
Multiobjective Scheduling of Hybrid
Synchronization Messages

Ricardo Parizotto1 and Braulio Mello2

1Universidade Federal do Rio Grande do Sul (UFRGS)
Porto Alegre, RS – Brazil

2Universidade Federal da Fronteira Sul (UFFS)
Chapeco, SC – Brazil

rparizotto@inf.ufrgs.br, braulio@uffs.edu.br

Abstract. One of the essential aspects of distributed simulations is to order events
according to a causal consistency model. However, traditional approaches are
costly in terms of processing to ensure causality. A promising approach to order
events is using a hybrid synchronization approach, where processes can alter
dynamically between optimistic and conservative approaches. Unfortunately,
synchronizing processes running a hybrid synchronization is a complex problem.
In this work, we discuss a multi-objective scheduling of hybrid synchronization
messages problem. Beyond that, we propose using a scheduling algorithm and
describe how to integrate the algorithm in an existing distributed simulator.
Finally, we propose a preliminary analysis of our algorithm regarding work
done and the number of messages.

1. Introdução
Synchronization is one of the fundamental aspects in exercising distributed simulations
[Taylor 2019]. Traditionally, synchronization can bemade optimistically or conservatively
[Jefferson and Barnes 2017]. In its conservative (synchronous) manner, the simulation
processes evolve in time using a time barrier defined by lookahead strategies. In the
optimistic (asynchronous) version, the processes advance without any time barrier and use
global virtual time (GVT) as a lower barrier to rollback operations. However, an entirely
conservative approach can create idleness and reach deadlocks. On the other side, an
optimistic approach can suffer from cascade rollbacks. A promising approach is to use
a hybrid system, where processes that compose a distributed simulation can interoperate
between optimistic and conservative mechanisms [Perumalla].

Recently, the hybrid synchronization paradigm motivated several different new
approaches for synchronization. The UVT approach [Jefferson and Barnes 2017] makes
processes change between conservative and optimistic methods dynamically during the
simulation. Differently, Hybrid PDES [Eker et al. 2021] changes the entire simulation
synchronization mode. Yet, another different approach enables conservative and optimis-
tic processes to run at the same time during the simulation [Junior et al. 2020]. We focus
mainly on the third approach, which is essential to provide properties such as composabi-
lity. However, we argue that the abstractions here can be helpful for the other techniques
because they can deliver out-of-order messages while migrating between different synch-
ronization mechanisms.

Unfortunately, synchronizing processes inter-operating between different synchro-
nization approaches is a challenging problem. Specifically, the communication between
conservative and optimistic processes can create events out of order, and imprecise results
[Junior et al. 2020]. For example, a conservative process, receiving a message from an
optimistic process, needs to discard messages that violate causality. On the other hand, if
an optimistic process rolls back its state and discards messages from conservative proces-
ses, it compromises the simulation precision. We argue that it is not possible to achieve
hybrid synchronization without compromising causal consistency. Still, new strategies are
necessary to reduce the number of consistency violations and produce results with higher
precision.

In this work, we investigate hybrid synchronization, focusing on reducing the
number of consistency violations. We formulate the problem as a scheduling problem
with multiple goals: (i) minimizing causality violations and (ii) maximizing the sum
of work performed by the events processed. We devise an approach that intercepts
messages in their receive and schedules them using a dynamic programming algorithm
that outputs an equilibrium between these two goals. We also describe a vision of how
distributed simulators could implement the algorithm proposed for both synchronous
and asynchronous modes. Finally, we analyze our algorithm numerically regarding the
number of messages scheduled and the work performed. Unlike existing work in this area
that focuses on scheduling synchronous approaches, we focus on scheduling in hybrid
scenarios. This brings new problems when synchronous and asynchronous processes
communicate or when the simulation changes from one synchronization mode to another.

