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Abstract. The computational tool developed in this study is based on convo-
lutional neural networks, and the You Only Look Once (YOLO) algorithm for
detecting and tracking mice in videos recorded during behavioral neuroscience
experiments. We analyzed a set of data composed of 13622 images, made up of
behavioral videos of three important researches in this area. The training set
used 50% of the images, 25% for validation, and 25% for the tests. The results
show that the mean Average Precision (mAP) reached by the developed system
was 90.79% and 90.75% for the Full and Tiny versions of YOLO, respectively.
Considering the high accuracy of the results, the developed work allows the
experimentalists to perform mice tracking in a reliable and non-evasive way.

1. Introduction
In recent years, researchers in computer vision have developed a large number of algo-
rithms and techniques for intelligent image processing. Not long ago, some methods for
identifying the objects in images overcame the human-level performance to categorize
images. The method developed by Microsoft in the ImageNet (Large-scale visual recog-
nition challenge, 2015) [Russakovsky et al. 2015], achieved this goal using Deep Neural
Networks.

Convolutional Neural Networks (CNNs or ConvNets) are a type of neural net-
work widely used in computer vision problems. Inspired by biological processes, CNNs
are designed to obtain a large number of connections, which in combination can similarly
respond to stimuli, such as the visual cortex [Cichy et al. 2016]. Among the applications
currently are the recognition of patterns in video and images [Feichtenhofer et al. 2016],
diagnosis and analysis of medical images [Rajpurkar et al. 2017, Esteva et al. 2017], ob-
ject detection in images [Liu et al. 2016,Redmon et al. 2016] and surveillance monitoring
systems [Rasti et al. 2016].

Multidisciplinary research areas such as Neuroscience can benefit from the im-
provement of laboratory experiments to complex data analysis using modern machine



learning techniques [Vu et al. 2018]. In this way, it is possible to perform the detection
and classification of brain patterns, correlations between behavioral tasks and electrophys-
iological recordings, social stress tests, and animal interaction, among other experimental
designs with rodents [Henriques-Alves and Queiroz 2016, Frasch et al. 2017].

Neuroscientists conduct a series of animal behavior experiments to validate their
research and video tracking of animals is essential to achieve their goals [Menezes et al.
2018, Unger et al. 2017, Mathis et al. 2018]. In the case of tracking video objects, animal
tracking can be done in real-time, or even, in an offline analysis after the experiments; it
will depend on the type of research being carried out.

It is common for software that tracks animals on video requiring specific condi-
tions for its proper functioning. For example, the use of different colors for the animal
being tracked and the background facilitates the use of solutions based on the separation
of objects using image threshold. Another possibility is the previous selection of a region
of interest (ROI) to perform the tracking only in that area. This can help to remove extra
information that confuses the algorithms for object detection. A well-known approach is
to select a template image of the environment in which the experiment will be carried out,
allowing simple mathematical operations of comparison between the acquired images and
this reference template to identify the desired target [Aitken et al. 2017, Romero-Ferrero
et al. 2018].

This work aims to develop techniques for tracking mice during behavioral neuro-
science experiments, using convolutional neural networks and the You Only Look Once
(YOLO) algorithm. Three different experimental datasets on mouse behavioral tasks were
used to show the ability of CNNs to track animals in adverse conditions, which is diffi-
cult with previous techniques. The results obtained provide a fast and accurate alternative
for mice tracking according to state of the art in this area of knowledge. The presented
technique can be useful to detect the movement of animals in complex scenarios, which
include reflections, multiple objects, or animals in the scene.

2. Methods

This work used the C++ programming language and the YOLOv3 [Redmon and
Farhadi 2018] algorithm to detect mice in different scenarios provided by three datasets
[Henriques-Alves and Queiroz 2016,Jhuang et al. 2010,Burgos-Artizzu et al. 2012]. The
computational development was performed on a computer with CPU AMD Athlon II X2
B22 (2) @ 2.800GHz, RAM 4GB, GPU NVIDIA GeForce GTX 1060 6GB, OS Ubuntu
18.04.1 LTS, CUDA 9.1, CuDNN 7.1.

2.1. Computational Development

All steps required in this work are described in the UML activity diagram shown in Figure
1.

• Step 1: Creation of a dataset from images used in mice behavioral experiments.
Selection of the ground truth boxes for future comparison with the box predictor
and obtaining the confidence score using the intersection over union (IOU).

• Step 2: Selection of the Yolov3 algorithm in the Full or Tiny version for mice
tracking.



