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Abstract. Manual designing levels for games is a complex task, often demand-
ing time and effort from the game designer. An option for this is using algorithms
to generate such levels, improving its scalability. Currently, such procedural
content generation methods can be guided by hand-crafted rules or, as in more
recent approaches, by learning from existing data. In deep learning, genera-
tive adversarial networks have been proven to effectively generate samples for
a given distribution in an unsupervised manner. Unfortunately, the training and
usage of GANs show many challenges, such as convergence problems, instabil-
ity, and mode collapse. In addition to these problems, we show that learning to
generate valid levels is not trivial. In this paper, we demonstrate an empirical
analysis of the use of GANs, pointing out the best state-of-the-art practices and
highlighting future directions in this research field.

1. Introduction

In the digital game field, Procedural Content Generation (PCG) is used to reduce, in some
cases even eliminate, the manual workload for designing game aspects such as levels,
vegetation, music, texture, and others [Viana and dos Santos 2021]. However, the quality
of PCG results heavily depends on the game designer’s ability to parameterize and map
constraints inside the algorithm. The level design consists of elements and rules to dictate
the gameplay, such as terrain layout, number of enemies and collectibles, and others.
We can procedurally create these elements with some restrictions to avoid generating
unplayable or unbeatable levels. For dungeon games, the variability of levels is essential
to improving gameplay.

Considering the success of Generative Adversarial Networks (GAN) in the image
processing field, with impressive results in image-to-image translation [Zhu et al. 2017],
image-to-text translation [Zhang et al. 2016], image blending [Wu et al. 2017]; some
works have explored it for procedural generation, known as Procedural Content
Generation via Machine Learning (PCGML) [Summerville et al. 2018, Liu et al. 2021,
Chen and Lyu 2022, Gutierrez and Schrum 2020]. Unfortunately, such machine learning
algorithms are data hungry [Adadi 2021], and generating sample cases of valid levels



for dungeon games is challenging. Our experiments compare the performance of GANs
trained with small datasets.

This paper presents an experimental study of dungeon-level generation using dif-
ferent GANs architectures trained on a small amount of synthesized data from a dungeon
game. We devise a playability metric for comparing the number of valid levels gener-
ated by each GAN model, highlighting the problems of each architecture and pointing out
directions for improving results. The main contributions of this work are:

• New PCG approach to dungeon games in the style of maps from the Diablo series;
• Devising a gameplay validation measurement;
• Achieving better results for the placement of game elements by the generated map;
• Evaluation between different GAN architectures for level generation.

2. Generative Adversarial Networks
Generative Adversarial Networks consist of two neural networks (a genera-
tor and a discriminator) competing against each other [Goodfellow et al. 2014,
Goodfellow et al. 2020]. This architecture aims to learn a probabilistic distribution that
best represents the given/target dataset.

Many architectures and loss functions were proposed in the literature to sta-
bilize the training process and improve model convergence. For instance, the re-
placement of fully connected networks, known as VanillaGAN, by deep convo-
lutional networks [Radford et al. 2015], and the use of loss functions based on
Jensen–Shannon divergence [Goodfellow et al. 2014, Goodfellow et al. 2020] or Wasser-
stein divergence [Gulrajani et al. 2017].

GANs are already used in popular games, such as The Legends of
Zelda [Torrado et al. 2020, Zhang et al. 2020] and Doom [Giacomello et al. 2018]. We
aim to generate levels for more challenging scenarios: terrains greater than the
previous ones, with large open areas (very similar to those encountered in Diablo
games [Barman et al. 2018]).

2.1. Training with small dataset
Creating a vast dataset of dungeon levels is challenging and time-consuming for game
designers, as such levels usually must follow restricted game constraints and need a di-
versity of level generations. By using deep learning algorithms, we aim to simplify this
task: just giving some samples of valid levels for a model to learn how to generate many
other valid levels.

However, training GANs with small datasets is challenging, as it quickly leads
training to overfit and, for GANs, to mode collapse. Many works have used data augmen-
tation to mitigate this issue [Ziviani et al. 2022], but few of them are applied to tiled data
level [Ping and Dingli 2020]. In this work, we make use of traditional data augmentations,
as well as a custom-develop transformation tailored for top-down levels. Section 3.2 de-
scribes the augmentations used in our experiments.

2.2. Regularization for GANs
Regularization techniques are widely used to stabilize GANs’ training. Most known
regularization techniques include the use of batch normalization or dropout lay-



ers [Radford et al. 2015], gradient penalty [Gulrajani et al. 2017], and spectral normal-
ization [Miyato et al. 2018]. We analyze the performance of these techniques in the scope
of dungeon-level generation.

