
CoEPinKB: A Framework to Understand the Connectivity of
Entity Pairs in Knowledge Bases
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Abstract. A knowledge base, expressed using the Resource Description Frame-
work (RDF), can be viewed as a graph whose nodes represent entities and whose
edges denote relationships. The entity relatedness problem refers to the prob-
lem of discovering and understanding how two entities are related, directly or
indirectly, that is, how they are connected by paths in a knowledge base. Strate-
gies designed to solve the entity relatedness problem typically adopt an entity
similarity measure to reduce the path search space and a path ranking measure
to order and filter the list of paths returned. This paper presents a framework,
called COEPINKB, that supports the empirical evaluation of such strategies.
The proposed framework allows combining entity similarity and path ranking
measures to generate different path search strategies. The main goals of this
paper are to describe the framework and present a performance evaluation of
nine different path search strategies.

1. Introduction
Knowledge bases, such as DBpedia [Lehmann et al. 2015], expressed using the RDF data
model, can be viewed as graphs whose nodes represent entities and whose edges denote
relationships. In this paper, we present a framework, called COEPINKB, that supports
exploring a knowledge base in order to discover and understand how two entities are
connected. This is known as the entity relatedness problem, formalized as: “Given an
RDF graph G and a pair of entities a and b, represented in G, compute the paths in G
from a to b that best describe the connectivity between them”.

Our proposal is based on [Talavera Herrera 2017], which introduced a two-step
strategy to address the entity relatedness problem: (1) search for relationship paths be-
tween pairs of entities; and (2) rank the paths found and select those that are relevant. To
address the first step, the author proposed a generic strategy based on the backward search
heuristic [Le et al. 2014], which is a breadth-first search strategy that expands the paths
starting from each input entity, in parallel, until a candidate relationship path is generated.
The expansion process uses activation criteria to prioritize certain paths over others and to
filter the entities less related to the target entities, so that it can be easier to identify more
meaningful paths. These activation criteria give priority to entities with low degree in the
graph and maintain entities that are similar to the last entity reached in a partially con-
structed path, using some similarity measure. The second step adopts ranking approaches
that use the semantics of the relationships between the entities to assign a score to rela-
tionship paths. After sorting the set of relationship paths found in the first step, the top-k
paths are selected to describe the connectivity of an entity pair.



The first contribution of this paper is the proposal and implementation of a frame-
work that helps address the entity relatedness problem. Our framework differs from the
implementation proposed in [Talavera Herrera 2017] in three aspects. First, COEPINKB
was designed to make it easy for developers to add new entity similarity and relationship
path ranking measures to generate new path search strategies. Second, COEPINKB has
a simple and practical Web user interface that facilitates the interaction of the users with
the framework, and provides an API that facilitates executing different experiments and
analyze the results. Lastly, COEPINKB was engineered to work with any knowledge base
accessible using a SPARQL service over HTTP.

The analysis in [Talavera Herrera 2017] evaluated nine relationship path search
strategies on two entertainment domains. However, the analysis did not evaluate the per-
formance of these strategies. A second contribution of this paper is the use of COEPINKB
to evaluate the performance of these different strategies with regard to execution time.

The remainder of this paper is organized as follows. Section 2 briefly reviews
related work. Section 3 presents the architecture and some technical aspects of the im-
plementation of the proposed framework. Section 4 presents a performance evaluation of
path search strategies, using COEPINKB. Finally, Section 5 presents the conclusions and
some directions for future work.

2. Related Work

REX [Fang et al. 2011] is a system that takes a pair of entities in a given knowledge
base as input and identifies a ranked list of relationship paths, called by the authors as
relationship explanations. It used two BFS on the RDF graph to enumerate relationship
paths between two entities and considered the degree of a node as an activation criterion
to prioritize nodes.

RECAP [Pirrò 2015], EXPLASS [Cheng et al. 2014] and DBpedia Pro-
filer [Herrera et al. 2016] implemented path finding processes in an RDF
knowledge graph with the help of SPARQL queries [Färber et al. ]. Like-
wise, [Järvelin and Kekäläinen 2002] used the Jaccard index [Jaccard 1901] to compute
an approximated minimal distance between the start and the end nodes, and to discover
meaningful connection between the nodes.

