
An Intelligent Chess Piece Detection Tool

Richardson Menezes1, Helton Maia2

1 Department of Computer Engineering and Automation
UFRN, Natal-RN, Brazil

2School of Science and Technology
UFRN, Natal-RN, Brazil

helton.maia@ufrn.br

Abstract. Chess is one of the most researched domains in the annals of artificial
intelligence. The main objective of this research is to develop a platform that
can determine piece positioning during chess games. Digital image processing
methods and real-time object detection (YOLO version 4) algorithms were used
during computational development. The problem entails analyzing images cap-
tured during a chess game and determining the location of each square on the
board, as well as the position of each piece in play. This procedure is repeated
at each game turn, enabling the developed system to save and watch all piece
moves during a game. The obtained results demonstrate the system’s reliability
and feasibility.

1. Introduction

Under the umbrella of pattern recognition, computer vision encompasses some fascinat-
ing challenges, such as image classification and object identification. In recent years,
significant scientific progress has occurred in these areas, primarily due to advances in
convolutional neural networks, deep learning techniques, and increased parallel process-
ing power provided by graphics processing units (GPUs).

The image classification problem entails labeling an input image from a predeter-
mined set of categories. Despite its seeming simplicity, this is one of the most challenging
problems in computer vision, where many practical applications and tools are developed.
Significant advances have been made in classifying skin cancer images [Esteva et al.
2017]. Using high-resolution images to detect natural disasters such as floods, volca-
noes, and severe droughts [Jayaraman et al. 1997,Leonard et al. 2014,Kogan 1997]. This
technique is frequently used to evaluate experiment data in neuroscience [de Menezes
et al. 2018, de Menezes et al. 2020, Menezes et al. 2022]. Or even for art, such as the
classification of paintings by famous artists [de Menezes et al. 2021].

Features used to feed specialized image classification algorithms significantly im-
pact their performance [Srinivas et al. 2017]. This means that the advancement of image
classification techniques based on machine learning has been heavily reliant on feature
selection engineering, which is expected for the images that comprise the database. As a
result, obtaining these features has become difficult, increasing the complexity and com-
putational cost of more established approaches. For image classification, feature extrac-
tion, algorithm selection, and learning are traditionally two independent steps, which have
been greatly developed and improved using support vector machines (SVMs).



The most robust object classification and detection algorithms currently use deep
learning architectures with specialized layers to automate feature filtering and extraction.
Machine learning algorithms with specific learning processes, such as linear regression,
support vector machines, and decision trees, all follow the same basic steps: make a
prediction, calculate the value of an error function, and adjust the prediction engine based
on the received feedback, a process similar to how humans learn. Deep learning brought
a revolutionary approach to the problem, aiming to overcome previous shortcomings by
learning data abstraction through a stratified description paradigm based on a non-linear
transformation [Pan et al. 2018]. The ability of deep learning to learn feature extraction
from large datasets is the advantage that has brought this approach to prominence.

Convolutional neural networks (CNNs) are widely used in deep learning algo-
rithms to provide the ability to learn from feature extraction. Convolution is a specialized
linear operation that can be thought of as applying a filter to a given input in this context.
By adjusting the convolutional filter parameters, the repeated application of filters to an
input results in a feature map, which can indicate the locations and strength of a feature
detected in the input. The network can learn the best parameters for extracting relevant
information from the database by adjusting to reduce error. Several deep neural network-
based object detectors have been proposed in recent years, [Deng et al. 2013,Kriegeskorte
2015].

This paper aims to create a CNN-based chess piece detection system capable of
correctly identifying the location and identity of each chess piece on a chessboard. The
system could be used for various purposes, including assisting players with move recom-
mendations, automatic game analysis, and improving the overall experience of an over-
the-board chess game.

2. Methods

2.1. Computational Development

The diagram in Figure 1 depicts the steps required to execute the system proposed in this
study.

