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Abstract. Bone suppression in radiography is a suitable technique to evaluate
the health of soft tissues in exams. For instance, these techniques are essential
in evaluating chest radiography images during the COVID-19 outbreak. The
purpose of this work is to propose an alternative to solve the bone suppres-
sion task in chest radiography images using Generative Adversarial Networks
(GANs). Specifically, we used a conditional GAN type (cGAN) to provide a
bone-suppressed version of the initial image. To quantify the results, it was nec-
essary to review the main metrics and some state-of-the-art papers related to
ours. We compared our result to works from the literature that used the same
dataset as the proposal or related techniques. The most used dataset was the
Japanese Society of Radiological Technology (JSRT) in these works. With this
set of images, we reached a PSNR index of 34.96, which was better than that
reviewed in the literature, and a similarity coefficient, known as SSIM, of 0.94.
As for the loss calculated by MS-SSIM, we obtained the lowest compared to the
reviewed works.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior - Brasil (CAPES) - Código de Financiamento 001

1. Introduction

The computer’s power and advanced methods are growing, and it is helping daily of
various professionals on their tasks. The techniques such as optimized algorithms and
processing distributed are advancing, and they can be used to auxiliary on difficult and
tiring human functions. Sometimes a professional spend hours making analyses and di-
agnoses of medical exams. The technology and computer-aided systems can help these
professionals spend some computer processing.

According to [Wang et al. 2019] a challenge for medicine and computer-aided di-
agnosis is to make the lung analysis. Detect any disease, for example, pneumonia, tumors,
or the evolution of any illness, can be made better without bones shadow. In particular,
for the soft tissue analysis, it would be ideal if all bones could be suppressed in an image.
Carestream company [Matters 2014], a company on the medical image analysis, showed
up the benefits to analysis an image without bones to detect and observe every possible
lesion or disease on their White Paper.



With the growth of Graphic Process Unity power (GPU), techniques using
Machine Learning and Deep Learning are being very frequently studied and re-
searched to solve medical problems such as [Rajaraman et al. 2021a, Sujath et al. 2020,
Oliveira et al. 2021]. The bone shadow elimination by computer processing is a way not
to expend much money buying dual-energy hardware and is an alternative to update sin-
gle energy equipment to do the task. A study as [Juhász et al. 2010] relates an experiment
using image processing in a GPU and an object detection approach to eliminate the shad-
ows. We can use artificial intelligence techniques, such as deep learning, as it is a specific
task. In this way, a more recent work solved the task in [Gusarev et al. 2017], which uses
deep learning models to clean the soft-tissue image.

The main objective of this study is to use deep learning techniques to generate
chest images without bones using Adversarial Networks and some computer image pro-
cessing. Specifically, we perform this task using Conditional Generative Adversarial Net-
works (CGANs). As we could observe on the related works, we can prove the necessity
of systems to clean the chest radiography to support the final diagnosis towards a model
that can be improved to be used in any computer-aided diagnosis (CAD) system. The
final model will make bone suppression to other applications that use the lung image.

For this matter, in Section 2, we display the main works from the literature that
relates to ours. Section 3 displays the whole materials and methods used in the process of
performing this study. In Section 4, we display and discuss the results obtained from the
experiments. Finally, we discuss our results and conclusions in Section 5.

2. Related Works
For this paper, we looked for research studies and articles that assess bone shadow elimi-
nation or bone suppression. A range of possibilities was found using dual-energy subtrac-
tion, deep learning, auto-encoder, convolutional networks, and adversarial networks. The
research was made looking for works with a considerable result and accuracy and a sce-
nario similar to ours that allowed us to verify the obtained results according to the dataset
used. We considered the results that preserved the maximum of the features presented in
the soft-tissue lung part.

