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Abstract. For many years, methods for detecting violence in video data used
features designed by humans to extract visual information from input frames
for composing feature vectors and then applied machine learning techniques to
assign labels to them. Recently, Deep Learning methods are highly evidenced
for this task since they can automatically learn image features. Furthermore,
they usually overcome the accuracy rates obtained by classical methods based
on handcrafted features. This work evaluates learned and handcrafted features
for classifying video frames as ’violence’ or ’non-violence’. Our results showed
that learned features can not always be claimed superior since some violent
scenes are only detected by handcrafted features.

1. Introduction
As the number of surveillance cameras installed worldwide increases, the urgency for
real-time video-content analysis also grows. Once supervising multiple monitors for a
long time is an unsuited task for human agents, many computer vision algorithms have
been proposed during the last decade for detecting abnormal and potentially dangerous
situations, such as: (i) people disobedience to virtual fence [Delgado et al. 2014,
Chen et al. 2012]; (ii) people loitering [Coşar et al. 2016, Arroyo et al. 2015]; (iii)
crowd panic [Krausz and Bauckhage 2012, Zhang et al. 2019]; (iv) seniors falling
[Lu et al. 2018, Rougier et al. 2011]; and others. Detecting violent scenes is also relevant
for ensuring safety in public areas and private properties, thus guaranteeing stability in
people’s lives and gradually allowing a safer society.

Classical methods for detecting violence in video data used image handcrafted
features such as optical flow [Gao et al. 2016], appearance [Chen and Hauptmann 2009],
and acceleration [Deniz et al. 2014] to compose feature vectors. Then, traditional
machine learning techniques such as Support Vector Machine (SVM) [Hearst et al. 1998]
were used for assigning each of those feature vectors to the labels ’violence’ and ’non-
violence’. Using such an approach, it was possible, for instance, to detect violent scenes
from videos of hockey matches with accuracy rates above 85% [Laptev et al. 2008].

By the end of the 2000s, Deep Learning techniques emerged within a new
branch of machine learning [Yang et al. 2015]. They eliminated the need for humans
to design features as they learned to extract image features in the first layers of
Convolutional Neural Networks (CNN’s). Thus, CNN’s has become increasingly popular,
reporting near 100% accuracy rates for detecting violent scenes from movies and hockey
matches using complex image characteristics to human interpretation [Zhou et al. 2017,
Soliman et al. 2019, Keçeli and Kaya 2017].



Despite the massive success of Deep Learning methods for violence detection,
one question related to their performance is still not entirely explained: are both learned
and handcrafted features focusing on the same aspects of the images? For this reason, we
designed a framework not only for evaluating the accuracy of handcrafted and learned
features but also for exploring the data visualization in order to study the datasets
separability. Moreover, we executed experiments to evaluate whether the sets of correctly
classified videos by both techniques differ or not. A divergence between those sets
indicates that the methods would focus differently within the video frames.

This paper is organized as follows: Section 2 describes the related works; Section
3 describes the framework designed to evaluate the handcrafted ans learned features;
Section 4 describes dataset and the experimental parameters; Section 5 presents the results
obtained and discusses them; finally, Section 6 concludes the paper.

2. Related Works

Among the classical methods based on handcrafted features, we can mention: i) the STIP
[De Souza et al. 2010], which considered local spatio-temporal features within bags of
visual words to construct feature vectors; ii) the RIMOC [Ribeiro et al. 2016], which
was created from the eigenvalues obtained from the Optical Flow Histogram (HOF)
extracted in consecutive instants of time embedded in a spherical Riemannian manifold;
iii) the MoSIFT [Chen and Hauptmann 2009], which had feature vectors generated by
concatenating the Oriented Gradient Histogram (HOG) to the HOF. The MoSIFT method
will be explained in more depth in the following sections as it was chosen to compose the
handcrafted feature extractors of our framework.

With respect to the methods based on Deep Learning that eliminated the
requirement for expert-based handcrafted features to perform violence detection, we
highlight i) the multi-stream deep neural network where raw videos, optical streams, and
acceleration stream maps are given as inputs to three network branches, then there is a
fusion of those branches using a Long Short Term Memory (LSTM) as proposed by Dong
et al. [Dong et al. 2016]; ii) the usage of a CNN to extract frame-level features from the
video frames, and posterior feature aggregation using a variant of LSTM-based network as
proposed by Sudhakaran et al. [Sudhakaran and Lanz 2017]; iii) the Flow Gated Network,
where a 3D CNN is trained using multiple video frames in sequence, and another 3D
CNN is trained using the optical flow of the respective frames, then the two branches are
combined using temporal pooling as proposed by Cheng et al. [Cheng et al. 2020].