Input Output
Perspective Correction

Step 1

Image Acquisition

Board Detection

Board Grid Detection

Location of squares 
on the chess board 

Step 2

YOLO
(Pieces detection)

Full Yolo Tiny Yolo

Transform the coordinates 
of the detected pieces

Post processing

Step 3

Determine the position of 
the pieces on the board

Figure 1. UML activity diagram of the chess piece detection and classification
system

Obtaining pictures from a video source, such as a video file or a live camera feed,
is the first step in the system’s operation, as shown in Figure 1. Traditional image pro-
cessing techniques are then employed for board localization, perspective correction, board



grid detection, noise filtering, and histogram equalization methods to improve image qual-
ity for the following steps. The first step leads to the creation of a mapping of all squares
on the board to image space coordinates. To accomplish this, the representation of the
squares comprising the board was adopted by two points, the upper left and lower right,
to determine whether a new sample point in the image is within the area delimited by a
specific square.

The second step’s goal is to recognize the pieces on the board. The YOLO network
is used to process the original frame captured by the camera, which can take two different
paths. The Full YOLO processing path employs the most powerful version of the YOLO
algorithm for object detection, resulting in more accurate predictions; however, running
this network requires more computational power for network predictions to run in real-
time. The object detector’s Tiny YOLO architecture is a more simplified version of the
network that achieves performance comparable to its more powerful counterpart in some
scenarios; thus, this version is ideal for real-time video processing. As a result of step
two, the weights from both networks’ training are adjusted to detect the chess pieces on
the board. In this step, the user selects which version to use based on which best meets
their needs.

Finally, the third step applies post-processing operations to the results of the pre-
vious steps. Initially, the results of the predicted locations of the detected pieces are
combined with mapping the squares on the board. For this purpose, the coordinates of the
detections are transformed into image space with a perspective transformation, and then
each piece’s square is ascertained. As a result, by the end of the third step, the system has
a complete mapping of which pieces are in play and in which squares they are located,
allowing the creation of a two-dimensional representation of the game’s current state.

2.2. Experimental Setup and Dataset

Given the problem addressed by this work, it was necessary to create a customized dataset
suitable for detecting chess pieces on a chessboard for the application of the object de-
tection algorithm. Videos of chess games were analyzed to validate the computational
development proposed in this work. Figure 2 shows an example of the experimental con-
figuration used to conduct the recordings.

(a) (b)

Figure 2. Experimental setup. (a) 3D representation of the experimental setup for
recording chess matches, including the camera location for video acquisi-
tion; (b) Example frame showing the top view of the chessboard recorded
by the camera during the dataset’s matches.



This study’s experimental configuration was based on images captured with an
iPhone 11 smartphone. The camera was set up to capture RGB images at 30 frames per
second at a resolution of 1920× 1080 pixels.

Figure 2(a) depicts a three-dimensional view of the experimental setup for video
acquisition through chess matches. During the recording sessions, the camera was posi-
tioned at a height of 61 cm to record games on a board measuring 47 cm x 48 cm, with
each square on the board having a side of 5.3 cm.

To validate the developed computational tool, frames were captured in experi-
mental videos of chess matches. Figure 2(b) illustrates the capture made by the proposed
experimental configuration of the chessboard ready for the start of a game. The attached
camera provides a panoramic view of the board.

Table 1 shows the dataset used to train the object detection algorithm. This com-
prises, 6317 manually annotated images, with 5054 representing 80% of them being sep-
arated to be used exclusively in the object detection algorithm training process and 1263
corresponding to the remaining 20% for the test set, divided into 12 classes representing
each chess piece of both colors.

Table 1. Image dataset created for object detection algorithm training and testing

Color Piece Training Samples Test Samples

White

Pawn 28 789 7 234
Knight 5 881 1 328
Bishop 4 884 1 144
Rook 8 254 1 994
Queen 3 473 883
King 4 925 1 222

Black

Pawn 28 299 7 000
Knight 4 902 1 344
Bishop 5 541 1 219
Rook 8 799 1 946
Queen 3 423 874
King 4 931 1 226

Total 112 101 27 414

3. Results and Discussion
Accurately locating chess pieces on a chessboard is a challenging task that requires mod-
ern and efficient computing. The C and Python programming languages and frameworks
such as Open-Source Computer Vision (OpenCV) and TensorFlow were used for all al-
gorithmic development in this work.