The study made by [Gusarev et al. 2017] was made with a non-identified dataset.
The dataset was composed of 35 images from different sources. From this 35, they gen-
erated an augmented dataset with 4000 images. Ten images were used to test, and the rest
were used in the training process. A Contrast Limited Adaptive Histogram Equalization
(CLAHE) was applied to improve the quality of training images and feature extraction.
This study proposed a Convolutional Neural Network (CNN) with 6-layers filters. The
input layer of the model has the dimension 440 × 440 pixels. They did not calculate the
PSNR and the Loss of Multi-Scale Structural Similarity Index (MS-SSIM) obtained was
0.093. The other work related to our research was [Oh and Yun 2018]. They used a no-
identified dataset composed of 348 paired images of bones and suppressed. The division
of train and test was not specified and the model architecture used is composed of a CNN,
GAN, and Haar Wavelets. The model input size was differential because of the resolution
of 1024× 1024 pixels. The MS-SSIM reached was 0.930 and the PSNR 24.08.

In another study, [Yang et al. 2017] employed the same dataset used in our ex-
periments, reaching 0.976 of SSIM and 38.7 of PSNR. They propose a Deep Learning



method for bone suppression in a single x-ray using cascade architecture of deep Convo-
lutional Neural Networks (ConvNets) to map the bones gradient domain. The main idea
was fusing with multi-scale bone gradients to improve prediction quality. More specifi-
cally, they used a Cascade of Multi-scale ConvNets (CamsNet). Their method does not
require teaching from DES, but it requires segmentation and the border locations of bony
structures. A positive point in their research is that their method works and performs
considerably with different types of x-ray sources.

[Oh and Yun 2018] present two approaches; the first uses a conditional generative
adversarial network, and the second a Haar 2D wavelet decomposition. They used the
Euclidean distance between pairwise outputs to calculate the final result precision. They
add on the experiments adversarial training to maintain the sharpness of specific lesions
to avoid suppressing them. The main objective was minimizing the pixel-wise differences
in bone suppression. The objective was to propose an image-to-image translation better
than disposed on literature. Furthermore, they used a 2D wavelet decomposition as a per-
ceptual guideline to minimize generic and ground truth differences. Finally, it is proposed
a rigorously evaluated model to suppress bones from Dual Energy X-rays (DXRs).

In 2018, [Zhou et al. 2018], dividing the dataset into 170 images to train and 40
to test, they used a Multi-scale Conditional Adversarial Network (MCA-Net). Their pro-
cess produces a high-resolution virtual chest soft-tissue image from a synthetics rib chain
generated. The process is divided into two parts. The first is to generate the bone images
using a multi-scale fully convolutional network. The second part is to generate the soft
tissue chest image using bone suppression of the standard CR with the virtual bone image
generated. Their model was tested with the JSRT dataset, and the images were divided
into 170 for train and 40 to test. Their study reached a PSNR of 39.7 and an SSIM of
0.884.

[Zarshenas et al. 2019] propose a study that has significant results. They propose
generating virtual dual-energy images and separating ribs and clavicles from soft-tissue
chest radiographs. The propose is an Orientation-frequency-specific Deep Neural Net-
work Convolution. They tested with their own dataset, composed of 118 chest images,
reaching a PSNR index of 29.82 and an SSIM of 0.912.

[Chen et al. 2019] proposed a Cascaded Convolutional Network Model in Wavelet
Domain Decomposition to do the bone shadow elimination using 504 images from a pro-
prietary dataset, divided into 404 for training and 100 for testing. The trained network is
used to predict the wavelet coefficients of the bone images. Thus, the predicted bone im-
age is subtracted from the source, generating a bone-free image to train the model. Their
trained model reached an SSIM of 0.977 and a PSNR of 39.7.

Other similar work, we can find on [Zhou et al. 2020]. They propose a neural
network model for bone suppression based on image-to-image translation. The model
consists of dilated convolutions to avoid contextual information loss. Furthermore, the
proposed method enforces pixel intensity similarity to improve the suppression quality
using a deep convolutional network between the generated chest X-ray and the ground
truth. Basically, the model proposed by [Zhou et al. 2020] consists of a generator and
a discriminator. The generator uses a U-net-like architecture with dilated convolu-
tions/deconvolutions. The discriminator is based on PatchGAN to enforce the similarity



of high-level feature representations. They tested the model using the JSRT, divided into
192 images to train and 42 to test. They reached 0.97 for the SSIM index and 33.5 for
PSNR.