3. Methodology
This experimental study aims to verify the applicability of GANs for a dungeon-level
generation. We conduct our experiments in two steps of the pipeline shown in Figure 1.
We can notice the GAN architecture on top, with the generator and discriminator, while
the playability validation can be seen at the bottom. The validation is used as a criterion
to measure the generation potential during the training process, which we discuss in the
following sections.

Figure 1. Pipeline used in the proposed study. It performs training and evaluation
according to playability rules.

3.1. Dungeon Game
The [Padilha 2022] dungeon game used for this work procedurally generates the entire
level terrain (wall and floor) and arrangement of elements, such as access (entrance and
exit), enemies, and collectibles positions. We consider a level valid if it meets the follow-
ing requirements:

1. all levels must have only one portal tile (exit);
2. all levels must have only one player position tile (start position);
3. all floor tiles must be accessible to the player; and,
4. each tile can be only one of floor, wall, player, portal, enemy, coin.

3.2. Data preparation
The data for training the GANs were synthesized from the dungeon game mentioned in
the previous subsection. The dataset was composed of 200 levels of size 32×32. Figure 2
show some synthesized samples.



Figure 2. Samples synthetized with [Padilha 2022] work. Such samples are in-
cluded in our training dataset.

These dungeon levels are represented in a grid format comprising seven different
tiles. The values assigned to the grid are distinct integers that represent the respective tile
and have a visual representation according to the detailed color mapping in Table 1.

Table 1. Game elements with corresponding colors for the generated levels.

Data Value Color Data Value Color
Floor 0 Skeleton 4
Wall 1 Cannon 5

Player 2 Coin 6
Portal 3

After the data acquisition step, these data were encoded through one-hot encoding
and applied some data-augmentation techniques. Following traditional data augmentation
transformations used on level generation [Ping and Dingli 2020], we have applied vertical
and horizontal flips and 90º rotations. We have also tailored a binary dilation as data
augmentation to increase the expressiveness of the dataset.

3.3. Architectures
Many GAN architectures exist in the literature; however, only some works explore their
applications for level generation in dungeon games.

3.3.1. Vanilla GAN

The architecture proposed by [Goodfellow et al. 2014], composed of fully connected lay-
ers (Table 2), is adjusted according to the loss function described in Equation 1.

V (G,D) = Epdata(x))logD(x) + Epg(x)log(1−D(G(z)) (1)

Table 2. Implementation of the VanillaGAN architecture based
on [Goodfellow et al. 2014].

Layer Discriminator Generator
Type in features, out features Type in features, out features

1 Linear-LeakyReLU (7168,512) Linear-ReLU (30,256)
2 Linear-LeakyReLU (512,256) Linear-BN-ReLU (256,1024)
3 Linear-Sigmoid (256,1) Linear-Tanh (1024, 7168)

The discriminator tries to maximize the loss function by learning to classify the
output x into real – following the function D(x) – and the generated data G(z) into fake



– following the function D(G(z)), where z refers to the latent space as input to the gener-
ator. The generator acts directly on the second term of the equation to minimize the loss
function (1−D(G(z))) maximizing the output of G(z); thus, the generator tries to trick
the discriminator into labeling the generated data as real.

We used VanillaGAN as a baseline for our experiments, evaluating whether fully
connected networks can learn the data distribution of dungeon levels. The generator of
this architecture use tanh in the output layer, and the SGD optimizer (Stochastic Gradient
Descent), being the learning rate defined in 0.025 and momentum 0.5.

3.3.2. Deep Convolution GAN

Convolutional architectures are computationally less expensive based on fully-connected
layers, popularly used in problems involving images [Gu et al. 2018, Li et al. 2021]. We
perform experiments using conv layers, followed by Bach Normalization (BN) and up-
samples layers. The detailed architecture descriptions can be seen in Table 3.

Table 3. Implementation of DCGAN architecture based on [Radford et al. 2015].
Layer Discriminator Generator

Type n filters, k size, stride Type n filters, k size, stride
1 Conv-LeakyReLU-Dropout (7,16), (3,3), (2,2) Conv-BN-ReLU-Upsample (20,64), (3,3), (1,1)
2 Conv-LeakyReLU-Dropout-BN (16,32), (3,3), (2,2) Conv-BN-ReLU-Upsample (64,32), (3,3), (1,1)
3 Conv-LeakyReLU-Dropout-BN (32,64), (3,3), (2,2) Conv-Tahn (32,7) (3,3), (1,1)
4 Linear-Sigmoid (1024,1)

Based on the DCGAN architecture [Radford et al. 2015], we adapted the input
layer of the generator to a matrix structure, which receives a noise matrix as input. We
follow the same hyperparameters of [Radford et al. 2015]: Adam optimizer with learning
rate 0.0002 and β1 = 0.5.

3.3.3. Wasserstein GAN with gradient penalty

[Arjovsky et al. 2017] presents a modification in the loss function to improve the fit of the
predictive model. Based on the Wasserstein distance, the Wasserstein GAN (WGAN) ar-
chitecture is defined according to Equation 2, where x̃ = G(z) refers to the data generated
from a latent space z.

