
An experimental analysis of a GP hyperheuristic approach for
evolving low-cost heuristics for profile reductions

L. M. Silva1 and S. L. Gonzaga de Oliveira1

1Departamento de Ciência da Computação
Universidade Federal de Lavras (UFLA) – Lavras, MG – Brazil

{sanderson,lsilva}@ufla.br

Abstract. Researchers used graph-theory approaches to design the state-of-the-
art low-cost heuristics for profile reduction. This paper evolves and selects four
low-cost heuristics for profile reduction using a genetic programming hyperheu-
ristic approach. This paper evaluates the resulting heuristics for profile reduc-
tion from the genetic programming hyperheuristic approach in two application
areas against the low-cost heuristics for solving the problem. The results obtai-
ned on a set of standard benchmark matrices taken from the SuiteSparse sparse
matrix collection indicate that the resulting heuristics from the genetic program-
ming hyperheuristic approach does not compare favorably with a high-quality
heuristics for profile reduction.

1. Introduction
The solution of large-scale sparse linear systems Ax = b, where A = [aij] is an n × n
large-scale sparse matrix, x is the unknown n-vector solution and b is a known n-vector
is relevant in several application areas in science and engineering, such as 2-D/3-D and
thermal problems. The solution of large-scale sparse linear systems is usually the stage
of the numerical simulation that requires the highest execution costs.

For the low-cost solution of large and sparse linear systems by iterative and di-
rect methods, adequate graph labeling (of a graph corresponding to matrix A) is advan-
tageous. When using an appropriate graph labeling, the coefficient matrix A will have
a small profile. For instance, when using iterative methods for solving linear systems,
modern hierarchical memory architecture and paging policies favor programs that con-
sider the locality of reference as a critical aspect. The use of a heuristic for profile
reduction is an adequate choice to obtain a sequence of graph vertices with the spa-
tial locality. Thus, numerical applications use heuristics for profile reduction to achi-
eve low execution times for solving large sparse linear systems by iterative methods
[Gonzaga de Oliveira et al. 2018a, Gonzaga de Oliveira et al. 2018b].

Heuristics for profile reduction place nonzero coefficients of a sparse matrix as
close to the main diagonal as possible. Let A = [aij] be an n × n symmetric adjacency
matrix associated with an undirected graph G = (V,E) composed of a set of vertices V
and a set of edges E. The profile of matrix A is defined as profile(A) =

∑n
i=1 βi(A),

where βi(A) = i− min
1≤j≤i

[j : aij 6= 0]. Equivalently, the profile of G for a vertex labeling

S = {s(v1), s(v2), · · · , s(v|V |)} (i.e. a bijective mapping from V to the set {1, 2, · · · , |V |})
is profile(G) =

∑
v∈V

max
{v,u}∈E

[|s(v) − s(u)|]). The profile minimization problem is NP-

hard [Lin and Yuan 1994].

An efficient solution of linear systems minimizes the total computing time, in-
cluding the reordering time, at least when only a single linear system is to be solved.
Thus, heuristics for profile reduction must be capable of obtaining high-quality profile
results at a low cost. Previous publications [Bernardes and Gonzaga de Oliveira 2015,
Gonzaga de Oliveira et al. 2018a, Gonzaga de Oliveira et al. 2018b] have reviewed seve-
ral heuristics for profile reduction.

In this field, scientific and engineering applications apply low-cost heuristics for
profile reductions when the computational time is a critical subject. Therefore, in the case
of instances of rather large dimensions, a practical option is to use low-cost heuristics for
obtaining satisfactory-quality solutions for problem instances defined by such matrices.

Koohestani and Poli [Koohestani and Poli 2015b, Koohestani and Poli 2015a]
proposed a genetic programming system for reducing the profile size of sparse matrices.
The genetic programming hyperheuristic approach evolved a variant of Sloan’s algorithm
[Sloan 1989]. The strategy included in the resulting heuristic components of the eigenvec-
tor corresponding to the first nonzero eigenvalue (Fiedler vector) of the Laplacian matrix
associated with the matrix used in the learning process.

