
State of the Art on Microservices Autoscaling: An Overview

João Paulo K. S. Nunes1, Thiago Bianchi2, Anderson Y. Iwazaki3, Elisa Yumi Nakagawa3

1 IBM, São Paulo, Brazil

2Itaú Unibanco S.A., São Paulo, Brazil

3University of São Paulo, São Carlos, Brazil

karolsn@br.ibm.com, thiago-bianchi@itau-unibanco.com.br

iwazaki.anderson@usp.br, elisa@icmc.usp.br

Abstract. The adoption of microservices architecture has taken on great pro-
portions due to its benefits and popularization of containers driven tools, such
as Kubernetes and Docker. Besides, the development of microservice-based ap-
plications is a complex task, specially because they can be composed of mul-
tiple heterogeneous parts. In particular, one of the main challenges is how to
conduct the microservices autoscaling (i.e., adding or removing resources on
demand), while still avoiding resource waste, such as CPU and memory. This
paper presents the state of the art of approaches to solve the problem of mi-
croservices autoscaling, the main characteristics to be considered as well as the
important future directions that need to be still investigated.

1. Introduction
Microservices have gained considerable popularity over the last years due to their inherent
nature of decoupling a given application in multiple components, allowing flexible man-
agement, including individualized scaling operations. Besides, microservices perfectly fit
with native cloud-based applications due to their capacity of using containers. In turn, a
microservice can be defined as a “small” application that can be deployed independently,
scaled and tested independently, and has a single responsibility [Thönes 2015].

A big challenge for developing microservice-based applications is the selection
of effective autoscaling approaches for microservices [Abdel Khaleq and Ra 2019]. Such
autoscaling refers to the capacity of automatically increase or decrease resources used by
cloud-based applications, thereby adapting resource usage to the applications’ require-
ments [Calcavecchia et al. 2012]. There is a variety of autoscaling approaches with di-
verse characteristics and elements, such as reactive and predictive operations, adoption
or not of machine learning techniques, orchestration frameworks (e.g., Kubernetes and
Docker Swarm), cluster deployment, and others. They differ from any other autoscaling
approaches applied in other areas, mainly regarding the hardware virtualization. In this
perspective, the real-world problem addressed in this paper is how architects can manage
the variety of issues involving microservices autoscaling. To the best of our knowledge,
there is a lack of studies that put together and analyze the existing autoscaling approaches.

The main goal of this paper is to present the state of the art on microservices au-
toscaling as well as its types, strategies and main characteristics. To do this, we system-
atically looked for and selected possibly all existing autoscaling approaches and analyzed



them. From the results of our analysis, we observe the topic of microservices autoscaling
is relatively new and a prolific area to be exploited yet. In particular, there is still an urgent
need for establishing a clear definition of what to expect from a successful autoscaling ap-
proach.

This work is organized as follows. Section 2 describes the research method used
in our study. Section 3 presents the results of our analysis, while Section 4 is a discussion
of the results and points out important next steps. Section 5 concludes this paper.

2. Research Method
We conducted a systematic mapping study (SMS) to obtain the state of the art
on microservices autoscaling and, for that, we followed the process proposed by
[Kitchenham et al. 2015][Felizardo et al. 2017] that presents three main phases (plan-
ning, conduction, and reporting). During the planning, we defined the protocol, whose
main elements are the research questions (RQ) and the search strategy. We defined three
questions:

• RQ1: Which are the existing autoscaling approaches available for containerized
microservice-based applications?

• RQ2: How are implemented the approaches available for containerized
microservice-based applications?

• RQ3: How are the autoscaling approaches being evaluated and validated in terms
of tools and metrics?

For the search strategy, we defined the search string and selected the source of
studies. After several calibrations, the final search string used in our SMS was ((“scal-
ing”) AND (“container”) AND (microservice OR micro-service OR “micro service” OR
kubernetes OR “docker swarm”)). Besides, four publication databases were selected as
source of studies: ACM Digital Library1, IEEE Xplorer2, Scopus3, and Google Scholar4.
We also defined one inclusion criteria (IC) and six exclusion criteria (EC) to select studies:

• IC1: Study presents microservice scaling;
• EC1: Study does not present microservice scaling;
• EC2: Study is not accessible;
• EC3: Study is just a summary of a conference;
• EC4: Study is not written in English;
• EC5: Study is published as an abstract; and
• EC6: Study only mention microservice scaling with no details.