W (Pr,Pg) = Ex Pr [D(x)]− Ex̃ Pg [D(x̃)] (2)

The authors use the term critic to name the discriminator, as they do not train the
critic to classify but to favor the generator’s adjustments. Like VanillaGAN, the critic
tries to maximize the distance between the real data distributions of the generated data. In
contrast, the generator attempts to approximate these distances with generations closer to
the real data distribution D(x̃).

The WGAN with Gradient Penalty (WGANGP) architecture included this penalty
in the original WGAN function and the penalty coefficient defined by λ (Equation 3). The



generator is adjusted n critical iterations during the training process for each epoch iter-
ation. In this way, it is possible to train the critic to its optimal model without presenting
the mode collapse problem.

L = Ex̃ Pg [D(x̃)]− Ex Pr [D(x)] + λEx̂ Px̂
[(∥ ∇x̂D(x̂) ∥2 −1)2]︸ ︷︷ ︸

penalty

(3)

We perform experiments with this approach to compare the use of gradient penalty
as a regularization method on tiled dungeon data. The WGANGP implementation uses the
same DCGAN architecture [Radford et al. 2015]. The hyper-parameters were the same
defined by [Gulrajani et al. 2017]: Adam optimizer with learning rate 0.0001, β1 = 0 and
β2 = 0.9, penalty factor λ = 10 and number of iterations of the critic ncritic = 5. We trained
this network with variations of the learning rate value for a better network adjustment.

3.4. Metric evaluation
Evaluating the performance of generative models is not trivial, and we have found no
metric tailored for this experimental case. Based on [Torrado et al. 2020], we have de-
vised a playability metric that quantitatively measures valid levels in a subset of GAN’s
output. A given level must match the specifications defined according to Equation 4 to be
considered valid.

Me =


∑

Me(i, j) = 1; e ∈ 2, 3

f(M0) = 1
(4)

where M is the level matrix composed of e game elements (channels). The first term
of the equation is related to rules 1 and 2, while the second term refers to rule 3 from
Section 3.1. The function f(M0) counts the number of 4-neighbor-connected floor tiles
(we expected a single connected component). In other words, such metric measures how
many valid levels each model can generate.

4. Experimental Results
We performed the experiments on a hardware device with a Linux Mint 20 Cinnamon
operating system, a Core i5 processor with 16 GB of RAM, and an NVIDIA Titan Xp
GPU with 12 GB of VRAM. In addition, we performed a quantitative analysis for each
experiment, training the neural network for 10,000 epochs and evaluating each epoch with
the proposed metric with a population of 1,000 samples. We have picked the epoch with
the best metric for each GAN architecture in all training.

4.1. Comparison of architectures
VanilaGAN was set as the baseline for the experiments. According to our playability
metric, the predictive model produced only 4.8% of valid levels when training the network
for 360 epochs. However, the quality of the levels did not present variability due to the
generated samples having one big blob of floor tiles (with no internal walls), besides the
disposition of other elements being majoritarian near walls, as shown in Figure 3.

After 3,000 training epochs, the model stopped learning, stagnating in the same
generation (Figure 4). The traditional configuration of the VanillaGAN cannot learn the
behavior of the target data, and it is very susceptible to the problem of mode collapse.



Figure 3. Level generated by VanillaGAN architecture. We can see few variability,
with one large terrain blob, no corridors and elements placed close to the wall.
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Figure 4. Visualization of generator outputs in each training epoch on Vanilla-
GAN, DCGAN, WGAN and WGANGP architectures.

We tested the architectures DCGAN, WGAN, and WGANGP for the following
experiments, all using the same convolutional architecture. We adjust the critic iteration
(WGAN) and lambda (WGANGP) to improve the output results. In our experiments,
there was no significant difference between the Adam and RMSprop optimizers; there-
fore, we prefer using the second due to reduced hyperparameters.

We obtained a longer training time with convolutional networks than fully con-
nected networks. The WGAN architecture achieved 7.4% of valid levels with 7,466 train-
ing epochs and remained stable over 10,000 epochs. However, DCGAN and WGANGP
showed instability when trained for over 3,000 epochs. These models had also overfit to a



behavior similar to VanillaGAN results when achieving 4,147 and 5,626 epochs, respec-
tively.

Analyzing the training up to 4,000 epochs, DCGAN produced 8.7% valid levels
by training the model for 594 epochs, and WGANGP obtained 8.6% valid samples with
504 training epochs. In addition, we observed that dungeon-level training using convo-
lutional networks could better learn the distribution of terrain, with slightly more varied
configurations of internal walls, as shown in Figure 5.
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Figure 5. Level generated by each convolutional network architecture. We can
see some corridors in generations using DCGAN and WGAN architectures and
few variabilities in the terrain layout of generations with WGANGP architecture.