Koohestani and Poli [Koohestani and Poli 2015b] compared their gene-
tic programming hyperheuristic approach for profile reduction with six (RCM
[George 1971], Gibbs-King [Gibbs 1976, Lewis 1982], Sloan’s [Sloan 1989], Spec-
tral [Barnard et al. 1993], a modified hybrid algorithm that combines a spectral ordering
with Sloan’s algorithm [Reid and Scott 1999], and Sloan-MGPS [Reid and Scott 1999])
heuristics when applied to 34 small-scale matrices with sizes ranging from 59 to 5,300.
Their faster-resulting heuristic is time-consuming. For example, both the faster-resulting
heuristic proposed by Koohestani and Poli [Koohestani and Poli 2015b] and Sloan’s
algorithm [Sloan 1989] take approximately two seconds when applied in similar ma-
chines to matrices with sizes of 5,300 and 1.2 million, respectively. Thus, the faster
approach proposed by Koohestani and Poli [Koohestani and Poli 2015b] is not practical
for large-scale matrices.

Koohestani and Poli [Koohestani and Poli 2015a] compared their genetic pro-
gramming hyperheuristic approach for profile reduction with the RCM [George 1971],
Gibbs-King [Gibbs 1976, Lewis 1982], Spectral [Barnard et al. 1993], and Sloan’s
[Sloan 1989] heuristics when applied to 24 small-scale instances with sizes ranging from
59 to 2,680. The genetic programming hyperheuristic approach also performed po-
orly compared with these four algorithms concerning execution times. However, the
authors did not compare their genetic programming hyperheuristic approach with pro-
mising heuristics for profile reducing, such as the MPG [Medeiros et al. 1993], NSloan
[Kumfert and Pothen 1997], and Hu-Scott [Hu and Scott 2001] algorithms.

This paper presents a Genetic Programming Hyperheuristic (GPHH) for the
matrix profile reduction problem. The work extends the approach presented by Ko-
ohestani and Poli [Koohestani and Poli 2015b, Koohestani and Poli 2015a] by the in-
put of four heuristics, already known for the problem, to the GPHH system. Spe-
cifically, this approach evolves four low-cost heuristics for profile reduction (Sloan’s
[Sloan 1989], MPG [Medeiros et al. 1993], NSloan [Kumfert and Pothen 1997], and
NMPG [Gonzaga de Oliveira et al. 2019]) using a genetic programming hyperheuristic

approach to obtain a low-cost heuristic for profile reduction. Since the objective is to
find suitable weights for these heuristics, the computing time of the resulting heuristic is
proportional to the CPU times of the algorithm evolved. Unlike the approach proposed
by Koohestani and Poli [Koohestani and Poli 2015b, Koohestani and Poli 2015a], the ge-
netic programming hyperheuristic strategy proposed in the present study either evolves or
selects a heuristic for profile reduction for a specific application field.

The main novelty presented in this study regarding the approach developed by
Koohestani and Poli [Koohestani and Poli 2015b, Koohestani and Poli 2015a] is that, as
previously mentioned, we provide four heuristics for profile reduction as input to the
genetic programming hyperheuristic approach. Furthermore, the genetic programming
hyperheuristic approach evolves the original algorithm into a low-cost heuristic for profile
reduction or selects the original heuristic to reduce the profile of matrices arising from a
specific application area.

This paper evaluates the resulting heuristics for profile reduction in
two application fields against Sloan’s [Sloan 1989], MPG [Medeiros et al. 1993],
NSloan [Kumfert and Pothen 1997], Sloan-MGPS [Reid and Scott 1999], Hu-Scott
[Hu and Scott 2001], and NMPG [Gonzaga de Oliveira et al. 2019] heuristics.

The remainder of this paper is organized as follows. Section 2 reports the related
work in this field. Section 3 introduces the proposed genetic programming hyperheuristic
approach for profile reduction. Section 4 describes how the experiments were conducted.
Section 5 discusses the results. Finally, section 6 addresses the conclusions.