Path-ranking measures were proposed in [Cheng et al. 2014, Herrera et al. 2016,
Hulpuş et al. 2015, Pirrò 2015]. However, the evaluation methods did not clearly defined
the capabilities of the approaches analyzed. The work proposed in [De Vocht et al. 2016]
argued that entity similarity heuristics increase the relevance of the links between nodes.
The authors compared and measured the effectiveness of different search strategies
through user experiments. [Herrera et al. 2017] introduced a benchmark to evaluate path
ranking measures.

In [Talavera Herrera 2017], the author introduces a generic search strategy, based
on the backward search heuristic, to prioritize certain paths over others. The strategy com-
bines similarity measures such as the Jaccard index, the Wikipedia Link-based Measure
(WLM) [Milne and Witten 2008], and SimRank [Jeh and Widom 2002], and ranking mea-
sures such as the Predicate Frequency Inverse Triple Frequency (PF-ITF) [Pirrò 2015],
the Exclusivity-based Relatedness (EBR) [Hulpuş et al. 2015], and the Pointwise Mutual



Information (PMI) [Church and Hanks 1990]. This work lacks an evaluation of the per-
formance, in terms of execution time, of each of the different path search strategies, as
well as a tool with a graphical user interface that facilitates the interaction of users who
intend to evaluate these strategies. The present work aims to fill this gap, as it will be
described in the following sections.

3. The COEPINKB Framework

The acronym COEPINKB stands for understanding the Connectivity of Entity Pairs in
Knowledge Bases. As we mentioned earlier, our approach to address the entity relat-
edness problem is to apply a two-step strategy, and each of these two sequential phases
corresponds to the main components of the framework: the BACKWARD SEARCH compo-
nent, which executes a breadth-first search starting from each input entity and expanding
similar entities to find the most relevant relationship paths; and the RELATIONSHIP PATH
RANKING component, which ranks the resulting paths of the previous step. Figure 1
shows an overview of the architecture of COEPINKB.

Figure 1. COEPINKB architecture

The COEPINKB framework takes as input a pair of entities and a search strategy.
A search strategy consists of an entity similarity measure that will be used by the back-
ward search algorithm as the activation function to decide when to expand some neighbor
of an entity or not, and a relationship path ranking measure to select the top-k relevant
paths between the two entities provided.

During the first phase of the execution of COEPINKB, the BACKWARD SEARCH
component communicates with the SPARQL QUERY EXECUTOR component requesting
the required data to execute the backward search algorithm. This last component gets
the requested data using two different approaches: (i) first, it tries to get the data from the
persistent cache; (ii) if the requested data is not available then it gets the data directly from
the SPARQL Endpoint through SPARQL queries, and stores it in the persistent cache to
speed up future searches. After the backward search algorithm finishes, the BACKWARD
SEARCH component sends a list of relationship paths between the pair of entities to the
RELATIONSHIP PATH RANKING component. Then, the second phase begins. Similarly to
the previous phase, the RELATIONSHIP PATH RANKING component communicates with
the SPARQL QUERY EXECUTOR component requesting the required data to execute the



path ranking algorithm. After the algorithm finishes, the RELATIONSHIP PATH RANKING
component sends the list of ranked paths to the user through the user interface.

There are two key flexibility points in the framework - the activation function,
implementing the entity similarity measure, and the path ranking measure - which are
the core of the BACKWARD SEARCH and RELATIONSHIP PATH RANKING components.
These components were designed using an architectural pattern based on interfaces, which
increases the extensibility of the framework by making it easier to add new entity sim-
ilarity measures and relationship path ranking measures. As illustrated in Figure 1, the
current version of COEPINKB implements 3 entity similarity measures (Jaccard index,
WLM, and SimRank) and 3 relationship path ranking measures (PF-ITF, EBR, and PMI).

At the data layer, the framework has the SPARQL QUERY EXECUTOR compo-
nent that interacts with RDF datasets through their SPARQL endpoints. The framework
also uses a persistent cache to store the result of the SPARQL queries executed during
the expansion of the entities in the RDF graph. The main reason for this decision is
that the backward search and the relationship-path ranking algorithms require executing
a large number of queries (quite possibly over the network), which can negatively affect
the overall performance of the framework.

Figure 2 shows the COEPINKB User Interface and an excerpt of the result when
the input entities are dbr:Michael Jackson and dbr:Whitney Houston, when
the entity similarity and relationship path ranking measures are Jaccard index and EBR,
respectively.