The application created for this work was ChessPy. A system intended to work
best with images in which the chessboard is the biggest object in the scene. The camera
can record the complete board, which can be positioned at an angle to the board’s plane.

Piece detection aims to locate them in an image and then yield which pieces are
present and where they’re located. The YOLOv4 [Bochkovskiy et al. 2020] object de-



tection model was selected since it’s extremely precise and fast for neural network-based
models. This model, after training, can identify objects in real-time, even on lower-end
hardware.

To identify chess pieces, two YOLO network setups were used. The results of
this research were obtained by analyzing 6317 images arranged according to the data set
outlined in Section 2.2.

First, the YOLO Full type network was used to train the object detection model,
which uses the Darknet-53 [Redmon and Farhadi 2018] convolutional architecture with
53 convolutional layers. This model was trained from a pre-trained model that used the
ImageNet dataset [Russakovsky et al. 2015], using the transfer learning technique de-
scribed in [Redmon et al. 2015], to fully take advantage of the optimization process and
weight adjustment. The model is made up of a segment with convolutional layers and
residual connections in a total of 65.29 · 109 floating point operations. Each model re-
quires 235 MB of storage. It took 11.59 hours to train the model.

Afterward, a smaller and faster architectural alternative, the YOLO Tiny network,
was also trained. This “tiny” version employs only a portion of Darknet-53’s features, 23
convolutional layers, resulting in 9.67 · 109 floating point operations, roughly seven times
fewer than its bigger counterpart. Each model requires only 34 MB of storage space.
The network was trained following the strategy described in [Redmon et al. 2015] by
fine-tuning a pre-trained model using the ImageNet dataset [Russakovsky et al. 2015]. It
takes 2.37 hours to train a model. Figure 3 shows some of the results of recognizing chess
pieces in the created test dataset.

Figure 3. Examples of trained object detection model output



The YOLO architecture’s approach to object recognition is faster than other sys-
tems in part because it predicts the placement of objects in the image as a whole rather than
classifying objects in separate regions, as other networks do [Girshick et al. 2013, Gir-
shick 2015,Ren et al. 2015]. YOLO divides the image into S×S cells and looks for items
within each cell simultaneously. Because only two objects are permitted in the same cell
by design, this method has issues coping with close or overlapping objects. However, the
algorithm accurately forecasts objects in similar locations, like chess pieces, which are
always arranged similarly on the board.

As a single-stage object detector, YOLOv4 is based on the original YOLO model
[Redmon et al. 2015] and the YOLOv3 detector [Redmon and Farhadi 2018]. The fourth
version is divided into two halves, the first known as the backbone and the second as the
head. The backbone is a convolutional network-based feature extractor, whereas the head
is the component of the model that predicts object classes and their bounding boxes.

Figure 4 depicts the loss function optimization process for both network designs
during the training stage; by the conclusion of the 8000 allotted epochs, this process
neared zero. The figure also shows the greater efficiency in optimizing the weights of
the Tiny architecture, which achieved smaller values for the loss function at the start of
the training procedure and reached values roughly ten times smaller at the end of the
optimization process.

Figure 4. Loss function minimization for the YOLO Full and Tiny architectures
during training

Table 2 shows the results of employing the evaluative classification metrics in the
model’s final step for Full and Tiny architectures. These metrics are used to assess the
quality of the classifiers’ output. Precision is defined as the ratio of accurately anticipated
positive observations to all positive observations. The recall is the ratio of accurately
predicted positive observations to all observations. The F1-Score is the weighted average
of precision and recall, with a maximum value of 1 signifying flawless precision and
recall.



Table 2. Classification metrics on the test dataset for the evaluated models

Model Precision (%) Recall (%) F1-Score
Full YOLO 87 90 0.88
Tiny YOLO 89 89 0.89

Still, in Table 2, the Full network’s accuracy, recall, and F1-Score values were all
above 80%. Indicating good quality of class predictions and success in the training stage
with good generalization, whereas the Tiny network performed slightly better despite its
smaller size, with accuracy, recall, and F1-Score equal to 0.89.