2. Heuristics evaluated

Practitioners have proposed a considerable number of heuristics for reducing the
profile of sparse matrices [Bernardes and Gonzaga de Oliveira 2015]. The state-of-
the-art low-cost heuristics for profile reduction are based on graph-theory concepts
[Gonzaga de Oliveira et al. 2018a, Gonzaga de Oliveira et al. 2018b].

Sloan [Sloan 1989] proposed one of the most important heuris-
tics in this field. This heuristic is still one of the most widely used
reordering algorithm for reducing the profile size of sparse matrices
(e.g., [Bernardes and Gonzaga de Oliveira 2015, Kumfert and Pothen 1997,
Medeiros et al. 1993, Reid and Scott 1999, Gonzaga de Oliveira et al. 2018a,
Gonzaga de Oliveira et al. 2018b, Gonzaga de Oliveira et al. 2019]). The reason is
that it is inexpensive (in terms of execution times and storage costs) and generates
high-quality solutions. Sloan’s heuristic [Sloan 1989] uses two weights in its priority
scheme in order to label the vertices of the instance: w1, associated with the distance
d(v, e) from the vertex v to a pseudo-peripheral (target end) vertex e that belongs to the
last level of the level structure rooted at a starting vertex s, and w2, associated with the
degree of each vertex. The priority function p(v) = w1 · d(v, e) − w2 · (deg(v) + 1)
employed in Sloan’s heuristic [Sloan 1989] presents different scales for both criteria. The
value of deg(v) + 1 ranges from 1 to m + 1 [where m = max

v∈V
[deg(v)] is the maximum

degree found in the graph G = (V,E)], and d(v, e) ranges from 0 (when v = e) to the
eccentricity `(e) (of the target end vertex e).

The MPG [Medeiros et al. 1993], NSloan [Kumfert and Pothen 1997], and Sloan-

MGPS [Reid and Scott 1999] heuristics are based on Sloan’s heuristic [Sloan 1989]. Spe-
cifically, the Sloan-MGPS heuristic [Reid and Scott 1999] is essentially the Sloan’s heu-
ristic [Sloan 1989] with the starting and target end vertices provided by an algorithm
named modified GPS [Reid and Scott 1999].

The MPG heuristic [Medeiros et al. 1993] employs two max-priority queues: t
contains candidate vertices to be labeled, and q contains vertices belonging to t and also
vertices that can be inserted to t. Similarly to Sloan’s heuristic [Sloan 1989] (and its vari-
ations), the current degree of a vertex is the number of adjacencies to vertices that neither
have been labeled nor belong to q. A main loop performs three steps. First, a vertex v
is inserted into q to maximize a specific priority function. Second, the current degree
cdeg(v) of each vertex v ∈ t is observed: the algorithm labels a vertex v if cdeg(v) = 0,
and the algorithm removes from t a vertex v (i.e., t← t−{v}) if cdeg(v) > 1. Third, if t is
empty, the algorithm inserts into t each vertex u ∈ q with priority pu ≥ pmax(q)−1 where
pmax(q) returns the maximum priority among the vertices in q. The priority function in
the MPG heuristic is p(v) = d(v, e)− 2 · cdeg(v).

Kumfert and Pothen [Kumfert and Pothen 1997] normalized the two criteria used
in Sloan’s algorithm with the objective of proposing the Normalized Sloan (NSloan)
heuristic [Kumfert and Pothen 1997]. These authors used the priority function p(v) =
w1 · d(v, e) − w2 · bd(s, e)/mc · (deg(v) + 1). In addition, a recent publication normali-
zed the two criteria used in the MPG heuristic aiming at proposing the NMPG heuristic
[Gonzaga de Oliveira et al. 2019].