• Step 3: Training, validation, and testing for mice tracking in the dataset images
performed by the Convolutional Neural Network.
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Figure 1. UML activity diagram of the developed system for video tracking and
classification.

2.2. Image Dataset
To validate the computational development proposed in this work, a dataset was built with
images from three researches that involve behavioral experiments with mice:

• Ethological Evaluation [Henriques-Alves and Queiroz 2016]: This research
presents new metrics for chronic stress models of social defeat in mice. The au-
thors built their image dataset and kindly provided a sample for our research.

• Automated home-cage [Jhuang et al. 2010]: In this study, a trainable com-
puter vision system was introduced that allows the automated analysis of complex
mouse behaviors, they are: eat, drink, groom, hang, micromovement, rear, rest,
and walk. This dataset has two parts - Full: with more than 10.6 hours of continu-
ous video of various behaviors, and Clipped: with 4200 small videos with specific
behaviors.

• Caltech Resident-Intruder Mouse dataset (CRIM13) [Burgos-Artizzu et al.
2012]: It has videos recorded with superior and synchronized lateral visualiza-
tion of pairs of mice involved in social behavior in thirteen different actions. Each
video has a duration of ∼ 10 min, totaling 88 hours of video.

Table 1 describes the sample size selected from each of the datasets used in this
paper. For the Ethological Evaluation [Henriques-Alves and Queiroz 2016], 3707 frames
were used, captured in a top view of the arena of social interaction experiments among
mice. For the Automated home-cage [Jhuang et al. 2010], a sample of 3073 frames was
selected from a side view of behavioral experiments: eat, drink, groom, hang, micro-
movement, rear, rest, and walk. For the Crim [Burgos-Artizzu et al. 2012], a sample of
6842 frames was selected, 3492 of a side view and 3350 of a top view for the following
experiments: approach, circle, sniff, walk away. The sampling rate for selection of the
frames in all cases was ∼ 1.5 s, avoiding similar images in the composition of the dataset.

Table 1. Information about datasets used

Dataset Images Resolution
Ethological Evaluation [Henriques-Alves and Queiroz 2016] 3707 640× 480
Automated home-cage [Jhuang et al. 2010] 3073 320× 240
Crim [Burgos-Artizzu et al. 2012] 6842 656× 490
Total 13622



The images were randomly selected into separate sets with the following distribu-
tion: 50% for the training set amounting to 6811 images, 25% for validation amounting
to 3405 images, and finally, the remaining 3406 images were allocated in the test set,
therefore, composing the dataset used in this work.

2.3. Mice tracking using CNN

In Neuroscience, mice models of social stress [Henriques-Alves and Queiroz 2016] are
often used and require fast and accurate decision-making from the experimentalist to iden-
tify the correct response depending on the stimulus or the situation in which the animal
is subjected. The essential element of such models has been a robust tracking algorithm.
However, these algorithms are mainly limited by the computational cost, which hinders
their usage in real-time and therefore limits the applicability for laboratory tests.

Commercial systems for video tracking of laboratory animals are often restricted
to track the body or nose position, leading to inaccurate estimates of the head orienta-
tion or requiring manual artifices [Menezes et al. 2018, Kretschmer et al. 2012]. Thus,
large-scale studies emphasize the need for automated high-throughput systems providing
a reproducible behavioral assessment of freely-moving mice with only a minimum level
of manual intervention [Unger et al. 2017].

In this context, this work focuses on the development of a computational tool
designed with deep convolutional networks, the Darknet framework [Redmon and Farhadi
2018], the Open Source Computer Vision Library (OpenCV) and the C/C++ programming
language for mice tracking during behavioral neuroscience experiments.

2.3.1. Convolutional Neural Networks

The idea behind CNNs is to use a cascade of convolutional and pooling layers to reduce
the spatial dimension of an input image and combine local patterns to generate features
that get more abstract as the data progress into the network. This cascade is called an
encoder as raw input pixels are encoded into more abstract features [Lecun et al. 1998].

In this paper, f in
i denotes the i-th input feature map, f out

j denotes the j-th output
feature map and bj denotes the bias term for the j-th output feature map. For the convo-
lution layer, nin and nout represent the number of input and output feature, respectively.
For the Fully connected layer, nin and nout are the length of the input and output feature
vector.