Table 3 presents additional results relating to the performance of piece detection.
The average precision for each class is displayed first. The classes correspond to each
sort of chess piece in both traditional colors, black and white. Finally, at the bottom of
the table, the mAP values for each model are presented.

Table 3. Average precision for the detections of each class for the evaluated
models

Average Precision (AP, %)
Model

Color Object Full YOLO Tiny YOLO
Pawn 90.88 90.90

Knight 84.97 84.11
Bishop 74.09 58.88
Rook 84.67 84.72
Queen 72.33 74.28

White

King 86.70 84.81
Pawn 90.68 90.89

Knight 90.13 89.61
Bishop 67.47 70.10
Rook 88.18 87.64
Queen 90.57 89.67

Black

King 90.84 90.86
mAP 84.29 83.04

Table 3 shows that the Full network has somewhat higher statistical values for
mAP than the Tiny network, with a difference of 1.25%. The Tiny network’s reduced size
is advantageous here. Despite reducing abstraction capacity, this design outperformed
its bigger version in numerous classes. It’s also worth mentioning that both algorithms
struggled to recognize Bishops in all colors, with the best results of about 70%. This is
due to the strong resemblance between Bishops and Pawns, with the latter having more
examples of evaluating because their presence on a chessboard is more predominant.

Regarding the intersection over union metric (IoU), the Full architecture achieved
a competent generalization for object detection with an average IoU of 71.47%. The Tiny
network, the model’s smaller counterpart, earned an average value of 77.80% for the IoU
metric, demonstrating the model’s competency for the stated challenge yet again.



Table 4 shows the ratio of accurate and erroneous detections produced by the net-
work predictions on the test dataset, completing the evaluation of the results for the object
detection algorithm. The detector made relatively few errors in predictions, accurately
classifying the majority of the test samples, based on its favorable outcomes on the met-
rics displayed in Table 3.

The difficulty in accurately categorizing the Bishop pieces is evident in the find-
ings provided in Table 4. Tiny architecture was more successful in categorizing such a
piece. In the instance of Queens, another challenging piece, the Full network provided
the best classification results for both colors of this piece.

Table 4. True and false positives’ classification for the evaluated models

Model
Full YOLO Tiny YOLO

Color Object True
Positive

False
Positive

True
Positive

False
Positive

White

Pawn 7 230 719 7 226 846
Knight 1 059 222 1 065 247
Bishop 818 462 619 281
Rook 1 563 115 1 490 17
Queen 578 270 523 166
King 1 052 201 1 033 66

Black

Pawn 6 970 609 6 990 480
Knight 1 121 40 1 190 80
Bishop 871 821 705 300
Rook 1 734 379 1 718 512
Queen 705 5 741 24
King 1 053 6 1 079 2

Figure 5 shows the efficiency of the Tiny and Full architectures in terms of training
and prediction time. Training took about 2.4 hours using the smaller architecture, almost
five times faster than the full version. A box plot of the time spent on both designs in
classifying a single image is shown in Figure 5(b). The Tiny version’s smaller size directly
affects its execution time, with mean and standard deviation values of 3.08 ± 0.05 ms
compared to 20.54± 0.09 ms for the Full version.



20.4

20.6

20.8

21.0

20.55±0.09

Full YOLO Tiny YOLO
2.9

3.0

3.1

3.2

3.3

3.4

E
x
e
c
u
ti

o
n
 T

im
e
 (

m
s
)

3.08±0.05

Full YOLO Tiny YOLO
0

2

4

6

8

10

12
Tr

a
in

in
g
 T

im
e
 (

h
o
u
rs

)

Architecture Architecture

11.588

(a) (b)

2.371

Figure 5. Models’ usage of GPU computation time. (a) Time required to train both
models for 8000 epochs; (b) Time required to classify a single image

A graphical user interface (GUI), illustrated in Figure 6, was created to facilitate
access to the available tools. The user can import the footage, watch the frames being
analyzed, and alter various parameters and options in real-time.

Figure 6. Interface designed for video analysis of a chess match

4. Conclusion
In this paper, a real-time computational tool for monitoring chess matches was designed.
The pieces on the board could be located and classified using cutting-edge object recog-
nition methods. Their board position was determined using traditional digital image pro-
cessing methods.