Our work is also related to other papers that conducted similar evaluation between
handcrafted and learned features for different image classification problems, as follows:
i) Saba [Saba 2021] makes a similar comparison in the context of skin cancer detection.
He found cases where the handcrafted features reached accuracy rates higher than
the learned features, reaching up to 100% accuracy in one of the evaluated datasets;
ii) Already Antipov et al. [Antipov et al. 2015] evaluated the use of both types of
features for the problem of gender recognition of pedestrians. Their study showed
that both approaches have similar performance in small homogenous data, but the
handcrafted features underperformed the learned features in mean average precision for
more complex datasets; iii) Nanni et al. [Nanni et al. 2017] did an extensive comparison
between handcrafted and learned extractors using image datasets related to many image



classification problems. Their experiments have shown that there are indeed contexts
where handcrafted can overcome the learned features concerning accuracy. None of those
works, however, investigated whether there is a divergence between the image aspects
evaluated by both handcrafted and learned features.

3. Methods

The framework applied to evaluate different subsets of features is illustrated in Figure 1.
It is mainly based on the bag-of-features technique [Nowak et al. 2006] associated with
two types of image descriptors: (i) traditional handcrafted features and (ii) learned
features automatically extracted using Deep Learning models, such as the VGG-
19 [Simonyan and Zisserman 2014]. Using the bag-of-features technique, each video
containing any number of frames is easily associated with a single feature vector in
the space U. Thus, by applying a technique for dimensionality reduction, e.g. TSNE
[Maaten and Hinton 2008], it is possible to visualize the dataset and have an intuition
about its classification challenge.

For a given dataset with M videos, let: (i) Nm be the number of frames in the
mth video, (ii) T1, T2, T3 be three sets of integers that refer to indexes of videos in a
dictionary set, a training set and a test set, respectively. Then, the frames {xmn},∀mp ∈
T1,∀n ∈ {0, 1, ..., Nm} are processed by a feature extractor to compose a space of
features F . Next, by clustering such space within w words, a dictionary D is created.
After that, for each m ∈ {T2, T3}, the frames {xmn},∀n ∈ {0, 1, ..., Nm} are processed
by the feature extractor and the dictionary D [Jégou et al. 2009] to create new vectors in
the space of videos U. Finally, the performance of a classifier C is computed over the
data in the space U.

With respect to the feature extraction modules presented in the proposed
framework, we implemented them using two approaches based on handcrafted and
learned features described in the following subsections.

3.1. The handcrafted feature extractor

It uses the MoSIFT [Chen and Hauptmann 2009] technique to obtain a set of feature
vectors for each input frame. This processing is described by the Algorithm 1. First,
SIFT keypoints [Lowe 2004] are computed for each frame input to find regions of
interest. Then, a MoSIFT vector of size 256 is created by concatenating SIFT and
HOF [Van Gool 2008] descriptors for those regions of interest which have optical flow
[Farnebäck 2003] greater than a threshold ϵ.
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Figure 1. The evaluation framework applied in our study uses the dictionary set
T1, the training set T2, and the test set T3. The feature extractor processes
videos from T1 to create a feature space F , where multiple vectors refer to
a single video frame. Next, by clustering F in w words, a dictionary D is
created. Then, using D and the bag-of-features technique, the data from
T2 and T3 are converted into a video space U . In U , each vector refers to
a single video clip. Finally, the classification accuracy of a classifier C is
measured over the videos in U .

Algorithm 1: The handcrafted feature extractor
Input: frame, next frame, ϵ
Output: hand features

hand features← []
keypoints← SIFT (frame)
for each kp ∈ keypoints do

if opticalF low(frame, next frame, kp.position) > ϵ then
hof ← HOF (frame, next frame, kp.position)
mosift← cat(hof, kp.descriptor)
hand features.add(mosift)

end
end

3.2. The learned feature extractor

It uses a VGG-19 [Simonyan and Zisserman 2014] (illustrated in Figure 2) to extract
features from the video frames and its optical flow, as suggested by Xu et al.
[Xu et al. 2017]. A detailed description of the entire feature extractor is presented in
Algorithm 2. A pre-trained instance of the VGG-19 is used to obtain two feature vectors
of size 4, 096 each: one related to the RGB frame and the other related to its optical flow.



Algorithm 2: The learned feature extractor
Input: frame, next frame
Output: learned features

learned features← []
flow ← optical flow(frame, next frame)
learned features.add(vgg 19(frame))
learned features.add(vgg 19(flow))
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Figure 2. The architecture of the VGG-19 used in this work to compose the
learned feature extractor. A 224 × 224 input image propagates through 16
convolutional and 2 fully connected layers to generate a feature vector of
size 4, 096.

4. Experiments
4.1. Datasets
In our experiments, we use three datasets: i) the Hockey Fight dataset [Nievas et al. 2011]
which contains 1000 clips captured from matches of the National Hockey League (NHL)
manually labeled as fight or non-fight; ii) the Violent Flows dataset [Hassner et al. 2012]
which is composed of violent and non-violent crowd behavior in real-world footage
collected at YouTube and LiveLeak, this benchmark comprises 246 clips that include
specters at large events, people protesting in the streets, and others and iii) the RWF-
2000 dataset [Cheng et al. 2020] which contains 2,000 videos captured by surveillance
cameras in real-world scenes labeled as violence and non-violence. A comparison among
the datasets can be seen in Table 1.

