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Abstract. Recent advancements in technology have enabled the emergence of
Industry 4.0, this term is used to describe the integration of various advanced
technologies such as artificial intelligence and robotics in industrial settings.
The presence of defective products during production incurs additional costs,
and traditional manual methods of equipment inspection prove to be ineffi-
cient in such a dynamic environment. In this study, we introduce a robot de-
signed specifically for this scenario, capable of performing tasks that require
autonomous movement to specific areas of an industrial plant. To achieve this,
we employ the concept of Edge AI, applying artificial intelligence on a localized
edge computing device. The robot utilizes computer vision through the state-
of-the-art YOLOv7 CNN and incorporates feedback control to facilitate its lo-
comotion. The hardware components of this robot include a Jetson Xavier NX,
Raspberry Pi 4, a camera, and a LIDAR. Additionally, we conducted a compre-
hensive performance analysis of the object detection method, measuring metrics
such as frames per second (FPS), CPU and GPU consumption, and RAM usage.

1. INTRODUCTION

The advancements in technology in the 21st century have facilitated the emergence of
the fourth industrial revolution, commonly known as industry 4.0. This revolution en-
tails the integration of various digital technologies like artificial intelligence, Internet of
Things, and blockchain, as well as other technological advancements such as robotics,
digital twins, and cyber-physical systems, all within industrial production environments
[Hassoun et al. 2022]. As a result, there is an increasing trend towards enhanced collabo-
ration between robots and human workers in industrial settings, with the aim of improving
safety, flexibility, and productivity.

The presence of defective products not only increases costs but also disrupts man-
ufacturing processes. Efficient inspection routines for proactive anomaly and problem
detection play a crucial role in the effective maintenance of industrial plants. Traditional
manual inspection methods are associated with heavy workloads, risks, and limited effi-
ciency. Moreover, they fail to consistently meet the rising quality standards of modern
production means. Consequently, the focus of research worldwide has turned to robots to
mitigate these issues [Ebayyeh and Mousavi 2020].



A key component of industry 4.0 is the flexible manufacturing system, an
advanced production system that interconnects machines, workstations, and logisti-
cal equipment throughout the manufacturing process. This system is designed to
handle highly complex manufacturing tasks with significant topological diversity, en-
suring timely delivery and minimal manufacturing costs despite frequent changes
[Florescu and Barabas 2020]. Accordingly, the need for autonomous movement of the
automated inspection agent arises, enabling it to navigate autonomously to inspection
sites.

To address this need, we propose an autonomous locomotion method based on
Edge AI technology. Our objective is to introduce a robot capable of autonomously mov-
ing to specific locations within the production plant. The robot incorporates two sensors:
a camera and a LIDAR. The camera captures images, which are then processed using a
CNN for object detection [Albawi et al. 2017a]. This enables the robot to identify tar-
get positions. The LIDAR, on the other hand, measures the robot’s distance to the target
position and facilitates its navigation towards the required locations.

2. THEORETICAL REFERENCES
This section provides the essential theoretical framework required for the development of
the robot and its autonomous locomotion methodology.

2.1. Autonomous Mobile Robots

An autonomous mobile robot (AMR) is a system specifically designed to operate and
navigate in environments that are unpredictable and partially unknown. The primary ob-
jective of an AMR is to navigate continuously and avoid collisions with obstacles within a
confined environment that is known to the robot [Ishikawa 1991]. The key characteristic
of an AMR is its ability to navigate and move without significant human intervention,
following a predefined path, whether it is indoors or outdoors.

The foundations of mobile robotics encompass three essential components: loco-
motion, perception, and navigation [Alatise and Hancke 2020]. In indoor environments,
mobile robots typically rely on various sensors, including floor plans, sonar-based local-
ization systems, and inertial measurement units (IMUs). These sensors enable the robot
to establish an internal representation of its environment, which is crucial for its proper
functioning.

2.2. Convolutional Neural Networks

Machine Learning is a research field within the broader domain of Artificial Intelligence
(AI) that focuses on developing techniques capable of extracting meaningful concepts
from data samples. One commonly used method in Machine Learning is artificial neural
networks (ANNs), which can be understood as non-linear mathematical models used for
prediction or content generation based on input data. ANNs consist of interconnected
layers of neurons, which serve as the fundamental units of the network. The connec-
tions between neurons, known as synapses, transmit the output signal of each neuron to
the input of the next layer, allowing information to propagate throughout the network.
During the training phase, the synapses are assigned weights that enable the model to
appropriately process the information [Krogh 2008].