4.2. Comparison of regularization techniques

Traditional convolutional architectures were originally introduced using Batch Normal-
ization layers in Discriminator/Critic network. [Miyato et al. 2018] propose a technique
to stabilize the training process in GANs called Spectral Normalization (SN). We evalu-
ated the impact of replacing BNs for SNs.

The use of SN layers resulted in a delay in the convergence of the predictive mod-
els. For example, the architectures DCGAN-SN, WGAN-SN, and WGANGP-SN took
9,407, 3,555, and 4,185 epochs to reach the values shown in Table 4.

Table 4. Playability comparison of different regularization methods for each ar-
chitecture with 10,000 epochs.

Architecture Regularization Valid level (%)

DCGAN BatchNormalization (mode collapse)
SpectralNormalization 13.9

WGAN BatchNormalization 7.4
SpectralNormalization 11.4

WGANGP BatchNormalization (mode collapse)
SpectralNormalization 2.9



Even being a less optimized approach, the results of the generations became better
visually. In an empirical evaluation, the levels are similar to the target data. We observed
that GANs’ architectures with SN are less susceptible to mode collapse (when compared
to using BNs), as shown in Figure 6. Another issue found in BN architecture is that the
elements tended to remain close to the wall. The samples generated from the training
of the GAN with SN had the elements more sparsely arranged across the terrain. We
believe that the SN better handles elements distribution, i.e., making channels with less
occurrences (player, portal, enemies, and coins) having equal importance as the floor and
wall channels.
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Figure 6. Visualization of generator outputs in each training epoch on
VanillaGAN-SN, DCGAN-SN, WGAN-SN, and WGANGP-SN architectures. We can
see better results in terrain layout and placement of elements.

5. Discussion

The experiments allowed observing the performance of GANs trained with different lay-
ers, loss functions, and regularization techniques. We adopted a playability metric to
measure the performance, representing the percentage of valid levels generated in a sub-
set. The training of different convolutional architectures and loss functions had little
impact on improving level generation. On the other hand, using Spectral Normalization
dramatically enhances the playability metric of GANs’ results.

As mentioned, all GANs based on fully-connected layers got poor results. An
explanation for this is that fully-connected layers are much more prone to overfitting than



convolutional layers, especially in the scenario of small datasets. Another advantage of
using convolutional networks is the flexibility of using the generator for creating variable-
size levels just by using latent vectors of different resolutions. We experimented with the
models trained with SN in the task for generating 64×64 levels. The architectures achieve
a performance of 0.4%, 0.9%, and 0.1%, respectively, in DCGAN-SN, WGAN-SN, and
WGANGP-SN. Figure 7 shows the results of this experiment.
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Figure 7. Level generated in different resolutions of each convolutional network
architecture using SN.

Despite the small value of our playability metrics, all evaluated models quickly
learn to generate valid terrains; in less than 1,000 epochs, they reach values between 80%
and 90% for valid terrains. Empirically, we observed from the VanillaGAN generations
that the terrains tend to be wider (Figure 3), while in the convolutional ones, it is possible
to observe some occurrences of corridors (Figure 5). Placing the elements properly was
more challenging than creating the terrain topology of the levels.

In this training, the networks had a lot of difficulty placing elements (player, en-
emies, coins) on the terrain. VanillaGAN and GANs with convolutional architectures
suffered from the problem of elements being arranged near walls. We assume that the
difficulty of learning the disposition of the elements is due to an imbalance between ter-
rain (floor and walls) and elements (player, portal, enemies, and coins), which can be
minimized through regularization techniques.

6. Conclusion and Future Work
This work presented different approaches based on GANs for generating top-down dun-
geon levels. We demonstrate the entire pipeline of data synthesis and organization, data
augmentation, training in different architectures, and validation of the generated results.

The experiments allowed us to observe the learning ability of the approaches for
generating levels with few data and some classic problems of GANs, such as the difficulty
of convergence, mode collapse, and training instability when trained with traditional ar-
chitecture. We mitigate these problems using the SN technique, allowing an improvement
in the convergence of the predictive model, such as overcoming overfitting. Furthermore,
empirically we noticed a greater output similarity with the target data from this approach,
demonstrating the potential for generating new samples within the same domain.



As a limitation of this work, there is still a minimal result of valid levels. There-
fore, we intend to explore new ways of tuning the architecture and using data augmenta-
tion techniques to increase model convergence. To validate the levels, it was necessary to
implement heuristics that met the game elements’ disposition rules. Therefore, we used
no metric to evaluate the variability of levels generated in the experiments. In future work,
we intend to evaluate diversity based on the work of [Choi et al. 2020], using Frechet’s
inception distance (FID) and Learned Perceptual Image Patch Similarity (LPIPS) metrics.
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