Four reviewers performed the conduction phase of our SMS. In Step 1, we iden-
tified primary studies from the databases and obtained 969 studies. During Step 2, we
selected the primary studies by reading titles and abstracts and applying inclusion and
exclusion criteria, resulting in 80 studies. In Step 3, these studies were read in full and
inclusion and exclusion criteria were applied again and, 53 studies5 were considered rel-
evant for answering our RQs. We used a data extraction form to obtain all relevant data

1https://dl.acm.org
2https://ieeexplore.ieee.org/Xplore/home.jsp
3https://www.scopus.com
4https://scholar.google.com/
5The list of studies is available in https://github.com/joaopauloksn/autoscaling/blob/main/README.md



from the identified studies that supported us to classify and analyze the studies and answer
our RQs, as reported in the next section.

3. Results

3.1. Microservice Autoscaling Approaches

This section presents the answer for RQ1, which addresses approaches for autoscaling
microservices, their types, strategies, and main characteristics. Figure 1 presents the dis-
tribution of studies in regards to the autoscaling types (vertical and/or horizontal) and
strategies (reactive and/or proactive). Most studies are related to the type “horizontal”
and strategy “reactive”, while “vertical” and “proactive” have received to some extent
less attention. The type “vertical” is more frequent in combination with “horizontal” scal-
ing. Below, each type and strategy is discussed, followed by a discussion on the adoption
of machine learning in such approaches. In the context of this work, we highlight the
most representative studies; the other studies are listed in the external material.

Figure 1. Distribution of studies by types and strategies of microservice autoscal-
ing

3.1.1. Types of microservice autoscaling

Scaling type defines how the autoscaler decides the method to provision resources
and what combination of resources is provisioned to the application, depending on
the particular environment, scaling can be performed vertically, horizontally, or both
[Imdoukh et al. 2020]. This is a well-known concept already used to define scaling types
in other areas, such as Cloud and Computer Network.

Horizontal scaling, increases or decreases the number of replicas or instances of
the same microservice. In a Kubernetes-based environment, it is referenced by increasing
or decreasing the number of replicas of the same POD. When an application requires
more computational resources, instead of having to adjust the specifications of the existing
pods, users can simply create another identical pod to share the load [Nguyen et al. 2020].
In an environment purely using Docker containers (without any orchestration framework),
it would be analogous to refer only to the addition or reduction of one or more containers



of the same service. In the case of Vertical scaling, it is about the increase or decrease in
resources used by a given microservice within its replication or instance. For example, in
vertical scaling, we could increase or decrease the amount of CPU and available memory
for a given instance of microservices.

The main characteristics of each type of microservice autoscaling are presented
following:

• Horizontal scaling characteristics: While applications can be scaled vertically
by allocating more resources to a running instance of a microservice, the domi-
nant mechanism found in production cloud computing environments remains the
mentioned horizontal scaling in which replicas of the same service are added and
removed on demand [López and Spillner 2017]. It can also be seen in the number
of related studies, see Figure 1.
Horizontal autoscaling is generally used when there is an increase or decrease
in the number of service requests, usually triggered by either a higher or lower
demand of a given service. An IoT application for example can have its demand
increased after the entry of one or more devices connected simultaneously. In
this case, without horizontal autoscaling, the service can be overloaded with the
number of requests, reducing performance or even causing service instability. One
way to solve this problem without horizontal autoscaling would be to estimate
the number of replicas needed to satisfy the maximum load peak, always adding
enough resources to satisfy this condition. In this case, resource waste will occur,
because the service will not be using the resource assigned all the time. In a cloud
environment, it can be expensive, since it charges for the amount of resources
being used.
The most popular tool available on the market used is the HPA6 (Horizontal Pod
Autoscaler), a default and ready to use autoscaling feature. It depends on manually
setting up some threshold values such as the target CPU utilization, minimum and
maximum number of pods [Abdel Khaleq and Ra 2019].

• Vertical scaling characteristics: Vertical autoscaling is generally used when we
have either a large or short use of resources in the same instance to satisfy the ser-
vice requests. As microservices will perform from very simple to more complex
tasks, they might require more or fewer resources in a given period. For example,
a microservice performing a machine learning task may behave quite differently
along its journey. While some requests can be simple, others can be more com-
plex, requiring more resources from the same replica, such as CPU and memory.
As horizontal scaling, many times the solution without using an appropriate au-
toscaling approach, is to estimate the maximum needed resources that the given
microservice will use and make it available. This again can lead to a waste of
resources and consequently high costs. Kubernetes also provides a default mech-
anism for vertical autoscaling, VPA7 (Vertical Pod Autoscaler). When configured,
it will set the requests automatically based on usage and thus allow proper schedul-
ing onto nodes so that the appropriate resource amount is available for each pod.
Despite not being the object of study by the majority of the reviewed studies (see
Figure 1), vertical scaling does have high relevance in the area.