Deep Learning refers to the utilization of ANNs with a significant number
of layers. The interest in having deeper hidden layers has shown superior perfor-
mance compared to classical methods, particularly in pattern recognition applications
[Albawi et al. 2017b]. One widely known type of deep neural network is the Convolu-
tional Neural Network (CNN). CNNs derive their name from the convolution operation,
which is a mathematical operation performed between matrices. CNNs excel in various
machine learning tasks and exhibit multiple layers that detect hierarchical patterns. These
layers include convolutional layers, which employ filters to analyze input images and
generate feature maps as output. Pooling layers are used to reduce information from the
previous layers, while upsampling layers can be employed to enhance information. CNNs
find extensive application in tasks such as object detection, particularly in the analysis of
image data [Arulprakash and Aruldoss 2022].

2.3. Edge AI

Current applications of artificial intelligence, such as deep learning, heavily rely on
substantial computational power for their execution. This poses a technical challenge
when it comes to adapting artificial intelligence applications for embedded devices
[Li et al. 2019]. Edge AI offers a novel approach that leverages the concepts of Edge
Computing to develop artificial intelligence applications.

Edge computing and artificial intelligence have inherently conflicting require-
ments. AI typically demands more processing power, whereas edge computing empha-
sizes hardware miniaturization and increased mobility. Despite this challenge, there is
a growing trend of combining these two concepts, particularly in the domain of mobile
edge computing [Chen and Ran 2019]. The concept of Edge AI [Wang et al. 2019] aims
to address this challenge by adapting AI algorithms and hardware models to enable the
development of applications within this context.

3. RELATED WORKS
In the study by Szrek et al. [Szrek et al. 2022], a mobile inspection platform based on
autonomous Unmanned Ground Vehicles (UGVs) was proposed. The platform utilized
various sensors such as RGB image, sound, and gas sensors. The system employed a lab-
oratory setting with a dedicated test cart for research purposes. The process was divided
into inspection planning and execution, controlled by a module based on an STM32 mi-
crocontroller. The localization and mapping were achieved using a SLAM algorithm, with
communication between modules facilitated by MQTT. This approach relied on predeter-
mined algorithms, sensor fusion, and heavy modules, but did not incorporate artificial
intelligence (AI) as in the current work.

Dandurand et al. [Dandurand et al. 2022] introduced an all-weather autonomous
inspection robot for electrical substations in severe winter conditions. The system utilized
real-time kinematic positioning (RTK) for localization and an IMU for attitude awareness.
Although the robot was designed for inspection purposes, it did not rely on AI and em-
ployed fixed algorithms for its tasks, distinguishing it from the current approach.

Salimpour et al. [Salimpour et al. 2022] proposed a deep-learning framework for
monitoring anomalies and changes in environments at the pixel level using image pairs.
The study employed neural network architectures such as SuperPoint and Superglue for



change detection. While they utilized a terrestrial robot with multiple sensors, including
RGB camera and a LIDAR, the focus of their work differed from the current study, which
emphasizes real-time constraints and hardware profiling.

Cheng et al. [Cheng and Xiang 2020] developed an autonomous trail-type inspec-
tion robot for monitoring electrical distribution rooms. The robot was equipped with
various sensors, including an optical zoom camera, a thermal imaging camera, and a par-
tial discharge detector. Their system relied on computer vision techniques for recognition
tasks, but did not incorporate AI and operated on fixed trails, unlike the current work.

Hercitk et al. [Hercik et al. 2022] presented an autonomous industrial mobile
robot designed for cooperation with the production line and logistical tasks. They uti-
lized a commercial robot from Mobile Industrial Robots (MiR) and employed a central-
ized control station (MiR FLEET) and an I/O module (MiR WISE) for communication.
This application had a different purpose and operational approach compared to the current
study.

While several applications share similarities with the current work in terms of
autonomous navigation and inspection tasks, they differ in various aspects. The proposed
approach in this work focuses on a lean system with a minimal sensor set, relying on AI
for inspection tasks in an open space. The study also examines real-time constraints and
hardware profiling to assess how the Edge platform supports the proposed tasks.

4. METHODOLOGY

In this section, we will provide a comprehensive overview of the functioning of our Au-
tonomous Mobile Robot (AMR). We will delve into its physical characteristics, including
its mechanical design, the approach employed for autonomous locomotion, and the hard-
ware components involved. These components are actuators, controllers, sensors, and the
crucial Edge AI device that facilitates intelligent decision-making.