The convolutional layer takes a series of feature maps as input and convolves with
convolutional kernels to obtain the output feature maps. A nonlinear layer, which applies
nonlinear activation function to each element in the output feature maps, is often attached
to convolutional layers. The convolutional layer can be expressed using (1):

f out
i =

nin∑
j=1

f in
j ⊗ gi,j + bj (1 ≤ i ≤ nout), (1)

where, gi,j is the convolutional kernel applied to j-th input feature map and i-th
output feature map and bj is the bias term for the j-th input feature map.



The pooling layer also referred as a down-sampling layer, which takes an n × n
filter and a stride of length n, is then applied to the input vector and outputs the maximum
or average values of each subarea. The reasoning behind this layer is that once we know
that a specific feature is an original input, its exact location is not as crucial as its relative
location to other features, such invariance can be provided by this layer as seen in [Scherer
et al. 2010, Zhou et al. 2016]. Max-pooling can be expressed as (2):

f out
i,j = max

p×p

 f in
m,n . . . f in

m,n+p−1
...

...
f in
m+p−1,n . . . f in

m+p−1,n+p−1

 , (2)

where, p is the pooling kernel size. This non-linear “downsampling” not only
reduces the feature map size and the computation for next layers but also provides a form
of translation invariance.

In a CNN, the encoder is often followed by some fully-connected layers as in a
classical multi-layer perceptron setup. These layers apply a linear transformation to the
input feature vector (3):

f out = W · f in + b, (3)

where, f in is the input feature vector resulted from previous convolutions, W is
an nout × nin transformation matrix, b is the bias term, and f out is the output with the
classes probabilities.

These layers take the highly abstracted encoded features as input, forwards then
throughout the network using the feed forward algorithm and output global statistical
predictions about the presence or absence of objects of interest in the input image [Ciresan
et al. 2011].

2.3.2. YOLO Object Detector

You Only Look Once (YOLO) [Redmon et al. 2016, Redmon and Farhadi 2016, Red-
mon and Farhadi 2018] is an object detection algorithm targeted for real-time processing.
It differs from other object detectors by using a single CNN for both classification and
localization of the objects.

YOLO uses logistic regression for calculating the confidence score of an object in
each bounding box. Another feature is to use a variant of Darknet, which has a 53-layer
network trained on Imagenet dataset [Deng et al. 2009]. However, 53 more layers are
stacked on it to form a 106-layer fully convolutional architecture for detection tasks. The
algorithm also includes many important elements like residual blocks, skip connections,
and upsampling in its architecture.

The analysis of a frame in the YOLO framework consists of three steps. First, the
input image is resized, then a single CNN is run on it, and in the last step, thresholds using
non-max suppression are applied in the resulting detections as described in [Redmon et al.



2016]. Figure 2 describes how an image of the dataset of this work is processed initially
in the input, passing through the CNN, and finally in the output with mouse tracking.
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Figure 2. YOLO pipeline.

3. Results

Our approach used two versions of the YOLO network to detect mice within three differ-
ent experimental setups. The results obtained in this work were based on the analysis of
13622 images, organized according to the dataset described in Section 2.2.

The first version of YOLO trained was the YOLO Full network which uses the
Darknet-53 [Redmon and Farhadi 2018] convolutional architecture that comprises 53 con-
volutional layers. Such a model was trained using transfer learning as described in [Red-
mon et al. 2016] starting from an Imagenet [Deng et al. 2009] pre-trained model. The
model comprises a segment with convolutional layers and residual connections in a total
of 65.29 · 109 floating point operations. Each model requires 235 MB of storage size. We
used a batch of 64 images, a momentum of 0.9, and weight decay of 5 · 10−4. The model
took 139 hours to be trained.

We also trained a smaller and faster YOLO alternative, namely YOLO Tiny [Red-
mon and Farhadi 2018]. To speed up the process this “tiny” version comprises only a
portion of the Darknet-53 resources: 23 convolutional layers, resulting in 9.67 · 109 float-
ing point operations, almost seven times fewer operations than the bigger counterpart.
Each model requires only 34 MB of storage size. The network was trained as described
in [Redmon et al. 2016], fine-tuning an Imagenet [Deng et al. 2009] pre-trained model.
We used a batch of 64 images, a momentum of 0.9, and weight decay of 5 · 10−4. The
model took 19 hours to be trained. Figure 3 shows some examples, resulting from mice
tracking performed on the three different datasets used.
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Figure 3. Output examples of the YOLO network. (a)-(c) refer to Ethological Evalu-
ation [Henriques-Alves and Queiroz 2016], (d)-(f) refer to Automated home-
cage [Jhuang et al. 2010] and (g)-(i) to Crim [Burgos-Artizzu et al. 2012].