Figure 2. COEPINKB UI



The user also specifies other parameters such as: the maximum path length be-
tween the entities (set to 4 by default); the maximum entity degree, in order to discard
entities with a high number of neighbors during the expansion; a list of properties irrel-
evant when building the relationship paths; an entity prefix, to expand only to resources
that are considered entities; an expansion limit λ ∈ [0, 1], understood as a percentage,
that limits the expansion process; and the maximum number of paths that the user wants.
COEPINKB also provides a RESTful API, so the user can submit a GET request that
returns a JSON document containing the corresponding list of relevant paths between the
two entities.

The COEPINKB framework was implemented in Java with the help of some other
technologies, such as: Apache Jena, to interact with the RDF data sources; Redis, as our
persistent cache; and the Jedis library, which allowed us to interact with a Redis instance
from our Java application.

4. Evaluation
In [Talavera Herrera 2017], some experiments were executed to evaluate a family of path
search strategies (Table 1) against a benchmark [Herrera et al. 2017] from the music and
movies domains, and a baseline, RECAP [Pirrò 2015].

Table 1. Path Search Strategies

# Abbr Name
1 J&I Jaccard index & PF-ITF
2 J&E Jaccard index & EBR
3 J&P Jaccard index & PMI
4 W&I WLM & PF-ITF
5 W&E WLM & EBR
6 W&P WLM & PMI
7 S&I SimRank & PF-ITF
8 S&E SimRank & EBR
9 S&P SimRank & PMI

For each domain, the benchmark contains 20 pairs of entities, each with a ranked
list with 50 relationship paths based on information about their entities found in IMDb
and last.fm, and on information about their properties, computed from DBpedia. The
pairwise comparison method was used to identify the path search strategy that achieves the
best performance on the benchmark, and to compare the best strategy identified with the
baseline. These experiments suggested that the J&E strategy, which adopts the Jaccard
index and the EBR measure, is the best of the 9 strategies compared and obtained better
results than the baselines.

To evaluate the performance of the 9 different path search strategies we used
COEPINKB on a server with an Intel® Core™ i7-5820K CPU @ 3.30GHz and 6GB of
memory dedicated to Java applications. All experiments were carried out over DBpedia
through the OpenLink Virtuoso SPARQL protocol endpoint. We selected 10 entity pairs
from the Entity Relatedness Test Dataset [Herrera et al. 2017], 5 pairs for each domain
(music and movies), shown in Table 2.



Table 2. Entity pairs from music and movies domains

The other parameters were configured as follows:

• The maximum path length between the entities was set to 4, since
this was the limit adopted by previous works, as RECAP [Pirrò 2015]
and EXPLASS [Cheng et al. 2014], and verified experimentally
in [Järvelin and Kekäläinen 2002].

• The maximum entity degree was set to 200. This degree limit was deduced from
DBpedia statistics1, which indicate that 90% of the entities have less than 200
links. This kind of criterion is applied together with entity similarity because,
as in [Moore et al. 2012], because it can be assumed that nodes with high degree
influence the path search process with potentially very unspecific information.

• The expansion limit was set to λ = 0.5. So, the adjacency list of each entity is
sorted by similarity and only the top 50% of the entities are considered, indepen-
dently of the size of the list and the similarity scores. We considered 50% of the
list because it is a moderate factor to maintain the connectivity between entities
and propagate the similarity score in the graph [Sommer 2014].

• A set of properties were ignored during the exploration of the knowledge
base because many of these properties describe relationships between enti-
ties that are irrelevant for our analysis. For instance, if we considered prop-
erties like http://www.w3.org/1999/02/22-rdf-syntax-ns#type
and http://www.w3.org/1999/02/22-rdf-syntax-ns#type, we
would have to deal with many paths that are irrelevant for our analy-
sis. There are more than 225 statements in which the subject is the en-
tity dbr:Michael Jackson and the predicate is one of these properties.
The property http://dbpedia.org/ontology/wikiPageRedirects
is also present in many statements (almost 70 times in the case that the entity
dbr:Michael Jackson is the object) that mainly link entities with typograph-
ical errors or other types of minor errors with the corresponding correct entity.

• The entity prefix was set to http://dbpedia.org/resource.
• The maximum number of paths was set to 50, because this value suffices to

explore the connectivity between the entities, as reported in [Cheng et al. 2014,
Fang et al. 2011, Hulpuş et al. 2015, Pirrò 2015].

