
Middleware implementation for RYU SDN Controller to
manage switches in a C-RAN scenario

Lucas Nóvoa1, Virgı́nia Tavares1, Cleverson Nahum1,
Silvia Lins2 and Aldebaro Klautau1 ∗

1LASSE - 5G IoT Research Group
Federal University of Pará (UFPA), Belém - PA, Brazil

2Ericsson Research
Kista, Sweden

(lucas.pinto,virginia.tavares)@itec.ufpa.br, silvia.lins@ericsson.com

(cleversonahum,aldebaro)@ufpa.br

Abstract. With the advent of 5G, more stringent application requirements were
imposed to the cellular networks. The adoption of Software Defined Network
(SDN) technology in the transport network enables more dynamic network con-
trol, suitable for several real-time operations and use cases present in 5G de-
ployments. Implementing testbed for various transport network scenarios is not
trivial due to the high costs involved, especially with respect to hardware in more
complex network topologies. This work provides a low-cost alternative that fa-
cilitates complex transport network topologies implementation in real testbeds.
It adopts Mininet software for transport network emulation and implements a
middleware that facilitates the control of flows and routes as well as the auto-
matic recognition of any topology. In networking research domain, the imple-
mented middleware contributes to the simplification of switches management in
software defined networks scenarios.

1. Introduction
In 5G networks, the Centralized Radio Access Network (C-RAN) architecture plays a
strategic role towards cost-efficiency [Kitindi et al. 2017], splitting base station functions
between the Base Band Unit (BBU) and the Remote Radio Head (RRH). The fronthaul
link is responsible for the BBU-RRH interconnection, while the backhaul link connects
BBU nodes to the core network. The fronthaul and backhaul links are part of the transport
network which, motivated by cost reduction and more efficient usage of its resources, con-
verges to packet switching deployments instead of using overprovisioned/dedicated links.
In this sense, the Software-Defined Network (SDN) is a key-enabler for centralized trans-
port network management for both the fronthaul and backhaul, facilitating the adaptation
of network parameters based on end-application requirements. SDN helps centralized

∗This work was supported in part by the Innovation Center, Ericsson Telecomunicações S.A., Brazil,
CNPq and the Capes Foundation, Ministry of Education of Brazil. L. Nóvoa, V. Tavares, C. Nahum and
A. Klautau contributions include both development of the testbed and concepts, they are with LASSE -
5G Group, Federal University of Pará, Belém, Brazil (e-mails:{lucas.pinto, virginia.tavares}@itec.ufpa.br
{cleversonahum, aldebaro}@ufpa.br). S. Lins contributions are theoretical concepts and he is with Ericsson
Research, Ericsson AB, Sweden.



management in features like traffic control, throughput analysis, delay measurement, and
queue priority.

Testbeds play an important role in 5G transport networks and SDN-related re-
search. Taking into consideration some of the testbeds available in the literature
as [Muñoz et al. 2017, Rostami et al. 2017], it is possible to perceive that transport net-
work complexity directly increases the testbed implementation costs, since more com-
plex transport networks demands more network resources like real switches and routers
interconnected to represent the targeted topology. Another negative aspect is the lim-
ited flexibility to deploy different transport network topologies since it demands physical
rearrangement of switches/routers connections.

Targeting a low-cost platform to provide easier and more flexible transport net-
work implementation in 5G testbeds, this work proposes the Transport Network Testbed
(TNT), composed by an emulated transport network for both fronthaul and backhaul using
the Mininet software and the implementation of a middleware to facilitate the route/flow
control and the acquisition of information about the transport network through the RYU,
that is a SDN controller to manage and control applications [Ryu 2021]. A related work
used as a base for the creation of this middleware was [Nahum et al. 2020]. There are
many different SDN Controllers as Open Network Operation System (ONOS), OpenDay-
Light (ODL), OpenKilda, Faucet, and RYU. The main reason to choose RYU instead of
the other is that the RYU provides a well-defined API for developers, allowing to change
how the components are managed and configured [Baskoro et al. 2019]. There are no
works related to some software implementation in the research and industrial field to im-
prove the SDN in a 5G scenario.