2. Motivation
We study the Distributed Co-Simulation Backbone (DCB) [Mello and Wagner 2002] as a
representative example of a distributed simulator and present the challenges for synchro-
nization in the context of the DCB architecture. These challenges are not limited to the
DCB but are present in any distributed simulation system that uses hybrid synchronization.
Specifically, we focus on how DCB manages the simulation messages and deliver them
to processes. DCB keeps an input list of messages and uses the message C8<4BC0<? to
establish the delivery. Each process has several attributes described by the user, defining
how the process runs overtime. These attributes represent a temporal restriction that must
be satisfied to messages do not violate causality. DCB process simulation messages using
a scheduler that delivers messages when the process is on its initial time. To this end,
the scheduler (1) selects between all the messages in the scheduler queue and ranks them
based on its virtual time; (2) schedules the message for the virtual time of the process.
However, this strategy can process a set of messages that is not the optimal according to
the number of violations and the amount of computation performed.

Figure 1a exemplifies a scenario with three processes in a simulation. In the
example %0 is conservative and %1 and %2 are optimistic. Process %2 is at !+) =

15 and already processed the message <1, and it will soon process <2. However, %2
receives a message <3 from the conservative process that has to be processed before
the current time of %2. Rolling the state back would enable the process to process the
yellow message. However, processing <3 implies leaving the two other messages without
processing because of their beginning and end times (presented in more details in Figure
1b). We advocate that we can identify such situations during the message scheduling and

Virtual time

P2

P1

P0

GVT = 10

LVT = 20

LVT = 15

Optimistic

Lookahead = 20

 Snapshot

LVT = 10Conservative

m1

m2

m3

(a) An example of time diagram

M3M1
M2

[20, 30]

[10, 35]

time

M3

M2

M1

Process

[30, 35]

Squeduler Queue

M3

M1
M2

A) Normal Solution
 (M1 and M2 cannot be processed)

B) Feasible Solution
(discards M3 to process both M1 and M2)M2

time
Process

M3

M2

M1
Squeduler Queue Squeduler Queue

(b) Message schedulling scenarios

choose the situation that provides more precise results and avoids unnecessary rollbacks.

Figure 1b show two message scheduling scenarios considering the example of
Figure 1a. In scenario A), the standard solution schedules <3 first. However, the system
can not schedule other messages in the queue because of the message’s virtual time limits.
In scenario B), discarding message <3 allows us to schedule both <1 and <2, which
reduces the number of causality violations related to scenario A.

In this work, we propose the usage of a schedulling algorithm that is able to
dynamically select a subset of messages that founds an equilibrium betwen the number of
causality violations and the maximum of processing time.

3. Problem Definition
We consider as input a set of = messages <1, ...<= with variable processing times. A
message <8 must start its processing specifically in virtual time C8 and finish in 38 units of
virtual time. Messages are processed by one single process, that composed a distributed
simulation, an every process runs one message each time. We want to find a subset of
messages that achieves the two following objectives.

• (1) Minimize the number of causality violations: In the conservative version,
each causality violation means a message that the system can not process. In
the optimistic version, each causality violation triggers rollbacks that consume
simulation resources and make a message not to be processed. Thus this goal aims
to minimize the number of causality violations and, as a consequence, maximize
the number of messages processed.

• (2) Maximize the virtual time sum of complete messages: This goal is related to
the need of choosing subsets of messages that contributes more to the simulation
precision. Thus, the priority is given to subsets of messages that maximizes the
sum of processed virtual time.

However, these two goals create a dichotomy: a subset of messages can satisfy the
first goal, but another completely different subset of messages satisfies the second goal.
Figure 2 present a plane messages-work. The green point represents a subset of messages
that optimizes the number of messages being made. The blue point represents the subset
of messages that would optimize only the work being made. Finally, we point (F, <)
is a utopic point that would optimize both messages and work 1. However, this point is
not feasible in a scenario where messages conflict. In this work, we aim to provide ways
to find the closest point to the one with the highest amount of messages and the highest
amount of work made.