Table 1. Characteristics of the used datasets used in the experiments. The latest
two lines present the features related to the datasets created in this work.

dataset # violent
# non-

violent

hours

length
resource

release

year

Hockey [Nievas et al. 2011] 500 500 0.44 sports 2011

Violent Flows [Hassner et al. 2012] 123 123 0.8
real-world

outdoor
2012

RWF-2000 [Cheng et al. 2020] 1000 1000 2.8
real-world

indoor and outdoor
2020

4.2. Experimental parameters
We conducted experiments using three partitions comprising 50%, 25%, and 25% of each
dataset for generating the dictionary (T1), training (T2), and testing (T3), respectively.



The clustering algorithm to generate the space U was k-means algorithm [Forgy 1965].
The number of words w was 2, 048, and the optical flow threshold ϵ in Algorithm 1
was 0.5. The VGG-19 in the Algorithm 2 was loaded with the weights learned from
the ImageNet dataset [Deng et al. 2009] as the literature shows it may provide good
generalization results for many image domains [Wen et al. 2019, Alhindi et al. 2018].
Furthermore, the classifier C was a Fully Connected Network composed of three dense
layers activated by ReLu containing 1, 024, 512, and 128 neurons, and two more neurons
composing the final layer activated by sigmoid.

5. Results and Discussions

5.1. Feature evaluation

Visualizations of the space of videos U - reduced to 2 dimensions via TSNE
[Maaten and Hinton 2008] - are shown in Figure 3 along three columns, one for each
dataset: the Hockey [Nievas et al. 2011], the Violent Flows [Hassner et al. 2012] and the
RWF-2000 [Cheng et al. 2020] respectively. The first and second lines show the space of
videos U generated using the handcrafted and the learned feature extractor. According to
Figure 3, it is clear that the Hockey dataset [Nievas et al. 2011] has the highest inter-class
and the lowest intra-class dispersion; as a consequence, it should be the easiest to classify.
The Violent Flows [Hassner et al. 2012] also looks like a simple dataset, especially when
extracted using learned features. The RWF-2000 [Cheng et al. 2020] contains footage of
real-world violent crimes, and its space of videos U, seems to be more complex as we
would expect.

5.2. Accuracy

Table 2 shows the false-positive rate (FPR), the false-negative rate (FNR), and the
accuracy rate (ACC) obtained by applying the proposed evaluation framework to all
benchmarks evaluated in this work. As we would expect from the visualization of the
video spaces U in Figure 3, the highest accuracy rates were obtained in the Hockey and
Violent Flows datasets. Based on the literature, we would expect learned features to report
superior classification rates than handcrafted features. This fact indeed happened for the
Violent Flows and RWF-2000 datasets. However, for Hockey Fight - even by a slight
difference - the handcrafted feature surpassed the learned feature.

5.3. Handcrafted versus Learned features

We cannot simply claim that the learned features are superior to the handcrafted features
by observing only the accuracies. In order to conclude that, the set of videos correctly
classified by the handcrafted features should be a subset of the set of videos correctly
classified by the learned features. In contrast, the Venn diagrams Figure 4 show that the
videos correctly classified by handcrafted and learned videos are different from each other.
This result indicates that both types of features focus on different aspects of the video
frames. From the Venn diagrams Figure 4, we can calculate the rate of misclassified
videos by both handcrafted and learned features. This rate in the RWF-2000 dataset is
10%, the highest among all the evaluated benchmarks.
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Figure 3. Spaces of videos U reduced to two dimensions via TSNE. Each column
contains data of a different video collection extracted using handcrafted
(first row) and learned features (second row). Those representations
show that the classification tasks involving videos containing real-world
violence (e) to (f) are more complex than the others.

Hockey Fight

20618 15
11

Handcrafted Learned

Violent Flows

465 7
4

Handcrafted Learned

RWF-2000

24186 123
50

Handcrafted Learned

Figure 4. Number of samples corrected classified by the handcrafted and learned
features.

6. Conclusion
Most modern solutions for violence detection use Deep Learning that avoids extracting
handcrafted features from video frames. In this work, we compared solutions based on
handcrafted and learned image features for detecting violent scenes in video frames. Our
experiments indicated that the features learned by deep neural networks provide higher



Table 2. False-positive rate, false-negative rate, and accuracy rate obtained using
the proposed evaluation framework in Hockey, Violent Flows and RWF-
2000.

Dataset Feature FPR FNR ACC
Hockey [Nievas et al. 2011] handcrafted 8.8% 12% 89.6%

Hockey [Nievas et al. 2011] learned 7.2% 16% 88.4%

Violent Flows [Hassner et al. 2012] handcrafted 12.9% 22.6% 82.2%

Violent Flows [Hassner et al. 2012] learned 6.4% 22.5% 85.4%

RWF-2000 handcrafted 34.8% 34.4% 65.4%

RWF-2000 learned 21.2% 32.2% 72.8%

accuracy rates for detecting violence in videos. However, they do not seem to be able to
fully replace the use of handcrafted features as we demonstrated that both types of features
focus on different aspects of the input images and correctly classify different samples.
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