According to the results discussed in this paper, the presented approach success-
fully predicts the location of the pieces on the chessboard, with the proposed models
attaining accuracy, recall, and F1-Score values reaching 0.89.

The results demonstrate that the system could track objects with high precision,
even under challenging settings, with pieces partly obscured by others and shadows pro-
jected by the players’ arms.



With the solution described here requiring only a low-cost camera, the tool devel-
oped in this study allows chess tournament organizers to record and broadcast the event’s
games in a more accessible and less expensive manner than that provided by sophisticated
electronic boards.

Considering the vast variety of chess pieces on the market, creating a dataset with
more diverse styles of pieces and boards could be noted as a possible future work sug-
gestion. Thus, the system could immediately serve a wider variety of game scenarios.
Furthermore, a more user-friendly UI is being developed so that the games identified by
the system can be broadcast live online for tournament monitoring.

References
Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2020). Yolov4: Optimal speed and

accuracy of object detection.

de Menezes, R. S. T., Cordeiro, A. M., Magalhães, R. M., and Maia, H. (2021). Classifica-
tion of paintings authorship using convolutional neural network. Sociedade Brasileira
de Inteligência Computacional.

de Menezes, R. S. T., de Azevedo Lima, L., Santana, O., Henriques-Alves, A. M.,
Santa Cruz, R. M., and Maia, H. (2018). Classification of mice head orientation using
support vector machine and histogram of oriented gradients features. In 2018 Interna-
tional Joint Conference on Neural Networks (IJCNN), pages 1–6. IEEE.

de Menezes, R. S. T., Luiz, J. V. A., Henrique-Alves, A. M., Santa Cruz, R. M., and Maia,
H. (2020). Mice tracking using the yolo algorithm. In Anais do XLVII Seminário
Integrado de Software e Hardware, pages 162–173. SBC.

Deng, L., Hinton, G., and Kingsbury, B. (2013). New types of deep neural network learn-
ing for speech recognition and related applications: An overview. In 2013 IEEE in-
ternational conference on acoustics, speech and signal processing, pages 8599–8603.
IEEE.

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., and Thrun, S.
(2017). Dermatologist-level classification of skin cancer with deep neural networks.
nature, 542(7639):115–118.

Girshick, R. (2015). Fast r-cnn. arxiv 2015. arXiv preprint arXiv:1504.08083.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2013). Rich feature hierarchies
for accurate object detection and semantic segmentation. corr, abs/1311.2524. arXiv
preprint arXiv:1311.2524.

Jayaraman, V., Chandrasekhar, M., and Rao, U. (1997). Managing the natural disasters
from space technology inputs. Acta Astronautica, 40(2-8):291–325.

Kogan, F. N. (1997). Global drought watch from space. Bulletin of the American Meteo-
rological Society, 78(4):621–636.

Kriegeskorte, N. (2015). Deep neural networks: a new framework for modelling biologi-
cal vision and brain information processing. biorxiv, page 029876.

Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., McInnes, K., Risbey,
J., Schuster, S., Jakob, D., and Stafford-Smith, M. (2014). A compound event frame-



work for understanding extreme impacts. Wiley Interdisciplinary Reviews: Climate
Change, 5(1):113–128.

Menezes, R., de Miranda, A., and Maia, H. (2022). Pymicetracking: An open-source
toolbox for real-time behavioral neuroscience experiments. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 21459–
21465.

Pan, W. D., Dong, Y., and Wu, D. (2018). Classification of malaria-infected cells us-
ing deep convolutional neural networks. Machine learning: advanced techniques and
emerging applications, 159.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2015). You only look once:
Unified, real-time object detection. arxiv 2015. arXiv preprint arXiv:1506.02640.

Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing
systems, 28.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3):211–252.

Srinivas, S., Sarvadevabhatla, R. K., Mopuri, K. R., Prabhu, N., Kruthiventi, S. S., and
Babu, R. V. (2017). An introduction to deep convolutional neural nets for computer
vision. In Deep Learning for Medical Image Analysis, pages 25–52. Elsevier.