Regarding Sloan’s [Sloan 1989], NSloan [Kumfert and Pothen 1997], and Sloan-
MGPS [Reid and Scott 1999] heuristics, this study set the two weights as described
in the original papers. When the original publications recommended more than one
pair of values, a previous publication performed exploratory investigations to determine
the pair of values that obtain the best profile results [Gonzaga de Oliveira et al. 2018a].
Thus, the two weights are set as w1 = 1 and w2 = 2 for Sloan’s and Sloan-MGPS
[Reid and Scott 1999] heuristics, and as w1 = 2 and w2 = 1 for the NSloan heuristic
[Kumfert and Pothen 1997]. The Hu-Scott heuristic [Hu and Scott 2001] is a multilevel
algorithm that uses a maximal independent vertex set for coarsening the adjacency graph
of the matrix and employs the Sloan-MGPS heuristic [Reid and Scott 1999] on the coar-
sest graph.

3. A genetic programming hyperheuristic approach for profile reduction of
symmetric matrices

This section presents a genetic programming hyperheuristic approach for profile reduc-
tion. We followed the main steps of the genetic programming metaheuristic [Koza 1992]
to design the genetic programming hyperheuristic approach for profile reduction.

We established the genetic programming hyperheuristic with the cen-
tral structure of Sloan’s [Sloan 1989], MPG [Medeiros et al. 1993], NS-
loan [Kumfert and Pothen 1997], and NMPG [Gonzaga de Oliveira et al. 2019]
heuristics. Furthermore, the hyperheuristic approach generates random weights for
the priority formula employed in these four heuristics. We implemented the codes in the
C++ programming language.

Individuals in the genetic programming system is a set of three components: the
base heuristics to be used and its two weights. The initial population is randomly ge-
nerated, except for four individuals, which are precisely the original weights (1 and 2)
of Sloan’s, NSloan, MPG, and NMPG heuristics. The fitness function employed in the
genetic programming hyperheuristic approach is the sum of the difference between the
original profile and the profile of the labeling produced by the heuristic associated with
the individual program in each instance used in the learning process. Thus, the objective
is to maximize the fitness value.

Due to the high-quality results obtained by Koohestani and
Poli [Koohestani and Poli 2015b, Koohestani and Poli 2015a], we used the same
parameters employed by the authors. Column GPHH1 in Table 1 shows the parameters
used in this study. In addition, column GPHH2 in Table 1 shows new parameters used by
the GPHH approach.

Tabela 1. Parameters used in the experiments with the GPHH approach.

Parameter GPHH1 GPHH2

Maximum number of generations 100 120
Population size 1000 1250
Tournament size 3 4

Eletism rate 0.1% 0.08%
Reproduction rate 0.9% 0.92%

Crossover rate 80% 0.84%
Mutation rate 19% 15%

The GPHH approach employs tournament selection based on fitness to choose the
individual program(s) from the population to participate in genetic operations. The GPHH
approach applies genetic procedures of reproduction, crossover, and point mutation with
specified probabilities to create new individual programs. The system also uses elitism to
ensure that the best individual program in one generation is transferred unaltered to the
next generation. The GPHH system selects the best program tree that appears in the last
generation as the final result of a run. Algorithm 1 shows the GPHH system, recalling
that Table 1 shows its parameters.

The GPHH system creates an initial population [i.e., individual programs asso-
ciated with a heuristic for profile reduction (Sloan, NSloan, MPG, or NMPG) and its
weights] at line 2. The loop in lines 4–13 evaluates each (individual) program of the po-
pulation. The loop in lines 5–10 applies the heuristic for profile reduction associated with
the individual program to each matrix contained in the set Instances (see line 6). The
GPHH approach transfers only one individual program to the new generation in line 12
because of the number of individual programs and the elitism rate used. Thus, the GPHH1

(GPHH2) approach used 1,000 (1,250) individual programs and set the elitism rate as 0.1
(0.08)%.

The GPHH system creates a new population in line 12 using the parameters of
crossover, mutation, and reproduction rates. The genetic programming hyperheuristic
returns the best individual program at line 14.