1in this work we use optimum point and utopic point interchangeably

Messages

Work

d

utopic
 point

Figura 2. Scheduling plan with messages-work.

3.1. Synchronization constraints
In this work we are proposing a solution based on scheduling methods to deal with the
dichotomy discussed above. Before presenting our proposed based scheduling solution,
this section points some basic causality constraints of conservative and optimistic logical
processes.

The GVT is used as lower or upper barrier depending on the synchronization
approach of the logical processes on hybrid synchronization scenarios. Each logical
process manages the evolution of its own time, called Local Virtual Time (LVT), according
to the GVT. Conservative logical processes use the GVT and lookahead strategies to
define the LVT upper barrier, and the timestamp of received messages must be greater
than the GVT. Lookahead is a safe time-frame ahead the GVT, in which LPs will neither
generate nor receive new events. Such requirements avoid causality violations between
conservative processes. However, as we mentioned earlier, optimistic processes are not
subject to these time constraints. Specifically, causality errors may occur in messages sent
from conservative processes to optimistic ones.

Assuming that an optimistic process � sends a message <C to a conservative
process �, where C is the C8<4BC0<? of �(<C), the following condition must be satisfied
to prevent causality violations on �:

!+) (�) ≤ C (1)

In this scenario, considering the use of the GVT to calculate ;>>:0ℎ403, and also
considering that the advance of !+) (�) is limited to �+) + ;>>:0ℎ403, for the sane
scenario of processes � and � above, we assume that:

�+) + ;>>:0ℎ403 ≤ C (2)

and

!+) (�) ≤ �+) + ;>>:0ℎ403 (3)

As a result, there is no communication constraint between optimistic and conser-
vative when !+) (�) >= �+) + ;>>:0ℎ403. However, even using mechanisms such as

promises implemented by lookahead strategies, rollbacks are still a problem and can break
the assumption. Since these operations are not present in the behavior of conservative
processes, the temporal constraints of conservative processes prevail over the optimistic.
Thus, assuming that �(<C) is sent to � and

!+) (�) ≤ �+) + ;>>:0ℎ403 (4)

We consider that �(<C) may violate the causality of �, and thus, we consider this
part of the problem of this work. The next section describes our proposed method for the
previously mentioned dichotomy in the context of hybrid synchronization of distributed
simulations.

4. Solving the Scheduling Problem
This section presents a method capable of finding a balance between minimizing the cau-
sality violations and the amount of work in the context of cooperation between optimistic
and conservative.

Algorithm 1: Algorithm to schedule messages
Data: DC?: the utopic point; ": the set of know and ordered messages; + :

the set of visited messages
1 Function Receive(:):
2 " ← " ∪ {:}
3 mark all the messages higher than : as not visited
4 < ← the last message of "
5 Scheduling(m)
6

7 Function Scheduling(<):
8 if (< == 0) or < ∈ + then
9 return cost[m]

10 select message =, such that = is the first message that does not conflicts
with <

11 # [(] ← Scheduling(n)
12 select the next message, :
13 ([:] ← Scheduling(k)
14 return <8=(Cost(S[k]), Cost(m + S[n]))
15

16 Function Cost(:):
17 return

√
(:.F>A: − DC?.F>A:)2 + (:.<B6 − DC?.<B6)2

The proposed method performs a scheduling analysis before delivering messages
to simulation processes. We assume that we know what the set of non-processed messages
is. Additionally, we also assume that we know received messages since the last consistent
checkpoint of an optimistic process. To perform the scheduling analysis, we propose the
usage of dynamic programming to find a subset of messages that reach an equilibrium
between the objectives previously discussed. By running the algorithm, we identify the
next message to be delivered to the simulation component.