In 2019, [Matsubara et al. 2020], proposed a Convolutional Neural Filter (CNF)
for a spatial filtering via CNN regression. This filter outputs a value for the bone com-
ponent according to the neighborhood of the target pixel. In this process, a bone image
is generated and subtracted from the original chest X-ray image. The images for their
study were obtained from Computer Tomography (CT) data. These CT images were con-
verted in isotropic voxels, projecting them in the ventral-dorsal direction and applying a
nonlinear transformation for bone enhancement. After that, the filter is applied, isolating
the bone-specific signal. Finally, the bone-extracted image is obtained by subtracting the
bone isolated from the original chest X-ray. Using the JSRT to evaluate the trained model,
they reached a PSNR of 36.23 and an SSIM of 0.96.

Another study is [Liang et al. 2020], the proposal is based on a Generative Adver-
sarial Network (GAN) that learns bone suppression from dual-energy chest radiographs.
A GAN is composed of two networks: a generator and a discriminator. The former creates
images similar to the training set, while the latter discriminates them, classifying them
as natural or artificial. The authors evaluate two variations of GANs, namely Pix2Pix
[Isola et al. 2017] with paired radiographs and Cycle-GAN with unpaired radiographs.
With a private dataset composed of 1,867 anonymized dual-energy images, the data was
divided into 70% to train, 20% to test, and 10% to validation. The authors got an SSIM
of 0.867 and a 36.078 on the PSNR index for the suppression task.

On [Sirazitdinov et al. 2020] was used the ChestX-ray-14, a public dataset pro-
vided by [Gusarev et al. 2017]. They used 24 images for train 7 to test and 4 to valida-
tion, with different models and architecture such as autoencoder, U-Net, cGAN. With all
of them, the best precision was reached by the U-Net approach with 0.95 SSIM and 33.45
PSNR. Another study we can present is [Eslami et al. 2020] which used the augmented
dataset of JSRT. Composed by 1.235 images, the study did not mention the division size
of the train and test for the bone suppression part, just for the lung segmentation, but this
is not our focus. For the bone suppression part, the architecture was pix2pix, the model
input size was 512x512, and they calculated just the MS-SSIM, which was around 0.96
and 0.97.

[Gozes and Greenspan 2020] presented a different approach, building their own
dataset from a Digital Reconstructed Radiographs (DRR) from a 664 Computer Tomog-
raphy from a cancer dataset, the LIDC-IDRI. The division was 386 images to train, 129
to test, and 129 to validation. The model and technique used were based on segmentation
of the bone structures in the CT domain to generate a bone suppressed image to train
a Fourier Convolutional Neural Network (FCNN) model available on [Pratt et al. 2017].
The input of the trained network is 512x512, and they got 0.7 on the SSIM index and 22.6
for PSNR. The differential was to apply a dilated convolution and build an own dataset
from a different source.

Another approach that makes bone segmentation for diagnoses uses a neural net-
work to segment the chest region. [Eslami et al. 2020] propose a multitask model that
does organ segmentation, and one of those processes on their pipeline is bone shadow



elimination. As a model architecture, a CNN-based PatchGAN is used to do the bone
suppression task. This architecture produces a matrix of size k ∗k ∗1 from an input tensor
where k is the size of the image. They used the JSRT dataset with 247 CXRs, including
lung nodules images. All the images have the 2048 × 2048 pixel dimension, and it was
resized to 512× 512 to adapt to the model entrance. The architecture used to translate the
images was Pix2Pix [Isola et al. 2017]. The results were evaluated by the SSIM, looking
for similarity estimation and the MSE to measure the difference between the predicted and
ground truth values. Calculating the MS-SSIM, the authors got a state of the art results of
0.97.