Input: a set of matrices Instances, a set of parameters:
maximumNumberOfGenerations, populationSize, tournamentSize,
reproductionRate, crossoverRate, mutationRate,
mutationPerNodeRate.

Output: an evolved heuristic for profile reduction.
1 begin
2 Population← create an initial population with populationSize individual

programs;
3 k ← 0;
4 while (k < maximumNumberOfGenerations) do
5 for (each individual ∈ Population) do
6 for (each matrix i ∈ Instances) do
7 apply the heuristic associated with individual to matrix i;
8 newProfile← profile of the new labeling of matrix i;
9 diff ← original profile subtracted from newProfile;

10 sum diff to the total reduction profile stored in individual;

11 k ← k + 1;
12 Population← create a new Population using tournamentSize,

reproductionRate, crossoverRate, mutationRate,
mutationPerNodeRate, and including the best individual program to
the new population (elitism);

13 delete the old population of individual program;

14 return the best individual program;

Algorithm 1: A genetic programming hyperheuristic for profile reduction.

We used real symmetric matrices arising from 2-D/3-D and thermal problems con-
tained in the SuiteSparse matrix collection [Davis and Hu 2011] in the learning process.
Table 2 shows the instances used in the learning process.

As a result of the learning process, the GPHH1 approach generated the weights
0.324075 and 0.8199 (0.524625 and 0.8994) for the MPG heuristic [Medeiros et al. 1993]
to apply the resulting heuristic to instances originating from 2-D/3-D (thermal) pro-
blems. The GPHH2 approach generated the weights 0.30923 and 0.821214 (0.324075
and 0.819900) for Sloan’s [Sloan 1989] (NSloan [Kumfert and Pothen 1997]) algorithm
to apply the resulting heuristic to instances originating from 2-D/3-D (thermal) problems.

Tabela 2. Matrices used in the learning process for the genetic programming
hyperheuristic.

Problem Matrices and their size Training days

2–D/ Matrix mario001 wathen120 nd12k aug3dcqp helm3d01

3–D n 38,434 36,441 36,000 35,543 32,226 8
|E| 204,912 565,761 14,220,946 128,115 428,444

Matrix ted B ted B unscaled
thermal n 10,605 10,605 5

|E| 144,579 144,579

We also evaluated the heuristics with the Hager exchange method [Hager 2002,
Reid and Scott 2002]. This algorithm refines a profile-reducing permutation of a sym-
metric matrix. In this case, the GPHH2 approach was evaluated. The GPHH2 appro-
ach generated the weights 0.32643 and 0.872345 (0.441254 and 0.634901) for the NS-
loan [Kumfert and Pothen 1997] (MPG [Medeiros et al. 1993]) heuristic to apply the re-
sulting heuristic to instances originating from 2-D/3-D (thermal) problems.

4. Description of the tests

The Hu-Scott heuristic [Hu and Scott 2001] is a high-quality heuristic for profile reduc-
tion. We used the Hu-Scott (MC73 routine) and Sloan-MGPS (MC60 routine) heuristics
contained in the HSL [STFC 2018]. We employed the Hager exchange algorithm, namely
the MC67 routine, contained in the same mathematical software library. We employed the
Fortran programming language to use these routines.

This appraisal also used the C++ programming language to implement the other
low-cost heuristics for profile reduction evaluated. The implementations of the heuristics
for profile reductions appraised in this study employ binary heaps to code the priority
queues (although the original Sloan’s algorithm [Sloan 1989] used a linked list in its im-
plementation). A previous publication [Gonzaga de Oliveira et al. 2018a] presented the
testing and calibration performed to compare the codes with the ones used by the original
proposers of the low-cost heuristics (Sloan’s [Sloan 1989], MPG [Medeiros et al. 1993],
NSloan [Kumfert and Pothen 1997], and Sloan-MGPS [Reid and Scott 1999]) to ensure
that the codes employed in the present study were comparable to the formerly proposed
algorithms.