Algorithm Idea. The main idea of the algorithm is to perform a search in a set of
messages that selects a subset of messages that have the fewer distance to the utopic point.
To start the search, we assume that messages are ordered in a non-decreasing order. The
search starts by the last message an perform an recursive algorithm to reach the objectives
mentioned earlier. The algorithm chooses between the two options: whether it is best
to include the message of the corresponding recursion step with the option with having
the last non-overlapping message (Figure 1, lines 10-11) or is best to consider the first
overlapping message (Figure 1, lines 12-13). This choice is based on which of the options
costs approximates more to the utopic point [Kolen et al. 2007]. To compute the cost, we
move the set of messages into Cartesian coordinates into the euclidean space and calculate
the euclidean distance between them: the utopic point to the point that represents the set of
messages being analyzed (Figure 1, lines 17-18). We observe that the scheduling occurs
after receiving a message : , using the costs of previous executions for messages with lower
LVT than : . Thus after receiving a message, only the messages with the beginning time
larger than the end time of the received message are marked as not visited (Figure 1, lines
10-11).

*
*

new

...
messages visited
by previous executions0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

#

#

#m1

m2

m3

m4

m5

m6

m7

m7

(m5, m7) (m6, m7)

(m1, m5, m7)

(a) (b)

Figura 3. Illustration of the definitions of the algorithm 1

Figure 3 exemplifies a scenario where a new message, identified in red, arrives in
the scheduler. In this scenario, every message before the received message was already
visited by previous executions of the scheduling algorithm. In the previous execution, the
solution �∗ was optimal. After receiving the new message, creating a new scheduling
plan is necessary to be closer to the optimum. In this case, the algorithm orders the new
message with the previous ones and considers the subsequent messages the set of messages
that still need to be explored. Conversely, the earlier messages in decreasing order were
already visited by the previous execution and should not be revisited. The reasoning is that
receiving the new message does not change the scheduling plan for these messages. Thus
we can use the scheduling plan from the execution of previous messages in the receiving
of the new one.

Correctness and Complexity. The correctness of the algorithm follows the sub-
optimal structure of the problem. In each iteration, in order to select the messages we just
take constant time. Since in every iteration the algorithm visits a message and does not
visit it again in any other iteration, we only need # iterations to reach have the scheduling
plan. The worst case scenario is when a received messaged have the lower LVT than the
other messages. Since in this scenario each message needs to be visited at most once, this
dynamic programming algorithm runs in linear time in the worst case scenario.

5. Preliminary Results

In this section, we present a numerical evaluation of our method. Our objective in the
assessment is to understand how the proposed solutionwill behave concerning twometrics:
(i) number of messages and (ii) sum of work performed.

We implement the proposed algorithm in Python and generate experiments that
test the desired metrics to perform our evaluation. The experiments test the algorithm
with a range of 10 to 100 entries in the scheduling queue, entries that relate to messages
with a start and end time. We randomly determined the start and end times between 0 and
1000 time units. We run the presented scheduling algorithm 1000 times for each set of
generated messages. For comparison purposes, we simulate the conservative execution of
the same messages according to LTF policy. Below we describe the numerical results in
more detail.

Figura 4. # of work and # of messages for each simulation

We first assess the amount of work done by each scheduling policy. Figure 4 shows
the amount of work and messages scheduled by each approach, as well as the total for
the set of messages tested. The amount of work performed using LTF remains almost
constant as the number of messages increases. Using the approach proposed in this article,
the amount of work performed increased as the number of messages in the input queue
increased. We observe similar behavior for the number of messages executed, which
means fewer causality violations would happen due to not processing some messages.

6. Related Work

Scheduling discrete event simulation events is not a new problem. This problem was
explored in discrete simulation contexts that operate with only one synchronization mode
(ex., only synchronous). Traditionally, a data structure is responsible for storing the
set of events that have already been received but not yet executed. Calendar Queues
[Brown 1988] is an example of a data structure used for this purpose.