4.1. Physical attributes

4.1.1. Mechanics

The robot is enclosed within a metal housing that takes the shape of a parallelepiped,
featuring an upper part that can be opened like a trunk. Its physical dimensions are as
follows: 22cm width, 34cm length, and 20cm height. To facilitate its movement, the robot
is equipped with four omnidirectional wheels positioned at the corners of the housing.
Figure 1 shows the robot and provides a visual representation of its dimensions. The
camera is positioned at the upper front section of the robot, while the LIDAR is situated
in the upper part. The overall weight of the robot is 3.2kg.

The implementation of omnidirectional wheels offers high maneuverability. How-
ever, the mechanical structure of these wheels is comparatively complex, necessitating the
deployment of separate steering and control systems for each individual wheel. The spe-
cific type of omnidirectional wheels employed in the robot is known as mecanum wheels.



Figure 1. Robot dimensions.

4.1.2. Hardware

The robot utilizes four individual DC motors with a voltage of 12 volts and a speed of
200 rpm, with each motor directly connected to an individual wheel. For motor control,
the robot employs a combination of hardware components: the Raspberry Pi 4 Model B,
in conjunction with the Stepper Motor HAT V0.1, which serves as the motor driver.

The Raspberry Pi 4 Model B boasts a 64-Bit quad-core processor, capable of run-
ning at frequencies of up to 1.5GHz, accompanied by 4GB of RAM. It supports dual-band
2.4/5.0 GHz wireless networking, Bluetooth 5.0/BLE, True Gigabit Ethernet, USB 3.0,
and features USB-C power capability. The controller is a composite hardware system,
consisting of the Raspberry Pi as the high-level controller and the Stepper Motor HAT as
the low-level controller.

The Edge AI device employed is the NVIDIA Jetson Xavier NX development kit,
equipped with a 6-core NVIDIA Carmel ARM v8.2 64-bit CPU. It integrates a GPU with
384 NVIDIA CUDA Cores, 48 Tensor Cores, and 2 NVDLA (NVIDIA Deep Learning
Accelerator), complemented by 8GB of LPDDR4x RAM. The connectivity options in-
clude Gigabit Ethernet and a WiFi/Bluetooth interface (M.2 Key E), along with 4 USB
3.1 ports and HDMI/DP video outputs. The robot incorporates the YDLIDAR X2 as a
sensing unit, capable of operating at a range frequency of 3000Hz and a scanning fre-
quency of 5-8Hz, covering a range of 0.12-8m. Additionally, it features a 30FPS (frames
per second) Logitech C920 camera with full HD resolution. The Raspberry Pi is pow-
ered by a 10000mAh power bank, which supplies a DC5V 2.1A output. The robot also
includes two 11.1V Lipo batteries.

The sensors are positioned on the upper external part of the robot and are con-
nected to the Jetson. The Jetson functions as an Edge AI platform, processing the data
from the sensors and executing the navigation methodology. A direct Ethernet connec-
tion links the Jetson to the controllers (Raspberry Pi + Stepper Motor HAT), enabling the
Raspberry Pi to transmit individual power commands to each motor in real-time. Table 1
provides an overview of the functions performed by each hardware component, illustrat-
ing the hierarchical relationship between the different levels.



ROLE DEVICES
Actuators 4 DC Motors

Low Level Controller Stepper Motor HAT
High Level Controller Raspberry Pi 4

Edge AI Device NVIDIA Jetson Xavier NX
Sensing Câmera + LIDAR

Table 1. Table of hardware roles.

4.1.3. Locomotion Method

The robot’s method of locomotion is based on image object detection using a Convo-
lutional Neural Network (CNN), specifically the YOLOv7 model, which allows for the
identification of objects in images [Wang et al. 2022]. Once an object is detected, the
robot moves towards it until it reaches a close enough proximity to perform a desired
task, such as inspection. The objects detected in the image serve as target locations for
the robot’s positioning.

One notable advantage of using YOLOv7 is its ease of training with images of the
desired target locations. In this work, traffic cone images are utilized to simulate these
target locations, although other specific objects or machines in an industrial plant could
also be used.

The locomotion method follows a state machine logic, depicted in Figure 2. Each
state within the state machine is explained in detail, along with the transitions between
states.

Figure 2. State machine for the locomotion method.

Pre configured movement: Our locomotion method takes as input a set N that
contains lists of previously configured sequential movements. This step is currently used
by the robot for obstacle avoidance. Since the operating plan is known in advance, a
sequence of pre-configured movements can be employed if the robot needs to deviate
from an obstacle until the camera can detect the next target location. These movement



sequences consist of predefined movements in the four directions, each executed for a
predetermined duration. During this state, the robot executes the list of movements ni

for each entry in the set. If there are no obstacles present at the operation site, the set of
previously configured movements will be empty. Once the execution of the movements is
completed, the robot transitions to the search state.