6https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
7https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler



• Using vertical and horizontal scaling in the same method: Hybrid scaling tech-
niques reap the benefits of both the fine-grained resource control of vertical scal-
ing and the high availability of horizontal scaling. This makes hybrid scaling a
promising solution for effective autoscaling [Kwan et al. 2019]. When proposing
a generic method where there is no previous knowledge about the application, it
is important to analyze which of the types of autoscaling would be most suitable
for resource optimization. Before choosing between one of the scheduling types,
an initial phase of understanding the characteristics of the autoscaling demands is
needed. Preferably, a complete method should be able to identify the best time to
autoscale resources either horizontally or vertically. By fully exploiting elasticity,
an application can more quickly react to small workload variations, through fine-
grained vertical scaling, as well as to sudden workload peaks, through horizontal
scaling [Nguyen et al. 2020].

3.1.2. Strategies for microservice autoscaling

Another important factor in microservices autoscaling is how to scale, either reactive or
proactive. This definition was proposed by [Lorido-Botran et al. 2014] from the cloud
IaaS autoscaling perspective. This is also commonly used to represent microservices
autoscaling types.

In reactive autoscaling, the system automatically adapts to the requested demand.
When necessary it will scale up or down, in general, due to the increase and decrease in
requests. For example, a threshold-based system is prepared to react if a service exceeds
the defined threshold max or min values. In case of high demand, the system will either
increase the resources of an instance (vertical scaling) or create new replicas of the ser-
vice (horizontal scaling). The same is true in low demand where the system will reduce
resources or decrease the number of replicas.

Proactive autoscaling uses sophisticated techniques to predict future demands to
arrange resource provisioning with enough anticipation [Lorido-Botran et al. 2014]. It
helps to decide to scale up or down according to a predetermined forecast usually obtained
through statistical models or machine learning.

Following, we characterize the strategies for microservice autoscaling:

• Reactive autoscaling characteristics: Because of its nature of reacting to an ex-
istent service request demand, reactive autoscaling presents some challenges to be
solved, such as cold initiation of replicas (horizontal scaling), delay in the appli-
cation of additional resources (vertical scaling), and mainly a prior knowledge of
the characteristics of services being monitored. Prior knowledge is required when
setting thresholds that will support the autoscaling decision. Another important
aspect mentioned in most studies is the stabilization time to avoid excessive scal-
ing fluctuation. For example, a service that exceeds 80 of the established CPU
usage should be replicated only if that excess exceeds 3 minutes in duration. This
example avoids scaling the service up and down simultaneously because of a spo-
radic increase in demand, causing cluster overhead.

• Proactive autoscaling characteristics: As in reactive autoscaling, predictive
scheduling also has its particular challenges. Among them is the difficulty of



establishing reliable initial criteria due to the lack or little data for training; the
demand for better monitoring metrics; and the need for a historical data struc-
ture, such as the maintenance of a database. In general, predictive autoscaling has
a more complex architecture than reactive autoscaling, especially because of the
demand for statistical models and machine learning algorithms. Well-applied pre-
dictive scheduling is shown to be more efficient than reactive scheduling as shown
by [Zhao et al. 2019], mainly due to the capacity of providing additional resources
before the actual demand, avoiding the delay during resource allocation. Another
important advantage is the knowledge acquired during the use of micro-services
and its learning capacity.

• Using reactive and predictive autoscaling in the same method: In the sim-
plest cases or with little complexity, the reactive autoscaling itself already has
decent results and will cover most of the scenarios. As it is more complex, pre-
dictive scheduling can have an additional development cost due to its complexity.
It worth noting that in most of the papers presented for predictive scheduling, re-
active scheduling is also used as a fallback mechanism at the beginning of the
service provisioning, since we do not have enough data to make accurate deci-
sions. Therefore, it is understood that a complete and generic method makes use
of both types of scheduling.

3.1.3. Adoption of machine learning

The recent developments in artificial intelligence and machine learning contribute to
building general-purpose autoscalers [Imdoukh et al. 2020]. Machine learning techniques
are most commonly related to proactive scaling strategy, but they are also employed in the
reactive strategy scope as highlighted in [Fourati et al. 2019] that propose the adoption of
an anomaly detection system to support scaling decisions for both vertical and horizontal
scenarios.