The experiments used eight real symmetric matrices taken from the SuiteSparse
matrix collection [Davis and Hu 2011]. We used the four largest real symmetric matrices
arising from 2-D/3-D and thermal problems contained in this matrix collection.

The workstations used in the execution of the simulations featured an Intel R©

CoreTM i7-4770 (CPU 3.4 GHz, 8 MB Cache, 8 GB of main memory DDR3 1333 MHz)
(Intel; Santa Clara, CA, United States). The profile reduction depends on the choice of
the initial ordering, and this paper considers the original ordering given in the matrix.

5. Results and analysis

This section shows the results of several low-cost heuristics for profile reductions when
applied to eight matrices with sizes ranging from 102,158 to 1,228,045 [up to 8,580,313
nonzero coefficients (nzc)]. Tables 3 and 4 show the name, size, and original profile
(P0) of the matrices used in this computational experiment. Also, these tables show the
profile results and CPU times obtained by Sloan’s, MPG, NSloan, Sloan-MGPS, Hu-
Scott, NMPG, and the resulting heuristics from the GPHH approach when applied to eight
matrices arising from 2-D/3-D and thermal problems, respectively. The same tables also
show the profile results yielded by these heuristics when applied with the Hager exchange
algorithm.

Table 3 shows that the Hu-Scott heuristic achieved the best profile results when ap-
plied to the two smallest matrices (darcy003, helm2d03) arising from 2-D/3-D problems.
On the other hand, the heuristic yielded unsatisfactory profile results when applied to

Tabela 3. Profile results yielded by several heuristics when applied to four large-
scale matrices arising from 2-D/3-D problems.

Matrix n nzc P0 Heuristic Profile t(s) Hager

darcy003 389,874 2,097,566

77
8,

95
6,

92
7

Hu-Scott 95,382,099 3.1 80,653,654
GPHH1 114,701,583 9.4 —
GPHH2 114,956,190 9.4 94,635,636
NMPG 115,043,267 4.1 95,281,674
MPG 115,231,979 4.0 95,317,875
Sloan 115,562,260 0.4 95,465,477

NSloan 115,660,780 0.4 95,654,660
Sloan-MGPS 115,746,306 0.4 95,436,786

helm2d03 392,257 2,741,935

1,
33

4,
78

7,
53

3
Hu-Scott 204,823,797 1.4 177,536,560

MPG 211,075,951 0.5 191,166,860
NMPG 211,101,243 0.5 191,264,028
GPHH1 219,484,646 0.5 —
GPHH2 220,231,204 0.5 198,676,364
NSloan 226,788,690 0.5 206,979,645

Sloan-MGPS 241,992,888 0.4 224,275,665
Sloan 247,135,896 0.5 223,427,456

ecology2 999,999 4,995,991

99
8,

99
8,

00
1

NSloan 667,163,760 1.2 636,224,671
GPHH2 667,163,809 1.5 637,055,155

Sloan-MGPS 667,163,817 1.3 636,272,926
Sloan 667,163,920 1.2 636,272,831
MPG 667,163,923 1.7 636,254,831

NMPG 667,163,923 1.7 635,223,494
GPHH1 667,164,046 1.5 —
Hu-Scott 924,354,061 2.1 823,445,152

ecology1 1,000,000 4,996,000

99
9,

00
0,

99
9

Sloan 667,165,500 1.2 634,354,424
NSloan 667,165,500 1.3 634,354,424

Sloan-MGPS 667,165,500 1.4 634,354,424
GPHH 667,165,500 1.5 634,354,424
MPG 667,165,500 1.7 634,354,424

NMPG 667,165,500 1.7 634,354,424
Hu-Scott 936,696,940 2.0 845,787,851

the two highest instances originating from this application area. Table 3 shows that the
NSloan heuristic delivered the best profile result when applied to the instance ecology2
(composed of 999,999 vertices and 4,995,991 edges) originating from the same applica-
tion area. Sloan’s algorithm obtained the best profile result at lower execution times than
the other heuristics evaluated when applied to the instance ecology1 (composed of one
million vertices and almost five million edges) originating from 2-D/3-D problems. Both
GPHH1 and GPHH2 heuristics yielded the same profile result when applied to the ma-
trix ecology1. The Hager exchange method favored the NMPG heuristic with the matrix
ecology2 as input.