Search: In this state, the robot is actively searching for the next target location. It
achieves this by rotating around its own axis until it detects the object that represents the
following objective location. The rotation is performed in a non-continuous manner, with
short pauses between rotations to ensure that the camera image remains clear and avoid
blurring, which could make object detection challenging. Once the robot successfully
detects the object, it will start moving towards it. This task of moving towards the detected
object is carried out in the tracking control stage.

Tracking control: In this state, the robot actively moves towards the target loca-
tion using a feedback control method. The variable being controlled in this case is the
horizontal center of the detected object. The robot compares the horizontal center value
of the object with the desired value, which is the center of the image. If the object is
positioned more to the right of the image, the robot applies more power to the wheels on
the left side to correct its trajectory and move towards the target location and vice versa.

The percentage of power applied to the right side motors RP is defined by Equa-
tion 1, and the percentage of total power applied to the left side motors LP is defined
by Equation 2. These equations utilize the horizontal distances from the center of the
detected object to the left ld and right rd edges of the image. Figure 3 illustrates the cone
detection and provides visual representations of the measurements used to calculate the
power applied to each motor.

Figure 3. Cone detection and the measures used to define the motors power at
tracking control stage.

RP = min(200 ∗ (rd/iw), 100) (1)

LP = min(200 ∗ (ld/iw), 100) (2)

The tracking control state utilizes a feedback control model, which is represented
in Figure 4. In this model, r represents the reference value, which in this case is the



horizontal center of the image. The error e is calculated as the difference between the
horizontal center of the image and the horizontal center of the detected object. The control
action u is determined using Equations 1 and 2 to calculate the power applied to each
motor. The variable y is updated based on the control action, and Y m represents the new
measurement of the variable. Figure 4 provides a visual representation of this feedback
control model used in the tracking control state.

Figure 4. Traditional feedback control model applied to our AMR.

The robot remains in the tracking control state until one of two conditions is satis-
fied. The first condition is when the robot reaches the target location, which is determined
by the LIDAR reading indicating close proximity to the detected object. If this condition
is met, the robot transitions to the task execution state. The second condition is when the
robot loses sight of the detected object. In such a case, the robot returns to the search state
to locate the next target location. These conditions and state transitions are illustrated in
Figure 2.

Task execution: The task execution in this work is a generic abstraction that
can encompass various tasks performed by the robot in an industrial plant. These tasks
may include visual or physical inspections of machines, data reading, material or tool
delivery, and other relevant operations. Once the task execution is completed, the robot
will conclude its work if all the tasks have been executed. Otherwise, it will transition to
the pre-configured movement state, as depicted in Figure 2.

5. EXPERIMENTAL RESULTS
To conduct our tests, we trained YOLOv7 using a dataset of traffic cone images. We col-
lected a total of 584 images from the internet, with 537 images used for training and 47 for
validation. The YOLOv7-Tiny model was utilized for the training process, implemented
with PyTorch and GPU support. Our application was developed in Python3, utilizing the
OpenCV library.

To validate our methodology, we conducted tests in a laboratory setting using four
traffic cones as target locations for the robot’s locomotion. The robot demonstrated full
capability in reaching all the objective locations in sequence. The use of pre-configured
movements proved effective in avoiding obstacles, but it requires prior knowledge of the
operational site. Occlusion of the detection object can also be overcome using the list of
pre-configured motions. However, to avoid relying solely on predetermined movements,
the implementation of a navigation method incorporating LIDAR data and a SLAM algo-
rithm, such as SLAM (Simultaneous Localization and Mapping), would be necessary.

For our experiments, we used Ubuntu 18.04 LTS as the Jetson’s operating system.
In idle state, the average RAM consumption is 19%, CPU consumption is 1%, and GPU
consumption is 0%.



To evaluate the performance of our Edge AI device, we conducted profiling and
FPS (Frames Per Second) tests. Profiling allowed us to measure the hardware usage of
the application, indicating the potential for adding more sensors and processing methods.
FPS, on the other hand, provided insight into the speed at which the system processes
information from the environment. The measurements for profiling included the average
usage of the 6 CPU cores, average RAM usage, and average GPU usage.

We performed two types of implementations for the tests: sequential and parallel.
In the sequential implementation, object detection occurs after image capture, while in the
parallel implementation, capture and detection happen concurrently and in synchronized
threads, ensuring each frame is processed only once. We tested these implementations
using three different image capture resolutions: 720x480, 1280x720, and 1920x1080. We
used this resolutions because they are standard when dealing with images. The power
mode used for the Jetson was the 20 watts mode, utilizing all six cores.