For each pair of entities, we searched the top-k relationship paths between them
six times (we excluded the first cold start run time, to avoid the warm-up bias) and cal-
culated the average time of the last five executions of the program. Figure 3 shows

1 http://downloads.dbpedia.org/2015-04/ext/pagerank/

 http://downloads.dbpedia.org/2015-04/ext/pagerank/


the performance evaluation results. The best path search strategies in terms of per-
formance are: J&E (2558ms), J&I (3049ms) and J&P (3241ms). The experiments
in [Talavera Herrera 2017] indicated that J&E and W&E perform better than the others
strategies in terms of finding the relevant paths between a pair of entities in the music
and movies domains, and also that the J&E strategy performs better than the baselines.
Therefore, we may conclude that J&E is the fastest and performs better than the others
strategies.

Figure 3. Evaluation results on performance of each path search strategy

The experiments reflect the particularity of how each of the entity similarity
and path ranking measures are calculated. The average times for the strategies using
the Jaccard index or the WLM were quite good and very similar because both entity
similarity measures use the features sets Ad and Bd, which are stored and quickly ac-
cessed in our persistent cache (recall that d = 2). By contrast, the strategies that use
SimRank have a poor performance due to its recursive definition. In fact, due to the
computational complexity of SimRank, there are many studies to speed up such calcu-
lations [Lizorkin and Velikhov 2008, Li et al. 2010, Reyhani Hamedani and Kim 2021].
As for the path ranking measures, EBR executes fewer calculations than PF-ITF and PMI.
For this reason, the average time for ranking paths using EBR is better than the average
time using PF-ITF and PMI.

The conclusion is that the path search strategy that adopts the Jaccard index and
the EBR measures achieves the best performance in both domains of the benchmark, and
performs better than RECAP. With regard to execution time, it was verified that the most
effective strategies are also the fastest ones.

5. Conclusions
In this paper, we introduced COEPINKB, a framework that allows empirically evaluating
path search strategies that combine entity similarity and path ranking measures, in order
to understand the connectivity of entity pairs in RDF datasets. COEPINKB supports such
evaluation by featuring two flexibility points: the entity similarity and the path ranking
measures. Also, COEPINKB was engineered to work with any knowledge base accessi-
ble using a SPARQL service over HTTP. Our performance evaluation of the path search



strategies indicated that any strategy that uses SimRank as activation function has a poor
performance, when compared with the other strategies. We also verified that the most
effective strategies are also the fastest ones.

As future work, we plan to test the path search strategies in other knowledge bases,
and to implement additional entity similarity and relationship path ranking measures. We
also plan to develop a distributed version of the framework using Spark to improve per-
formance.
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Järvelin, K. and Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR techniques.
ACM Transactions on Information Systems (TOIS), 20(4):422–446.

Le, W., Li, F., Kementsietsidis, A., and Duan, S. (2014). Scalable keyword search on large
RDF data. Knowledge and Data Engineering, IEEE Transactions on, 26(11):2774–
2788.

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., Hell-
mann, S., Morsey, M., van Kleef, P., Auer, S., and Bizer, C. (2015). DBpedia – A
large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web,
6(2):167–195.

Li, C., Han, J., He, G., Jin, X., Sun, Y., Yu, Y., and Wu, T. (2010). Fast computation
of SimRank for static and dynamic information networks. In Proceedings of the 13th
International Conference on Extending Database Technology - EDBT ’10, page 465,
Lausanne, Switzerland. ACM Press.

Lizorkin, D. and Velikhov, P. (2008). Accuracy Estimate and Optimization Techniques
for SimRank Computation. Proceedings of the VLDB Endowment, 1(1):12.

Milne, D. and Witten, I. H. (2008). An Effective, Low-Cost Measure of Semantic Relat-
edness Obtained from Wikipedia Links. In Proceedings of the AAAI 2008 Workshop
on Wikipedia and Artificial Intelligence, pages 25–30, Chicago. AAAI Press.

Moore, J. L., Steinke, F., and Tresp, V. (2012). A Novel Metric for Information Retrieval
in Semantic Networks. In Garcı́a-Castro, R., Fensel, D., and Antoniou, G., editors, The
Semantic Web: ESWC 2011 Workshops, volume 7117, pages 65–79. Springer Berlin
Heidelberg, Berlin, Heidelberg. Series Title: Lecture Notes in Computer Science.
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