Table 4 shows that the Hu-Scott heuristic yielded the best profile results when
applied to the four matrices arising from thermal problems. Both GPHH1 and GPHH2

heuristics yielded the same profile results when applied to these four matrices. The Hager
exchange method favored Sloan’s algorithm when applied to the matrix thermomech dM.

The resulting heuristics from the GPHH approach did not yield better results than
did the other low-cost heuristics for profile reduction evaluated when applied to matrices
arising from two application areas. Thus, we did not use instances arising from other
domain fields in the computational experiment.

Tabela 4. Profile results delivered by several heuristics when applied to four
large-scale matrices arising from thermal problems.

Matrix n nzc P0 Heuristic Profile t(s) Hager

thermo 102,158 711,558

2,
66

7,
82

3,
44

5

Hu-Scott 13,477,995 0.6 10,245,895

mech TC

GPHH 15,329,403 0.2 12,428,512
NMPG 15,408,417 0.2 12,480,345
MPG 15,412,663 0.2 12,501,474

NSloan 15,446,340 0.2 12,236,432
Sloan 16,021,130 0.2 13,212,121

Sloan-MGPS 16,109,532 0.2 13,218,441

thermo 102,158 711,558

2,
66

7,
82

3,
44

5

Hu-Scott 13,372,590 0.4 13,372,590

mech TK

GPHH 15,329,403 0.2 15,329,403
NSloan 15,493,278 0.2 15.493,278
MPG 15,504,258 0.2 15,504,258

NMPG 15,513,164 0.2 15,513,164
Sloan 15,906,569 0.2 15,906,569

Sloan-MGPS 16,109,532 0.2 16,109,532

thermo 204,316 1,423,116

2,
08

1,
35

9,
18

8

Hu-Scott 28,549,159 0.7 26,979,479

mech dM

GPHH 30,811,966 0.4 28,623,743
NMPG 30,824,941 0.4 28,624,831
MPG 30,825,327 0.4 28,632,316

NSloan 30,939,618 0.3 28,738,717
Sloan 31,984,980 0.3 22,895,892

Sloan-MGPS 32,276,780 0.3 30,366,662

thermal2 1,228,045 8,580,313

2,
11

7,
72

7,
52

8

Hu-Scott 577,408,773 3.2 573,327,864
NMPG 583,761,864 15.4 579,799,820
MPG 583,834,354 15.3 579,945,450

NSloan 587,246,981 1.7 584,355,892
GPHH 587,662,601 17.0 585,573,510
Sloan 593,981,740 1.7 588,892,832

Sloan-MGPS 609,179,419 1.7 594,358,318

6. Conclusions
This paper compared heuristics for profile reduction evolved by a genetic programming
hyperheuristic approach with low-cost algorithms for this problem. The resulting heu-

ristics generated by the GPHH approach did not compare favorably with the Hu-Scott
heuristic. The experiments conducted in this study relied on eight matrices arising from
two application domains.

We intend to design new hyperheuristics based on different metaheuristics.
A previous publication reported a description of parallel algorithms in this field
[Gonzaga de Oliveira et al. 2018b]. Concerning massively-parallel SIMD processing, the
next step of this work is to evaluate the low-cost heuristics for profile reductions imple-
mented using parallel libraries (e.g., OpenMP, Galois, and Message Passing Interface sys-
tems) and in GPU-accelerated computing. Similarly, regarding massively parallel com-
puting, an evaluation of these heuristics for profile reduction implemented within Intel R©

Math Kernel Library running on Intel R© Xeon R© Many Integrated Core Architecture, Sca-
lable and Cascade processors is another future step of this investigation.

Acknowledgment
The Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES) supported
the development of this work.