[Rajaraman et al. 2021b] used the JSRT dataset ass well. They enhanced the con-
trast of the pixels values by 1%. The dataset composed of 4500 images was divided into
90% to train, 10% to test, and 10% to validation. The proposed architecture is a Resid-
ual Network model (ResNet-BS), where BS means Bone Suppression. The input size
is 256 × 256, and even none of the proposed methods was the adversarial method, they
experimented with four different architectures with the same dataset. For this last study,
they got for SSIM 0.9492 and PSNR 34.0678.

3. Methodology
In this section, we display the methodology used to develop this work. Initially, we
present brief concepts of Generative Adversarial Networks (GAN) and how a conditional
GAN works. After this, we present the step-by-step used to build our model and illustrate
the general architecture.

A GAN is a type of Machine Learning (ML) model that uses two neural networks
as its core. These networks are called Generative Network (Generator) and Discrim-
inative Network (Discriminator). Respectively, the Generator is a Convolutional Neural
Network (CNN), and the Discriminator is a Deconvolutional Neural Network (DNN). The
Generator’s goal is to produce data as close as possible to the train data. Moreover, the
Discriminator classifies the generated data. For instance, to illustrate in this work context,
we have images without bones to generate artificial images like that. The Discriminator
will work classifying these generated images as real or fake. To illustrate, we show the
Figure 1.

Figure 1. GAN schema based on [Oh and Yun 2018]

A Conditional GAN can be comprehended according to
[Mirza and Osindero 2014]. To illustrate, for example, in a traditional GAN, we



do not have control over the generated data. This method is called an unconditioned
generative model. Nevertheless, we can direct the model predictions to the objective,
establishing conditions and class labels or part of the target data. In the figure below
based on [Oh and Yun 2018], we can illustrate, through the 2, the discriminator x and y
presented as inputs to a discriminative function.

Figure 2. Condictional GANs schema

As described, our proposal is based on a Conditional GAN. The Generator and
Discriminator are conditioned to an auxiliary function that helps our model reach the
target image. The training process can be divided into two steps. The first moment, we
created the folders to dispose of the data to be consumed by the training task. After that,
we created a folder to receive the model checkpoints after every 5000 iterations. During
the training process, a set of few images are getting to readjust the model weights called
validation set.

3.1. Model Composition

Our proposal is composed of a generator based on a U-Net architecture and a discrim-
inator represented by a PatchGAN, similar as proposed by [Isola et al. 2017]. In a few
words, the PatchGAN is a type of Discriminator that only penalizes the scale of local
image patches. Each patch of images is classified as to whether a sample is real or fake.
Below we keep describing the details of the model composition.

3.1.1. Downsample - Encoder layer

This layer starts with a random normal initialize and is composed of a Sequential Keras
model, which uses a standard 2D convolutional network. We deactivated the Batch nor-
malization in the first convolutional block, but the other layers are activated by default.
The last step is applied and the Leaky ReLU. The down stack is composed of 8 layers,
and it starts with the shape (256, 256, 3). In the future, we can adapt the model to a
single-channel image. However, initially, just for tests and study, we decided to leave it.



3.1.2. Upsample - Decoder layer

This layer starts with random normal initialization and is composed of a Sequential Keras
model that uses a standard 2D convolutional network. As on the first Sequential process
mentioned, both were built to provide training and inference features on the model. Some
of them were applied the dropout on intention to reduce the processing time.

3.1.3. Generator

As described in [Isola et al. 2017], GANs learn a loss and adapt it to the data. So the out-
put which is distant from the target is penalized. A sigmoid cross-entropy represents the
generator loss in this study. Another metric used was an L1 loss, calculated between the
generated image and the target image based on mean absolute error (MAE). The formula
to calculate it proposed by the authors was:

Generator loss = gan loss+ λ× l1 loss

3.1.4. Discriminator

The Discriminator is a convolutional PatchGAN classifier. It tries to classify each image
as artificial or real. The classifier receives the target and generated images, and the Dis-
criminator classifies both images. The steps are composed of Convolution layers, Batch
normalization, and a Leaky ReLU as the activation function.

