LP values and the respective virtual time.
• The checkpoint before the failure time is restored when had occurred a time vio-

lation
• Messages between the checkpoint restored and the current time are canceled using

anti-messages (Unless the source is synchronous).

Static checkpoints do not perform any coordination to create restart points. Con-
versely, when the system is configured with the static setup, each LP creates check-
points within a static real-time interval. Then, we introduce an optimistic synchronization
method based on the Quaglia algorithm that integrates our proposed architecture. In ad-
dition to the probability of rollback occurrence, our solution identifies communication
patterns between dependent LPs for measuring the utility of a checkpoint at run-time and
avoiding useless checkpoints. LPs are dependents when a sender LP sends a message to a
receiver asking to execute an event [Lamport 1978]. Metrics such as the number of event
messages, the average time interval between messages, the temporal distance between
LPs, among others, are examples of communication patterns between dependent LPs.

Dynamic Interval. Before the simulation starts, the manager configures the ini-
tial time interval in which each LP will try to create checkpoints. The system creates
checkpoints only at safety states, and the time interval between checkpoints is calculated
dynamically. This strategy avoids an excessive number of saved states when compared
to static strategies. The system employs two different strategies for identifying useless
checkpoints. Firstly, the checkpoint ID’s are sent into simulation messages to identify
zig-zag paths in the simulation trace [Netzer and Xu 1995]. When an LP receives a mes-
sage from an LP with a higher checkpoint ID, the receiver enters the unsafe state and
cannot create checkpoints. Secondly, besides the coordination with checkpoint IDs, we
rely on a prediction of the LP’s LVT using the number of clock ticks that the LP made to
reduce the number of useless checkpoints.

The checkpoint model tries to predict the communication patterns which can lead
to time violation states [Parizotto and Mello 2019]. To this end, the interval of checkpoint



creation is adapted to use heuristics [Quaglia 1999]. The method uses the known past
events from all dependent components to predict whether they will send new messages
that create time violations at the components which are going to generate checkpoints.
Next, we discuss the heuristics in detail.

Model Based Heuristics. In a scenario where the LVT of a process Pi is higher
than the LVT of the process Pk, and it is true that Pi depends on Pk (Pi ⇒ Pk), the tem-
poral distance, denoted as d(i,k) = |LV Ti− LV Tk|, represents a time interval in which
received messages from Pk will be LCC (Local Causality Constraint) violation prone.
When Pi ⇒ Pk, it means that Pk send message to Pi. Therefore, we use the distance
as a weight for our heuristic. Let us denote the set of allowed events on the time in-
terval (LV Ti− d(i,k),LV Ti) as Γ. Computing Γ is impractical if the distance is large
[Bouguerra et al. 2013]. Our method computes Γ efficiently based on a subset of received
messages. It allows approximating the number of messages scheduled by Pk and received
by Pi with timestamp ∈ Γ. Applying it to each dependent process of Pi (defined as DPi),
according to Algorithm 1, we have the number of arriving messages which may generate
LCC violation on this interval.

Algorithm 1: Handling the checkpoint creation
Data: DPi,checkpoint[]
Result: checkpoint[]

1 begin
2 //model based heuristics calculation
3 for k ∈ DPi do
4 if LV Ti > LV Tk then
5 messagesi = messagesi + d(i,k)/ f (k)
6 //probabilistic decision
7 if rand()> (1−Prollback) then
8 if ((messagesi +Er)≥ Prollback) then
9 take a checkpoint

Whenever the system tries to create a checkpoint, the probabilistic choice is ap-
plied to determine if the current state represents a useless checkpoint (Algorithm 1,
line 7). We extended the conditional clause with our method to measure the usabil-
ity of a checkpoint, requiring that both the expressions are true to create a checkpoint
[Fagin et al. 1994]. The measurement of messagesi ≥ 1 (Algorithm 1, line 3-5) suggests
that there is at least one estimated message whose timestamp is lesser than LV Ti. In the
optimal scenario, messagesi + Er is the correct number of events in Γ. Therefore we
compose messagesi with the granularity of events since the last rollback to check if the
measurement reaches the optimal scenario (Algorithm 1, line 8). If the proposed metrics
indicate that the state can be useful for restoring the system from an LCC violation, the
process creates a checkpoint. The reasoning reasoning behind that begins by assuming
that a rollback is going to occur: if messagesi+Er ≥ Prollback, it indicates that more events
would be scheduled in Γ than the average number of events between rollbacks, therefore
the system is rollback prone; Otherwise, if there are few events since the last rollback
and few messages arriving in a way that messagesi +Er ≥ Prollback is not satisfied, by
contradiction, it is probably not rollback prone and a checkpoint must not be created.