Referências
Barnard, S. T., Pothen, A., and Simon, H. D. (1993). A spectral algorithm for envelope

reduction of sparse matrices. In Proceedings of the 1993 ACM/IEEE conference on
Supercomputing, pages 493–502, Portland, OR. ACM.

Bernardes, J. A. B. and Gonzaga de Oliveira, S. L. (2015). A systematic review of heuris-
tics for profile reduction of symmetric matrices. Procedia Computer Science, 51:221–
230.

Davis, T. A. and Hu, Y. (2011). The University of Florida sparse matrix collection. ACM
Transactions on Mathematical Software, 38(1):1–25.

George, A. (1971). Computer implementation of the finite element method. PhD thesis,
Stanford University, Stanford, USA.

Gibbs, N. (1976). A hybrid profile reduction algorithm. ACM Transactions on Mathema-
tical Software, 2(4):378–387.

Gonzaga de Oliveira, S. L., Bernardes, J. A. B., and Chagas, G. O. (2018a). An evaluation
of low-cost heuristics for matrix bandwidth and profile reductions. Computational &
Applied Mathematics, 37(2):1412–1471.

Gonzaga de Oliveira, S. L., Bernardes, J. A. B., and Chagas, G. O. (2018b). An evaluation
of reordering algorithms to reduce the computational cost of the incomplete cholesky-
conjugate gradient method. Computational & Applied Mathematics, 37(3):2965–3004.

Gonzaga de Oliveira, S. L., Osthoff, C., and Henderson, L. N. (2019). An Experimen-
tal Analysis of Heuristics for Profile Reduction. In Proceedings of 18th International
Conference on Computational Science and Its Applications, ICCSA. Lecture Notes in
Computer Science book series (LNCS) vol. 11619, pages 25–36, Saint Petersburg, Rus-
sia. Springer International Publishing.

Hager, W. W. (2002). Minimizing the profile for a symmetric matrix. SIAM Journal on
Scientific Computing, 23(5):1799–1816.

Hu, Y. and Scott, J. A. (2001). A multilevel algorithm for wavefront reduction. SIAM
Journal on Scientific Computing, 23(4):1352–1375.

Koohestani, B. and Poli, R. (2015a). Addressing the envelope reduction of sparse matrices
using a genetic programming system. Computational Optimization and Applications,
60(3):789–814.

Koohestani, B. and Poli, R. (2015b). Evolving an improved algorithm for envelope re-
duction using a hyper-heuristic approach. IEEE Transactions on Evolutionary Compu-
tation, 18(4):543–558.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA.

Kumfert, G. and Pothen, A. (1997). Two improved algorithms for envelope and wavefront
reduction. BIT Numerical Mathematics, 37(3):559–590.

Lewis, J. G. (1982). Implementation of the Gibbs-Poole-Stockmeyer and Gibbs-King
algorithms. ACM Transactions on Mathematical Software, 8(2):180–189.

Lin, Y. X. and Yuan, J. J. (1994). Profile minimization problem for matrices and graphs.
Acta Mathematicae Applicatae Sinica, 10(1):107–122.

Medeiros, S. R. P., Pimenta, P. M., and Goldenberg, P. (1993). Algorithm for profile
and wavefront reduction of sparse matrices with a symmetric structure. Engineering
Computations, 10(3):257–266.

Reid, J. K. and Scott, J. A. (1999). Ordering symmetric sparse matrices for small pro-
file and wavefront. International Journal for Numerical Methods in Engineering,
45(12):1737–1755.

Reid, J. K. and Scott, J. A. (2002). Implementing Hager’s exchange methods for matrix
profile reduction. ACM Trans. Math. Softw., 28(4):377–391.

Sloan, S. W. (1989). A Fortran program for profile and wavefront reduction. International
Journal for Numerical Methods in Engineering, 28(11):2651–2679.

STFC (Accessed: December, 2018). The Science and Technology Facilities Council.
HSL. A collection of Fortran codes for large scale scientific computation. http:
//www.hsl.rl.ac.uk.