Table 2 shows the classification metrics resulting from the classification step, us-
ing both, YOLO Full and Tiny. These metrics are used to evaluate the quality of the
classifier output. Precision is the ratio of correctly predicted positive observations to the
total predicted positive observations. Recall is the ratio of correctly predicted positive
observations to all observations. F1-score is the weighted average of precision and recall,
therefore, the maximum value assigned to it is 1, which means a perfect precision and
recall.

Table 2. YOLO performance after 40000 epochs

Dataset size Precision Recall F1-score
Full Tiny Full Tiny Full Tiny

13622 0.99 0.98 0.99 0.99 0.99 0.99

Still on Table 2, for the Tiny network, the average values of Precision, Recall, and
F1-score were all equal to 0.987, which indicates a good relation between Precision and
Recall, whereas for the Full network, the results were slightly better, with the average
values of Precision, Recall, and F1-score equal to 0.99.

More results related to mice tracking performance are shown in Table 3. First,
it is shown the mean average precision (mAP), which is the mean value of the average
precisions for each class, where average precision is the average value of 11 points on



the Precision-Recall curve for each possible threshold, that is all the probability of detec-
tion for the same class (Precision-Recall are evaluated according to the terms described
in the PascalVOC [Everingham et al. 2015]). Finally, the average intersect over union
(IoU), which is the average of the intersection between the predicted bounding box and
the ground truth box divided by the the total area of both boxes.

Table 3. Results for the epoch 40000, mAP and IoU

Dataset size Mean Average Precision (%) Average IoU (%)
Full Tiny Full Tiny

13622 90.79 90.75 84.67 82.81

The Full network shows slightly better statistics for both the mean average preci-
sion and average IoU, differing from the Tiny counterpart by 0.04% and 1.86%, respec-
tively, as shown in Table 3.

Figure 4 shows the comparison of the mAP between the two models used, YOLO
Full and Tiny. It was presenting the same sample of 100 images from the set of tests,
for both models. Figure 4(a) shows high accuracy of the Full architecture with small
oscillations of the accuracy curve during the training. In Figure 4(b), the high accuracy
is maintained from the earliest times, and remains practically unchanged up to the limit
number of epochs. Both architectures reached high mean average precision values while
successfully minimizing the values of the loss function. The Tiny version of the YOLO
network presented better stability in precision, which can be seen by the smoothness in
its curve.
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Figure 4. Comparison of the model’s mAP every 1000 epochs classifying 100
images from the test set.

In terms of training and testing time for the YOLO network, Table 4 shows the
efficiency of using the Full architecture in relation to the Tiny one. The training using the



Tiny architecture was performed in 19 hours, that is about seven times faster than the Full
version. For the tests the use of the Tiny version was about four times faster than the Full
counterpart.

Table 4. GPU time necessary to perform the training and test of the model

Train Time(hours) Test Time(seconds)
Full Tiny Full Tiny
139 19 1188 261

Figure 5 is a bar graph showing the mean time spent on the classification of a
single image in both architectures. The smaller size of the Tiny version gets a direct
translation in execution time, having 0.08 ± 0.06 as the mean and standard deviation
values, whereas the Full version has 0.36 ± 0.16 as the mean and standard deviation
values, respectively.
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Figure 5. Bar graph of the GPU time necessary to perform the classification of a
single image.

4. Conclusion
The results presented in Tables 2 and 3 suggest a higher classification accuracy for the
YOLO network when using the Full architecture, although the difference obtained with
the Tiny version was not substantial.

Given the aforementioned small difference between the two versions of the net-
work, the possibility of a robust real-time system for mice tracking is made a reality with
the Tiny version of the YOLO network. Due to the smaller demand of computing power,
this work opens the possibility of real-time tracking systems where actions can be taken
during the experiment in an automated and intelligent way without the need for human
intervention.



The computational development presented in this paper performed mice tracking
in behavioral experiments setups using the deep neural network model called You Only
Look Once (YOLO). The accuracy of the YOLO model and its performance showed bet-
ter results using the Tiny architecture in comparison with the Full architecture. The results
obtained in this work, which include high rates of accuracy and fast computation, encour-
age experimentalists to conduct new experimental designs where real-time decisions can
be made.

All computational tools develop during this work can be found in a reposi-
tory available at https://github.com/heltonmaia/ECT-proj-cnn-mice,
which, includes a tutorial for the usage of the proposed tools.
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