Table 2 displays the average FPS rates for each tested implementation and reso-
lution. Notably, the parallel implementation with a resolution of 720x480 achieved the
highest FPS rate. This resolution was the only one where the average detection time was
lower than the average capture time. Consequently, it was the only configuration where
the detection of the object itself acted as the performance bottleneck. The parallel imple-
mentation outperformed the sequential implementation due to the simultaneous capture
and detection processes.

On the other hand, the sequential implementation couldn’t achieve the same speed
since the total FPS rate is influenced by the sum of the capture time and detection time.
While the average detection time doesn’t vary significantly with increasing resolution,
the capture time has a more pronounced effect. This outcome arises from the fact that
YOLOv7’s detection process operates on a default image size of 640x640. As a result,
every image submitted for detection is resized to these dimensions. For the resolutions of
1280x720 and 1920x1080, we observed that the bottleneck of the parallel method shifted
to the image capture time, which was comparable to the combined capture and detection
times of the sequential method.

Res 720x480 Res 1280x720 Res 1920x1080
SEQ. PARL SEQ. PARL SEQ. PARL

FPS 19.99 25.47 9.99 9.99 4.99 4.99
Process t. (ms) 39.01 38.79 40.69 41.19 42.59 42.41
Capture t. (ms) 10.89 12.07 59.22 99.97 157.30 200.09

Table 2. Table of frames per second (FPS), capture time, and process time. The
first row includes different resolutions, with ’SEQ.’ denoting sequential and
’PARL.’ denoting parallel processing.

Figures 5, 6, and 7 illustrate the hardware consumption over a 1-second window
with 50 samples taken at intervals of 20 milliseconds. These figures provide a visual
representation of the hardware usage during the tests.

Figure 5 presents the profiling results specifically for the 720x480 resolution. It
is worth noting that in the sequential implementation, which achieved the highest FPS
among all the tests, there is no idle time for the GPU. Conversely, in the parallel im-
plementation, there are periods of GPU idleness where its consumption drops to 0%.



Figure 5. Profiling results for 720x480 resolution.

Additionally, the average CPU consumption was higher in the parallel implementation
compared to the sequential implementation.

Figure 6. Profiling results for 1280x720 resolution.

In Figure 6, the profiling results for the 1280x720 resolution are depicted. Both
the sequential and parallel implementations exhibit instances of GPU idleness, and their
average CPU consumption is relatively similar.

Figure 7. Profiling results for 1920x1080 resolution.



In Figure 7, the profiling results for the 1920x1080 resolution are displayed. Even
in this resolution, there are instances of GPU idleness. The parallel implementation show-
cased the lowest average CPU consumption, which explains why it had the longest capture
time compared to other experiments. The sequential implementation exhibited more sig-
nificant variation in average CPU usage. The average RAM usage remained constant at
61% across all tests.

6. CONCLUSIONS

In this study, we introduce a robot designed for precise movement within an industrial
plant, incorporating the concept of Edge AI into its architecture. The robot’s navigation
is based on a state machine framework, utilizing computer vision and feedback control
mechanisms.

The proposed solution uses computer vision techniques to detect specific locations
within the industrial environment. This detection process relies on a CNN, specifically
YOLOv7. Once the target location is identified, feedback control is employed to guide
the robot towards the desired destination. Laboratory testing confirmed the robot’s ability
to perform movement tasks successfully under controlled conditions.

To assess system performance, a series of tests were conducted to evaluate image
capture and object detection across different camera resolutions and implementation ap-
proaches, including sequential and parallel methods. The impact of these variations on
object detection performance was analyzed.

The highest achieved frame rate was 25 FPS, achieved with the parallel implemen-
tation and a resolution of 720x480. This finding indicates that YOLOv7 meets real-time
requirements for object detection on the Jetson Xavier NX platform. Additionally, a com-
prehensive profile of the tests was conducted, examining CPU, RAM, and GPU utilization
for each resolution and implementation type.

Future work encompasses several areas. Firstly, validation in real-world environ-
ments will provide insights into the robot’s performance under more challenging condi-
tions, such as mining scenarios, workshops, and warehouses. Integration of sensor fusion
techniques could enable autonomous navigation without relying on explicit movement
data inputs. Additionally, the application of reinforcement learning and other AI tech-
niques, as well as the incorporation of probabilistic elements into the state machine using
Markov Chains, holds potential for enhancing the robot’s overall functionality.
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