To evaluate the Discriminator, we calculate its loss function. It means how the
model is performing classifying real and artificial images. We input the real and the
generated images to the discriminator loss function and do the data verification for each
image classified correctly by the Discriminator. The final loss is the sum of the real and
the generated losses. The real and the generated loss are calculated using the sigmoid
cross-entropy.

3.2. Training the model

We fed the input and target images into the network in the training step. After that,
the generator calculates the discriminator loss. The gradient loss is optimized over each
interaction. To train our GAN, we use a loop interaction. This loop involves the processes
of generating, discriminating, and validation during the train. The generated images are
displayed every 1000 steps to show the progress, and the model checkpoints are saved
every 5000 steps.

3.3. Dataset

Our dataset is composed of images from the Japanese Society of Radiological Tech-
nology (JSRT), which have the original image and the correspondent bone suppressed.
It is composed of 240 pairs, disposed by [Hyunh 2021] and avaliable on https:
//dx.doi.org/10.21227/xnb5-hg35, already augmented the data, and is des-
tined to research. To do our experiments, we divided the image pairs into three cate-
gories: 3.828 for the train, 226 for the test, and 26 for validation. The validation process



was made during the training to measure and balance the network weights. Finally, the
test set was used to measure how accurate the model was. Figures 3 and 4 presents some
images from the JSRT dataset.

Figure 3. Complete rib cage Figure 4. Bone suppressed

3.4. Metrics

Below, we presented a brief description and explanation of the most used metrics to mea-
sure the model quality on the bone suppression task in the literature review. In our pro-
posal, we decided to use PSNR and SSIM.

3.4.1. Peak Signal-to-Noise Ratio (PSNR)

Given the images f and g, both of M ×N size [Hore and Ziou 2010] calculate the PSNR
index with the Equation 1. Where MSE means the Mean Square Error.

PSNR(f, g) = 10× log10

(
2552

MSE(f, g)

)
(1)

3.4.2. Structural Similarity Index Measure (SSIM)

the formula can be reduced to Eq. 2:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(2)

To better understand the variables, c1, c2 and c3 are constants to stabilize the di-
vision and avoid a null denominator. Those µx and µy are the average of x and y signal
values. The σx and σy are the variance of x and y signal values. We use in our work the
SSIM according to [Rajaraman et al. 2021b], the index provides a measurement of the
similarity between the ground truth and predicted images.



4. Results
Figure 5 display a sample generated from our GAN model after 45k training iterations.
The output is of the same size as the input algorithm. It has a size of 256 × 256. The
model is prepared to receive three channels, but our source is grayscale. It generates the
same color output. Next, we present the Table 1 summarizing the main results.

Figure 5. Input image (Source), Target image (Ground truth) and Predicted im-
ages

Table 1. Results from related works for bone suppression.

Name Model and techniques SSIM PSNR

[Gusarev et al. 2017]
Auto-encoder and convolutional layers,
Auto-encoder and without down/up sample operations 0.907 -

[Oh and Yun 2018] Haar 2d Wavelet decomposition and vanilla pix2pix 0.930 24.08
[Eslami et al. 2020] Condictional GAN and dilated convolutions 0.97
[Zhou et al. 2020] Dilated convolution to expand the receptive field 0.97 33.5
[Yang et al. 2017] Cascade of multiscale CNN 0.976 38.7

[Zarshenas et al. 2019]
Anatomy-specific orientation-frequency-specific
deep neural network convolution 0.912 29.82

[Chen et al. 2019] Cascade of multiscale CNN & wavelet decomposition 0.977 39.40
[Zhou et al. 2018] Multi-scale and conditional adversarial network 0.884 39.7

[Matsubara et al. 2020]
Bone suppression for chest X-ray image
susing a convolutional neural 0.930 24.08