From these structures, it is possible to use scheduling policies. For instance,
in [Santoro and Quaglia 2010] the authors present a scheduler for optimistic simula-
tion systems. The authors presented an implementation of a policy called Lowest-
Timestamp-First (LTF) that can schedule events in constant time using a variation of
Calendar Queues. Another example of a scheduling policy is Probabilistic Scheduling
[Som and Sargent 1998]. This policy estimates the probability that an event to be pro-
cessed will be lost in a future rollback operation and then schedules the event based

on this estimate. However, both LFT and probabilistic policy only consider optimistic
synchronization scenarios.

Recently, hybrid synchronization efforts have attracted community attention. In
particular, unified virtual time (UVT) [Jefferson and Barnes 2017] is a conceptual ar-
chitecture for hybrid synchronization able to dynamically switch from conservative to
optimistic mode. In [Junior et al. 2020] an architecture for hybrid synchronization is pre-
sented and partially integrated into the DCB, where processes, differently from switching
from conservative to optimistic mode, adapt their lookahead values and optimistic message
cancellation techniques to avoid violations of time in the conservatives. More recently
Hybrid PDES [Eker et al. 2021] presents a hybrid synchronization system that changes the
synchronization mode of the entire simulation between conservative and optimistic modes
according to a message distribution estimate.This work is complementary to the hybrid
synchronization work since our goal is not to propose a new architecture. We propose a
scheduling policy for hybrid synchronization.

7. Conclusions
In this work, we present the hybrid synchronization problem as a message scheduling
problem. We propose a scheduling algorithm that seeks to find an equilibrium between
the number of causality violations and the amount of work done. In addition, we specify
how distributed simulators can use the method in distributed simulators. The preliminary
results show the potential of the scheduling method compared the lowest timestamp first.
In the future, we plan to implement this approach in a distributed simulator to test its
feasibility.

Acknowledgements
This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

Referências
Brown, R. (1988). Calendar queues: a fast 0 (1) priority queue implementation for the

simulation event set problem. Communications of the ACM, 31(10):1220–1227.

Eker, A., Arafa, Y., Badawy, A.-H. A., Santhi, N., Eidenbenz, S., and Ponomarev, D.
(2021). Load-aware dynamic time synchronization in parallel discrete event simulation.
pages 95–105.

Jefferson, D. R. and Barnes, P. D. (2017). Virtual time iii: unification of conservative
and optimistic synchronization in parallel discrete event simulation. In 2017 Winter
Simulation Conference (WSC), pages 786–797. IEEE.

Junior, E. M., Terra, A., Parizotto, R., and Mello, B. (2020). Closing the gap between
lookahead and checkpointing to provide hybrid synchronization. In Anais do XLVII
Seminário Integrado de Software e Hardware, pages 104–115, Porto Alegre, RS, Brasil.
SBC.

Kolen, A. W., Lenstra, J. K., Papadimitriou, C. H., and Spieksma, F. C. (2007). Interval
scheduling: A survey. Naval Research Logistics (NRL), 54(5):530–543.

Mello, B. A. and Wagner, F. R. (2002). A standardized co-simulation backbone. In SoC
Design Methodologies, pages 181–192. Springer.

Perumalla, K. S. /spl mu/sik-a micro-kernel for parallel/distributed simulation systems.
In Workshop on Principles of Advanced and Distributed Simulation (PADS’05), pages
59–68. IEEE.

Santoro, T. andQuaglia, F. (2010). A low-overhead constant-time ltf scheduler for optimis-
tic simulation systems. In The IEEE symposium on Computers and Communications,
pages 948–953. IEEE.

Som, T. K. and Sargent, R. G. (1998). A probabilistic event scheduling policy for optimistic
parallel discrete event simulation. In Proceedings of the Twelfth Workshop on Parallel
and Distributed Simulation, PADS ’98, page 56–63, USA. IEEE Computer Society.

Taylor, S. J. (2019). Distributed simulation: state-of-the-art and potential for operational
research. European Journal of Operational Research, 273(1):1–19.