3.4. Lock/Wait Barriers

The architecture defines a centralized mechanism, GVT Control, that manages the value
of GVT for all LPs. This mechanism combines the GVT value to the lookahead value on
conservative LPs and exposes them to the LPs. Unfortunately, it is unknown whether the
definition of static time was insufficient or overdone and could cause idleness, deadlocks,
or even time violations between LPs.

Dynamic Computation. Lookahead is a safe time-frame, in which LPs will nei-
ther generate nor receive new events. In this work, instead of using Null messages
[Fujimoto 2001], we use control messages that carry a more broad set of attributes
[Cai and Turner 1995]. Each control message has header fields as an array that stores
the message exchange route (trace) between LPs. Once obtained the trace information,
and written in the respective field on control message, lookahead flexibility becomes pos-
sible. Control messages are sent to the output control port corresponding to the GVT
controller (Figure 1, Step 4). Next, the GVT controller calculates a single value as the
lookahead, based on the received messages, and add it to the GVT. Finally, the new GVT
is sent to the conservative LPs. This centralized solution imposes a single lookahead to all
conservative LPs. It may cause performance degradation. For overcoming this limitation,
we decentralized this step by allowing each LP to calculate the lookahead locally. Next,
we discuss the details of the lookahead decentralization.

Per-Process Lookahead. Dynamic lookahead based on the longest distance be-
tween processes with direct communication (through the route) reduces the number of
time violations. However, since time violations may cause incorrect simulation results,
they should be avoided. On the other hand, avoiding time violations may take too much
time producing idleness of the simulation. In our approach, each LP can calculate its
lookahead dynamically. The lookahead value of the LPs changes during the simulation
according to the execution time of future scheduled messages. The goal is to get closer to
an ideal size of lookahead and avoiding time violations or idleness. In our approach, the
lookahead calculation is made locally. Each LP is responsible for achieving its value of
lookahead, by making a simple calculus through the scheduled events.

The timestamp field of the control message means the scheduling time of the event
to be executed [Cai and Turner 1995]. Then, each LP can advance to the next scheduled
event according to the queued messages without generating time violations. The value
of the timestamp field is obtained by the distance between the first queued timestamp
and the LVT of the LP that received the control message. The rate of the control mes-
sages exchanged is reduced hugely by calculating lookahead locally. Also, the individual
lookahead strategy has a significant decrease in the number of messages that generate
time violations as well as LP downtime.

4. Experimental Evaluation
In this section, we address the evaluation details of the system architecture. The sys-
tem is made over previous work, called DCB (Distributed Co-Simulation Backbone)
[de Mello and Wagner 2002, Souza et al. 2003]. We adapted the original architecture of
the system to support the design proposed in this paper and the new components to avoid
time violations. Next, we present the specification of the study cases that we made to
evaluate the system.



4.1. Case Studies
We created synthetic scenarios to simulate time violations and evaluate our approach’s
performance: (1) an asynchronous and (2) synchronous. Both models have five LPs with
the same internal behavior, and that communicate with each other through exchanging
simple messages in intervals between 100-200ms.

(a) Asynchronous (b) Synchronous

Figure 2. Configuration graphs of experiments use cases

Figure 2a depicts the communication graph for the asynchronous model. Each
of the five vertices represents an LP, and the edges between the vertices represent the
message exchange flow. Figure 2b describes the synchronous model. There is a cycle
in the graph, which implies a more frequent message exchange between LPs, and conse-
quently, the calculation of the lookahead is done more often. The next section discusses
the evaluation in detail.

4.2. Results and analysis
We executed the experiments with the models presented earlier to evaluate the perfor-
mance of each synchronization mechanism. We performed ten simulations of one million
units of virtual time for three different synchronization primitives. The experiments were
performed on an Intel Core i5-3470 CPU @ 3.20GHz x 4 with 7,7 GiB of memory and
running Antergos Linux 64-bit.