This work’s structure is as follows: Section II shows the implemented Transport
Network Testbed (TNT) in this section, the testbed big picture is provided, and the traf-
fic redirection logic is explained. Section III focuses on the flow redirection and how
the middleware manages the communication with the RYU SDN Controller. Section IV
presents the results obtained using the middleware. Finally, section V concludes the pro-
posed work where the emphasis is given on the middleware usage by the network manager
and the low cost of the middleware.

2. The implemented Transport Network Testbed

The Transport Network Testbed enables the implementation of a C-
RAN [Kitindi et al. 2017] scenario with emulated fronthaul and backhaul using Mininet
software [Mininet 2021], deploying a SDN transport network with traffic management
that can be easily connected to external applications as artificial intelligence-based
agents. In a C-RAN architecture, a remote radio head (RRH) communicates with base-
band unit (BBU) through the fronthaul, and BBU communicates with the core network
through the backhaul. In this work, emphasis is given to the implemented middleware
between the SDN controller API and the external applications, using Mininet as the
framework for the emulated transport network topology. For mobile network functions
deployment at RAN and core networks, it was used the Connected AI testbed proposed
in [Nahum et al. 2020]. The TNT architecture works as an extension to the Connected
AI testbed. The TNT implements a middleware to facilitate the communication with
the SDN controller API and performs switch nodes management through configuration



files and API requests. It can be used to control the routing process, the data flow and
to obtain network Key Performance Indicators (KPIs). The TNT code is available on
Github [LASSE 2021] with all the use cases explored along this work.

2.1. Architecture Overview

Figure 1 depicts an example of a network architecture implemented using the TNT over
the Connected AI testbed. A C-RAN architecture is implemented using a RRH and a
BBU to perform eNB processing. In this architecture, all elements inside the dotted
rectangle are executed on the machine that runs the Mininet software, responsible for
implementing a middleware between the network manager and the SDN controller. In
this figure, Mininet emulates the transport network of the backhaul connection, where all
depicted switches are emulated. Each 5G network service is performed inside a Docker
container and orchestrated with Kubernetes [Kubernetes 2021], using Calico as the con-
tainer network interface as described in [Nahum et al. 2020]. The machine that executes
the Mininet software is responsible for implementing the topologies of switches and vir-
tual hosts, managing the network backhaul using the developed middleware and executes
the SDN controller.

Figure 1. Architecture Overview

It is important to emphasize that Mininet’s switches and virtualized host archi-
tecture do not have bidirectional communication with a host machine. Hence, the hosts
are not reachable from external networks, and it is not possible to forward the backhaul



traffic over the emulated topology using the Mininet default implementation. Therefore,
it is necessary to create traffic redirection rules for the containers running into the testbed
applications to communicate with the Mininet virtualized switches as they were a non
virtualized machines.

We implemented virtual ethernet interfaces into the Mininet machine to create a
link between its ethernet interface and the virtual interface of hosts and switches emu-
lated in Mininet to enable bidirectional communication between them in a way similar
to [Nahum et al. 2020]. Once this link is created, a rule is applied to the BBU and core
network containers forcing their traffic to be forwarded to the Mininet machine instead
of making a direct communication as made by default. When the backhaul traffic is fi-
nally redirected to the Mininet machine, the forward of the machine ethernet interface
to the emulated host virtual interface makes the backhaul traffic pass through the emu-
lated topology with all switches and routers that users previously defined into Mininet
deployment scripts.

One drawback of the method used to create links between the machines and the
Mininet virtual hosts presented in [Nahum et al. 2020] is its low flexibility, which hinders
the definition of new emulated topologies since all of them should manually implement
the links between the machines and virtual hosts. In this work, the implemented middle-
ware is responsible for identifying any Mininet topology set by the user, and automatically
creates these virtual links between the Mininet machine interface, configuring the forward
rules at the containers and machines. Therefore, the user does not need to make any man-
ual configuration, but only to use a configuration file which provides the IPs of containers
and Mininet virtual hosts, required for link instantiation for traffic forwarding.

3. Flows Redirection

Once the middleware is running, and the routes are already configured, the processing
pipeline works as follows: the implemented code works as a middleware for RYU and
external applications, and RYU works as an API for the OpenFlow protocol that is re-
sponsible for editing the forward tables on each switch. The changes implemented in the
RYU configuration file allow RYU to maps all switches with their links, ports, and adja-
cent switches. The mapped information is stored in a textfile that operates as an interface
between programs to analyze the routes and obtain the networks’ KPIs.