During our review, the most common machine learning methods identified
for microservices autoscaling were based on regression [Ye et al. 2017], genetic algo-
rithms [Guerrero et al. 2017], and neural networks [Imdoukh et al. 2020]. According to
[Imdoukh et al. 2020], a neural network can learn from past scaling decisions and work-
load behavior to generate scaling decisions ahead of time.

For non-machine learning techniques, most proactive methods use statisti-
cal models based on Gaussian functions and correlation, there are also mathe-
matical models based on differential calculus referred to in the searched literature
[Cerqueira De Abranches and Solis 2016].

It is noteworthy that most of the works presented in the machine learning area are
in their early stages of development and experimentation; however, there are few already
deployed in the production environment, for example, Autopilot stands out: workload
autoscaling on Google [Rzadca and et al. 2020].

3.2. Implementation of Microservice Autoscaling Approaches

This section presents the answer for RQ2, which addresses the main tools and infras-
tructure used in the deployment of the microservice autoscaling approaches. Container



deployment is usually associated with an orchestration tool that plays an important role
in microservice autoscaling, especially because it provides up front the architecture and
infrastructure required to implement an autoscaling solution. Most studies of our SMS
point out the two platforms for deploying container autoscaling solutions: Kubernetes8

and Docker Swarm9.

Kubernetes, also known as K8s, is an open-source system for automating deploy-
ment, scaling, and management of containerized applications. It is by far the most used
technology in the proposed autoscaling microservices approaches, and its high adoption
by the industry explains this preference of most papers we analyzed. Accordingly to the
Datadog research10, today, half of the organizations running containers use Kubernetes.

In turn, Docker Swarm is the cluster management and orchestration features em-
bedded in the Docker Engine. Despite being way behind Kubernetes in popularity, it still
presents a relevant amount of work in the microservice autoscaling area.

In addition to Kubernetes and Docker Swarm, some researchers have based their
work on other platforms and provided methods where autoscaling was agnostic concern-
ing the host platform. For instance, [Kampars and Pinka 2017] proposed an autoscaling
architecture for cloud platforms in general, not limited to a specific tool or platform.

3.3. Tools and Metrics for Microservice Autocaling

This section presents the answer for RQ3, which addresses the way researchers have eval-
uated and validated microservice autoscaling approaches. The most common validation
metrics are related to the SLO (Service Level Objectives), whose goal is to establish the
metrics values the application is required to meet. An autoscaling method will not always
seek for perfect performance or 100% uptime, what will dictate the use of resources is
what is defined in the SLO. The autoscaler must be aware of the economical costs of its
decisions, which depend on the pricing scheme used by the provider, to reduce the total
expenditure [Lorido-Botran et al. 2014].

An autoscaling system requires the support of a monitoring system providing mea-
surements about user demands, system (application) status and compliance with the ex-
pected SLA [Lorido-Botran et al. 2014]. It is important to well define the type of metrics
collected, as they directly impact the accuracy of the autoscaling decisions. Table1 lists
the commonly used metrics for microservice autoscaling.

Metric Usage
CPU and RAM Common metric usually provided by container
Response Time Metric type largely used. It is part of Service Level Agreement
Number of Requests Metric used in conjunction with the deployment of a load balancer. Mostly seen

in horizontal scaling.
Custom Metrics Adds application knowledge to the autoscaling model and can possibly improve

accuracy

Table 1. Commonly used microservice autoscaling metrics

8https://docs.docker.com/engine/swarm/key-concepts/
9https://kubernetes.io/

10https://www.datadoghq.com/container-report/



4. Discussion
Microservice autoscaling can be considered a relatively new research topic with a little
more than 50 studies. There is still no consensus of the types, strategies, and machine
learning techniques and their combination that could work better.

Concerning the threats to the validity of this work, some potential threats could
have affected its validity. We addressed all threats (according to [Zhou et al. 2016]):

• Construction validity: It consists of identifying the correct conduction of an SMS.
To mitigate threats to this validity, we systematically developed and followed the
protocol to ensure its completeness.

• Internal validity: It consists in the rigorous conduction of an SMS, e.g., the use of
a well-defined search strategy and correct conduction of data analysis and synthe-
sis. For that, all recommendations for the SMS process were followed, including
the assurance of a broader number of relevant studies; however, some studies may
have been neglected.

• External validity: It is related to the findings’ generalizability over the primary
studies and accessibility of these studies and databases. Multiple databases were
used to reduce subjective errors during the conduction phase.