Checkpointing. To evaluate the impact of the checkpoint strategy is important to
measure the number of checkpoints and the delay imposed by time spent on rollbacks.
We configure the architecture in each case study for three different checkpoints methods:
Static, where the system generates checkpoints according to deterministic and periodic
intervals; the technique proposed by Quaglia [Quaglia 1999], and; the heuristic extension
proposed in this work. Figure 3a presents the average of checkpoints. Results obtained
with the Quaglia algorithm has shown the least number of checkpoints. The system cre-
ated approximately 9% fewer checkpoints than with the static configuration and 2% fewer
checkpoints than the heuristics proposed in this work. Figure 3b presents the average sim-
ulation time spent rollbacking. The time spent by one rollback is given by the difference
between the time of a time violation and the checkpoint timestamp. The Quaglia al-
gorithm spent more time performing rollback than static and heuristic approaches. The
heuristic algorithm’s time spent rollbacking was 17.6% higher than the algorithm with
a static configuration, and the Quaglia algorithm was 95.5% higher than the static algo-
rithm. It is explained the fact that the Quaglia algorithm did not create some checkpoints
that would have been useful for reducing the time spent by rollbacking.



(a) Average number of checkpoints (b) Average virtual time rollbacked

(c) Average number of violations

Figure 3. Simulation results for synchronous and asynchronous scenarios

Table 1 presents the average of rollbacks performed and the number of inconsis-
tent and unreachable checkpoints, respectively. As an overall result, the heuristic method
created less inconsistent checkpoints and consequently performed fewer rollbacks than
both other strategies. The execution with the heuristic method generated 45% fewer roll-
backs than the static and 15% than the Quaglia algorithm. The percents are similar to the
inconsistent checkpoints. However, our algorithm generated 2% more unreachable ones
than the Quaglia algorithm and spent around 35% less time executing rollback operations,
which we argue is an acceptable tradeoff for a system like ours.

Lookahead. We configured two different lookahead approaches into the DCB
environment: the (1) static and, (2) the per-process. In the static, lookahead receives a



Rollback Inconsistent Unreachable
Static 11.72 6.4 875.06
Quaglia 7.64 3.8 800.96
Heuristic 6.48 2.92 817.32

Table 1. Statistics for each checkpoint method

fixed value (one hundred), which is added to GVT, so that the lookahead is applied to
all processes present in the simulation. The per-process approach calculates lookahead
locally and generates unique lookahead values for each LP. We executed each strategy
five times. The collected metrics are the total simulation time, the total number of sent
messages during the simulation, and the number of sent messages in past simulation times,
i.e., messages generating time violations. In the per-process lookahead approach, the
simulation ended with about 25% less total time (from thirty-eight minutes to twenty-eight
minutes of simulation time). The number of sent messages was similar. Conversely, the
number of time-violating messages has decreased. LPs 2, 3, and 4 presented a reduction
of about 50% and the other LPs about 65%. The results can be seen in Figure 3c.

4.3. Discussions

Local changes to the synchronization mechanism create more difficulty in the manage-
ment of the LPs. Changing the operation requires not only verification in both directions
but the architecture to handle transient messages. We see as a perspective to allow au-
tomated changes between synchronization mechanisms by introducing a more in-depth
check. To this end, we need ways to identify patterns between events and derive the mo-
ment in which it is necessary to swap between the synchronization mechanisms. Such
improvements would improve the execution of the mode and make it easier for the devel-
oper to configure his scenarios [Bauer et al. 2005].

5. Conclusions

We have presented an architecture for hybrid synchronization on PDES distributed sys-
tems. The presented strategies combine efficient rollback and dynamic lookahead al-
gorithms with a method to keep a reliable synchronization while exchanging times-
tamped messages among conservative and optimistic distributed LPs. Similar work,
UVT [Jefferson and Barnes Jr 2017] supports hybrid synchronization; however, it focuses
on parallel execution issues, and it does not integrate solutions to manage hybrid syn-
chronization at distributed simulations. Although our solution achieves interoperability
among distributed LPs, the system still has several limitations. We understand that the
experimental evaluations are limited, and results cannot be generalized. We intend to
evaluate the system with more realistic scenarios in the future. Finally, we see as an
exciting future work to allow dynamic changes which affect the end-to-end behavior
[Pellegrini and Quaglia 2015]. The deployment of part of the synchronization compu-
tation into the network infrastructure [Bosshart et al. 2014] and Integrating specification
languages such as DEVS [Syriani et al. 2011] to define the behavior of LPs are also in
perspective.
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