In Figure 2, one of the API request options is presented, where the middleware de-
creases significantly the number of requests needed to the external applications to create
a new flow into the Mininet topology. So, the TNT middleware simplifies the commu-
nication between a consumer application and the RYU SDN controller. In this figure,
steps 1 and 2 are executed every time the initial script rises. These steps are done to clean
any previous rule in all switches and to create the flow table 0 to send the IP to table 1
and ARP to table 2. After that, the processes depicted are all executed by input entries
required by OpenFlow to manage the switches. Once the application performs the step
3, the middleware routine is started. The middleware receives the consumer application
request and executes steps 4 to 8.



Figure 2. Ryu REST flow diagram

4. Results

This work implements three experiments to test some use cases of the TNT. First, it is
compared the number of requests to implement all flow tables in the simple scenario, us-
ing the middleware and RYU. Second, it is performed a route change algorithm during
the time, whether it is showed that the analysis does not interfere in the communication
between the machines. Third, the delay measurement was used to create a dynamic al-
gorithm, whether the delay is a trigger for changing the route. The setup for build the
use cases that the middleware, Mininet and RYU SDN Controller attends is composed of
one computer with a Core i5-8400 and CPU@2666 MHz Quad-Core processor with an
operational system Ubuntu 18.04 LTS, 5.4.0-73-generic kernel and a 8 GB of RAM.

Figure 3 presents three different backhaul topologies, where each topology has
different routes and weights. The adjacency matrices shown in this graph representa-
tion, contain the representation of the connections between the switches. The rows i and
columns j represent if there is a direct link between switch i and switch j. These matrices
represents the switches communication and which routes and flow are possible to be set.

The middleware’s initial script is responsible for choosing the default path be-
tween the two endpoint switches and creates each matrix showed in Figure 3. The mid-
dleware script allows the user to manage the traffic through the switches routes. Therefore,
to perform the storage of switches’ connection, it is necessary to use the RYU program to
get the dictionary of a switch, adjacency switch, and port that connect both switches. The
data is stored in a configuration file, and the middleware creates this matrix for getting the
default path between the hosts. In most Linux interfaces and switch configurations, it is
possible to set one route at a time. However, using the OpenFlow table managed by the



Figure 3. Graph Representation

middleware and the input that the data comes, it is possible to provide a simple path such
as passing through switches 1-4-5-6-7 or more complex paths such as passing through the
same switch more than one time for different ports. Therefore, a packet coming from the
same source towards the same destination could have different treatments depending on
the port on which the switch dispatches the data. The different treatments allow the user
to make dynamic configurations.

The weights seen in the graph representation indicate the delay that the switch
adds to the route. Weight 1 is the shortest delay, and weight 3 is the most extended delay
of the analyzed topology. These different delays are set to simulate a scenario of different
possibilities for several use cases; for example, a UE that is sending data to the internet
can use one of the available paths in Mininet topology. Also, the UE can use the path
with higher delay to verifies the effects of a lag on the network or use the path with lower
delay to simulate an application that needs a real-time request. These weights differ from
architecture to architecture to attend different cases. For the second topology, the weight
2 has a delay of 14ms, while that same weight in the first topology has a delay of 30 ms.
No matter the number of switches in the topology, a network manager with access to the
Middleware developed can use different weights and paths to get the UE requirements’
best traffic configuration.

One of the best ways for configuring the switches is by creating a table that handles
with IP and another that handles with ARP; after that, the flow redirection can be easily
configured. Therefore, to create communication like that, many requests have to be made
in each switch of the topology. The requests for small topology (with 3 or 4 switches)
is performed with no difficulty. Otherwise, the number of requests can be a problem
for the network manager for an extensive topology. The number of requests for certain
numbers of switches with and without the use of Middleware for each topology is shown
in Figure 4. In this figure, the x-axis represents the number of switches in the Mininet
topology, and the y-axis represents the number of requests to change one route in all



Figure 4. Request graphic according the number of switches

switches. The number of requests that a network manager has to send in the RYU API
to create a simple route is represented by the orange bar and it has fourteen requests per
switch. Therefore, the middleware enables a great reduction in the number of requests ,
decreasing the complexity to perform changes in the topology routes.