• Conclusion validity: It consists of interpreting results that could be subjective. To
mitigate a threat to this validity, all authors of this SMS completely participated in
all SMS steps, including in the synthesis of results.

5. Conclusions
Based on the state of the art presented in this paper, it is worth highlighting horizontal au-
toscaling using reactive and proactive strategies has drawn more attention from academia
and industry. There are also benefits of using hybrid approaches (i.e., vertical and hori-
zontal; reactive and proactive) and combining them with machine learning techniques to
mainly predict workload and define threshold values. In the nutshell, no unique solution
efficiently serves all types of microservices. From the perspective of target deployment
platform or container orchestration tools, although few authors refers to platform agnostic
approaches, Kubernetes and Docker Swarm are the most common used by the state-of-
the-art autoscaling methods.

As the main future work, it is necessary to investigate and evaluate different im-
plementations towards reliable and efficient solutions for microservice autoscaling. It is
also necessary to perform evaluations of various combinations together with new metrics
to verify quality attributes, including efficiency, scalability, portability, and sustainability,
also considering different real-world scenarios. Additionally, the list of studies presented
in this paper could be complemented by increasing the scope of this SMS and provid-
ing additional information, such as categorization, metrics used, and target deployment
platforms.

References
Abdel Khaleq, A. and Ra, I. (2019). Agnostic approach for microservices autoscaling in

cloud applications. In CSCI, pages 1411–1415.

Calcavecchia, N., Caprarescu, B., Di Nitto, E., Dubois, D., and Petcu, D. (2012). Depas:
A decentralized probabilistic algorithm for auto-scaling. Computing, 94.



Cerqueira De Abranches, M. and Solis, P. (2016). An algorithm based on response time
and traffic demands to scale containers on a cloud computing system. In NCA, pages
343–350.

Felizardo, K., Nakagawa, E., Fabbri, S., and Ferrari, F. (2017). Systematic Literature
Review in Software Engineering: Theory and Practice. Elsevier Brazil (in Portuguese).

Fourati, M. H., Marzouk, S., Drira, K., and Jmaiel, M. (2019). Dockeranalyzer: To-
wards fine grained resource elasticity for microservices-based applications deployed
with Docker. In PDCAT, pages 220–225.

Guerrero, C., Lera, I., and Juiz, C. (2017). Genetic algorithm for multi-objective opti-
mization of container allocation in cloud architecture. Journal of Grid Computing,
16(1):113–135.

Imdoukh, M., Ahmad, I., and Alfailakawi, M. G. (2020). Machine learning-based
auto-scaling for containerized applications. Neural Computing and Applications,
32(13):9745–9760.

Kampars, J. and Pinka, K. (2017). Auto-scaling and adjustment platform for cloud-based
systems. In ISPC, pages 52–57.

Kitchenham, B., Budgen, D., and Brereton, O. (2015). Evidence-Based Software Engi-
neering and Systematic Reviews. CRC Press.

Kwan, A., Wong, J., Jacobsen, H., and Muthusamy, V. (2019). Hyscale: Hybrid and
network scaling of dockerized microservices in cloud data centres. In ICDCS, pages
80–90.

Lorido-Botran, T., Miguel-Alonso, J., and Lozano, J. (2014). A review of auto-scaling
techniques for elastic applications in cloud environments. Journal of Grid Computing,
12(4):559–592.

López, M. and Spillner, J. (2017). Towards quantifiable boundaries for elastic horizontal
scaling of microservices. In UCC, pages 35–40.

Nguyen, T.-T., Yeom, Y.-J., Kim, T., Park, D.-H., and Kim, S. (2020). Horizontal pod
autoscaling in kubernetes for elastic container orchestration. Sensors (Switzerland),
20(16):1–18.

Rzadca, K. and et al. (2020). Autopilot: Workload autoscaling at Google. In EuroSys,
pages 1–16.

Thönes, J. (2015). Microservices. IEEE Software, 32(1):116–116.

Ye, T., Guangtao, X., Shiyou, Q., and Minglu, L. (2017). An auto-scaling framework for
containerized elastic applications. In BigCom, pages 422–430.

Zhao, H., Lim, H., Hanif, M., and Lee, C. (2019). Predictive container auto-scaling for
cloud-native applications. In ICTC, pages 1280–1282.

Zhou, X., Jin, Y., Zhang, H., Li, S., and Huang, X. (2016). A map of threats to validity of
systematic literature reviews in software engineering. In APSEC, pages 153–160.