[Liang et al. 2020] Cycle-GAN - Image-to-image translation 0.867 36.078
[Sirazitdinov et al. 2020] autoencoder, U-net, FPN, cGAN 0.955 33.45
[Oh and Yun 2018] CNN + GAN + Haar Wavelets 0.930 24.08
[Gozes and Greenspan 2020] Hounsfield unit (HU) based segmentation and FCNN 0.70 22.6

[Rajaraman et al. 2021b]
Residual Network Model (ResNet-BS),
where BS means Bone Suppression. 0.9492 34.0678

Our approach Conditional GAN 0.943 34.967

In Table 1, we present the results of the first evaluations. Our research result at
this first moment can be summarized in a few words. Our proposal is an Adversarial
model using [Isola et al. 2017] framework architecture, and in the first train, we used all
the augmented datasets of JSRT to train, validate and test. The results are for PSNR index
34.967 and 0.943 for SSIM.

We can observe, according to Table 1, that our result is close to the library and
better than eight studies from 14 analyzed. Going into the analysis, in all of the reviewed



papers, [Eslami et al. 2020, Zhou et al. 2020, Zhou et al. 2018, Rajaraman et al. 2021b]
and ours used the JSRT dataset. When comparing our result with the study that used
the same dataset and a similar technique, it is possible to see that our model achieved
significant results. Studies like [Eslami et al. 2020, Zhou et al. 2020, Yang et al. 2017,
Chen et al. 2019] reached an SSIM around 0.97, but we cannot reproduce what they did.

For an illustration of our model results, we present Figure 5. This image was
obtained from our model after 45k training iterations. The output is of the same size as
the input algorithm. It has a size of 256 × 256. The model is prepared to receive three
channels, but our source is gray-scale. It generates the same color output.

5. Conclusions
Developing models that can be used in medical software to assist the clinical diagnosis is
a big challenge. Although this work is a simple study, with low resolution, it shows the
potential of the approach. In a compromise with the society, democracy, and inclusion,
dispose of the code and the researched techniques open and free, allow others researches
develop a low cost or free solution for public hospitals.

This work evaluated the application of Conditional Generative Adversarial Net-
works (CGANs) to perform the bone suppression task in chest radiography images. We
used two traditional computer vision metrics to evaluate this method: PSNR and SSIM.
Our results display that this approach produces results among the best found in the litera-
ture.

As we can see in the literature review, the bones on the chest image can sometimes
be noisy when the soft tissue is diagnosed. There are plenty of ways to attenuate the shad-
ows to improve the medical analysis. Some of those require a specific type of equipment
that the costs are not accessible and exposes the patient to a double x-ray emission. Other
approaches use classical computer image processing, looking for contours and edges.
Other approaches use neural networks as filters or feature extractors. The choice of our
work was to use deep learning with Adversarial Networks.

Our proposal is a CNN-based solution that learns from a dataset source. Our
solution uses a DES dataset to show the cGAN the source and the target, and the model
will learn how to generate an artificial image like the target dataset. In the literature
review, we could observe some not covered points. Some studies did the experiments and
did not mention how many iterations or code parameters were used. Our results were near
from the review using the same metrics. For example, our approach is the third-best using
PSNR, and for SSIM, we got results closer to the average performances.

To conclude the first part of our study, we could analyze the literature review and
compare our results. As we can see, the model is promising and could even be improved
if it is trained with real-size images such as 1024 × 1024. We figured that our approach
got better results than classical methods and other deep learning strategies. Furthermore,
the proposed model is a proof of concept and with comparable and better results than
presented in the literature.

6. Future Works
Is known, that if a doctor analyzes an image generated by a system like that, the diagnosis
and the whole clinical condition require more specific exams, it will be required. Our



study is just a start for others more complex and complete. In the future, we aim to
increase the input model for a high resolution, such as 1024× 1024. We are planning, as
well, to apply more image processing techniques to increase the image quality to reduce
the noise and attenuate the shadows. Another future work is to use a dual-energy dataset,
make the bone subtraction with classic techniques, and with the resulting train our cGAN
based model.
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