Figure 5. Traffic flow through the switches in Mininet topology

Using the middleware, the network manager has to send just one request for each
switch to configure the IP and ARP rules in Tables 1 and 2 and the flow redirection.
Therefore, for a topology of six switches, if the network manager chooses not to use the
middleware, the number of requests to create the forward for IP and ARP equals eighty-
four. Hence, the middleware reduces the number of steps that the network manager has
to perform, for the six switch’s case, with middleware, the consumer application needs
just one request. It is possible to create dynamic configuration using the middleware
to configure all switches. For example, whether the consumer application performs all
settings initially by applying the forward packet rules using the middleware, an external
agent only has to send one request to generate a new route.

In Figure 5 it is perceived that the topology already has a path configured (the
green switches). However, all inactivated red switches are configured by the consumer
application that performs all settings initially by applying the forward packet rules using



the middleware. For example, the behavior of switch number four is configured in such
a way that if a packet comes from switch two, he will forward the traffic to the port
connected with switch number five. Once the behavior of the switch is already configured,
this will allow an external agent to only sends one request to generate an activated new
path.

Figure 6. The third topology overview

The third topology proposed for fronthaul is showed in Figure 6. This is a simple
topology where there are five possible routes. Each dotted between a switch, and another
represents links configured in the Mininet file itself, which means that this is a use case of
the user developing the application. All configurations as creating several switches, the
links, the latencies between the links, and the bandwidth between switches will be left
according to the user’s need.

For the real-time route change test, the communication was initiated between the
UE and the core of the network for one minute, resulting in a throughput graph over time
for four different routes as shown in Figure 7. During these 60 seconds, the route change
was performed without interrupting the two hosts’ data transfer. During this interval,
different length of bandwidth was requested. When the value of the throughput passing
through the route is higher than the bandwidth value, e.g., if the bandwidth value is 5
Mega and the consumer application is sending 7 Mbit/s, the network manager has to
change the traffic for another route.

In the first 15 seconds, route one (1-2-3-7) was used to forward the UE data to the
core network. In the interval of T=15 to T=20, the middleware performs a route change,
resulting in a transition gap of curves. Both curves in this transition decay in the same
proportion during the change from one route to another. This pattern is repeated for the
other two remaining routes. The graph also shows us that the middleware can change route
without problem in the communication between the machines, allowing, for example, an
Machine Learning Agent to use this middleware in real-time applications for differents
multipath routing user cases, like shortest path, load balancer, and static queues.

The consumer application can use the middleware’s RESTful API for the delay
test to choose when getting the delay response instead of executing it every second for
each switch using the Ryu Events call. The delay control can help the test with the lag



Figure 7. Throughput over the time

problem and possible solutions like changing the route responsible for the lag. Therefore,
to demonstrate how the consumer application can perform this delay control, this work
will focus on just one link in the forward lines.

During one minute, traffic between BBU and the network’s core suffered four
variations, one every 15 seconds. The network manager performed these variations to
simulate a scenario of instabilities during this time. The delay measurement also has a
probe that verifies when the delay is more significant than 45 ms. Whether the probe
verifies that the application exceeded the limit value, this probe changes the route once
this switch is compromised with a lag. By contrast, once the application has a lag, the
algorithm has to return for this route if the latency decreases to a value lower than 45 ms.
The Figure 8 shows the route’s change with the delay at the same time.

In the interval of 20 to 40 seconds, it is perceived that the topology has the main
route with a lag. The consumer application use the second route with a bandwidth of
8 Mega, while the probe does not allow us to use the main route. When the probe per-
ceives that the delay has returned to a value lower than 45 ms, another change of route is
performed once the main route it is operating normally.

In the first interval, the delay was in the range of 11 ms until 24 ms, which means
that the application can have traffic passing through the route, including this switch, with-
out a problem. The instant of time t=15 seconds, the delay increases until the value of 72
ms. With this increase, the probe perceives that the delay of the analyzed switch exceeded
the value of 45ms, so a request is sent to change the route for one route with no compro-
mised switches. The middleware has to use this probe for every switch in the network.
It is perceived that the throughput does not change the route in the second that the delay
breaks the limit. This lateness in the route’s change is because rootthe probe sends the
request in t=15 seconds, but it took time until the change occurs.



Figure 8. Throughput and Delay analsis

In the interval of 20 to 40 seconds, it is perceived that the topology has the main
route with a lag, so this route can not pass the backhaul traffic. The consumer application
have to use the second route with a bandwidth of 8 Mega, while the probe does not allow
us to use the main route. When the probe perceives that the delay has returned to a value
lower than 45 ms, another change of route is performed once the main route it is operating
normally.

The probe does not interfere with traffic, been used simultaneously during the
BBU communication with the network’s core. Therefore, a consumer application can
control the traffic according to the delay variation, changing or returning to the same
route every time a route reaches some limit value.

This testbed proved to be flexible, allowing the implementation of different topolo-
gies for Fronthaul and Backhaul, allowing changes in routes during runtime, which means
that the same topology can attend to differents UE application requirements. The solution
also proved to be low-cost and very useful for research, specially when several scenarios
need to be tested. The SDN controller’s complexity is abstracted, allowing the user to
adopt the proposed software according to their needs, having their effort to manage the
OpenFlow switches being significantly reduced.

5. Conclusion
This paper presented the transport network testbed (TNT) to implement a low-cost trans-
port network to the Frothaul and Backhaul in mobile networks using Mininet. Further-
more, the developed middleware is responsible for creating links between any Mininet
topology and mobile network functions, mainly to the backhaul and fronthaul as demon-
strated by this work, enabling the traffic control and other SDN functions. There were two
results in this paper: throughput over time and Delay analysis. The first result demon-



strated that the proposed middleware could change routes from one switch to another
and measure the number of requests performed by the RYU API and the middleware. The
second result used a probe to measure a limit value for the delay using the created middle-
ware; Once the probe perceived that a delay value was achieved, the middleware executes
a route’s change.

Therefore, it was demonstrated how a network manager or an external application
could take advantage of the simplification provided by the implemented software, creat-
ing traffic redirect, delay analysis, and reducing the effort to manage all switches. Oth-
erwise, there is an actual direct result that is the computation cost of the proposed work.
Accordingly, the implementation of TNT is fully low-cost, once all software used was
OpenSource, and their specification is a simple CPU and memory requirement. Hence, a
simple computer can run and simulate this transport control in backhaul or fronthaul with
Mininet, RYU, and the implemented middleware. Finally, this work must emphasize that
the easy deployment of this scenario instead of configuring real cisco switches is also an
essential contribution of this proposed work.

References
Baskoro, F., Hidayat, R., and Wibowo, S. B. (2019). Comparing lacp implementation

between ryu and opendaylight sdn controller. In 2019 11th International Conference
on Information Technology and Electrical Engineering (ICITEE), pages 1–4.

Kitindi, E. J., Fu, S., Jia, Y., Kabir, A., and Wang, Y. (2017). Wireless Network Virtu-
alization With SDN and C-RAN for 5G Networks: Requirements, Opportunities, and
Challenges. IEEE Access, 5:19099–19115.

Kubernetes (2021). Kubernetes: Production-Grade Container Orchestration. [Online].
Available: https://kubernetes.io/ Accessed on 2021-03-27.

LASSE, T. (2021). Transport Network Testbed. [Online]. Available: https:
//github.com/lasseufpa/transport-network-testbed Accessed on
2021-03-27.

Mininet (2021). Mininet: An Instant Virtual Network on your Laptop (or other PC).
[Online]. Available: http://mininet.org/ Accessed on 2021-03-27.

Muñoz, R., Nadal, L., Casellas, R., Moreolo, M. S., Vilalta, R., Fàbrega, J. M., Martı́nez,
R., Mayoral, A., and Vı́lchez, F. J. (2017). The adrenaline testbed: An sdn/nfv
packet/optical transport network and edge/core cloud platform for end-to-end 5g and
iot services. In 2017 European Conference on Networks and Communications (Eu-
CNC), pages 1–5. IEEE.

Nahum, C. V., Nóvoa, L., Tavares, V. B., Batista, P., Lins, S., Linder, N., and Klautau, A.
(2020). Testbed for 5g connected artificial intelligence on virtualized networks. IEEE
Access, 8:223202–223213.

Rostami, A., Ohlen, P., Wang, K., Ghebretensae, Z., Skubic, B., Santos, M., and Vidal,
A. (2017). Orchestration of ran and transport networks for 5g: An sdn approach. IEEE
Communications Magazine, 55(4):64–70.

Ryu (2021). Ryu API. [Online]. Available: https://ryu.readthedocs.io/en/
latest/api_ref.html Accessed on 2021-03-23.


