
NoiseAware: System for Real-Time Noise Monitoring in
Smart Cities

Maurı́cio Moreira Neto2, Francisco Gomes1,2,3, Vitória Silvestre 1

1Group of Computer Networks, Software Engineering and Systems (GREat)
2 Graduate Program in Computer Science (MDCC)
Federal University of Ceará – Fortaleza, CE – Brasil

3 Engine Lab
Federal University of Ceará – Crateús, CE – Brasil

maumneto@ufc.br, almada@crateus.ufc.br, vitorianicolau3@gmail.com

Abstract. The Internet of Things (IoT) is an emerging paradigm that combines
several technologies. IoT provides the interconnection of physical devices for
exchanging information among them and provides services to the users. The ur-
ban environment is susceptible to various kinds of noise from different sources.
Therefore, a system is needed to monitor the urban environment’s noise level.
NoiseAware is a noise monitoring system for smart cities. NoiseAware moni-
tors the noise levels of a particular location and sends an alert to the competent
bodies to operate on site when the level reaches the allowable threshold. Ac-
cording to the literature review conducted, we did not find any work related to
noise monitoring that has systems integration, accords real-time requests, and
uses more than one communication protocol. NoiseAware has considerable ser-
vice availability (approximately 81%) for system users, and the load tests show
it has relevant request capability.

1. Introduction
The emergence of the Internet of Things (IoT) can be attributed to the advance-
ments in wireless sensor network technologies, embedded systems, and microelectron-
ics [Junaid et al. 2017, Corotinschi and Găitan 2015]. IoT is a paradigm that facilitates
the interconnection of physical devices to exchange information and provides services for
users [Junaid et al. 2017, Bikmetov et al. 2017, Kang et al. 2016]. These devices monitor
and act on the environment where they are placed, making IoT applicable in various areas
such as smart cities, precision agriculture, e-health, and others.

Environmental risks, such as sound and air pollution, are prevalent in all countries
and are treated as essential targets of current urban monitoring [Al-Saloul et al. 2015].
Traditional methods for measuring noise pollution levels involve noise measurement
stations or wireless sensor networks, which have limitations regarding distance, main-
tenance, and management, making them expensive regarding human and financial re-
sources. Therefore, there is a need for new low-cost strategies that can assist in measuring
noise pollution levels in urban centers [Lokhande and Mohsin 2017, Hong et al. 2017].

To address the problems presented and improve urban noise monitoring in smart
cities, we propose the NoiseAware system. NoiseAware is a noise monitoring system that
utilizes sensor nodes throughout the city to monitor noise levels in various locations. If



the system detects that the noise level exceeds the threshold allowed by law, an alert will
be sent to the relevant authorities to investigate the violator. This approach eliminates
the need for local inhabitants to report infractions. In addition, it has a history of noise
records in the locality.

The remainder of this article is organized into the following sections. Section 2
describes the NoiseAware system in detail, including its architecture and functionality.
Section 3 presents the materials, goals, and discussion of the results of experiments con-
ducted with the NoiseAware system. Section 4 discusses related work on noise monitor-
ing in urban environments. Finally, Section 5 presents the conclusions and suggests future
research directions.

2. NoiseAware Components
In this section, we provide a detailed description of the NoiseAware system. NoiseAware
is an urban noise monitoring system, and its architecture comprises four modules, as
illustrated in Figure 1.

Figure 1. NoiseAware System Architecture.

The first module of the NoiseAware system is the noise monitoring module, where
the sensor node is located. The NoiseAware sensor node is designed to capture the noise
level of the locality and send the data to target users, such as inspection organs and or-
dinary users, via the internet. The sensor node communicates with the server using the
Message Queue Telemetry Transport (MQTT) protocol. MQTT facilitates communica-
tion between the sensor node and the mobile application. Figure 2 shows the components
used in the sensor node.

The NoiseAware sensor node comprises a prototype board with a processor, an
ambient noise pickup module, a Wi-Fi communication module, and an indicator LED.
In Section 3, we will present more details on the components used in the hardware. The
green LED indicates the local noise level is within the permitted range. If the noise level
changes and exceeds the allowed level, the red LED will light up to signal an infringement.

The second module is the mobile application, which is responsible for displaying
the location’s noise level data in real time and presenting the history of noise stories in
the locations where the sensor nodes are installed. The server database is responsible for
updating the history data of the locations where the sensor nodes are placed. The mobile
application updates the history request using the Hypertext Transfer Protocol (HTTP).



(a) Hardware’s schematic. (b) Hardware implemented.

Figure 2. Hardware of Sensor Node.

Figures 3(a), 3(b), and 3(c) show the screenshots of the mobile application. The
home screen, represented by Figure 3(a), has two buttons in the center and a label at the
top. The label at the top of the screen indicates whether the MQTT Broker is online or
offline. When the Broker is activated, the application shows the real-time noise data of
the monitored location via the ”REAL-TIME” button. If the Broker is not activated, the
application will only have the option to display the history of noise levels of the location
using the ”HISTORICAL” button.

(a) App home screen. (b) REAL-TIME button. (c) HISTORICAL button.

Figure 3. Screenshots of the NoiseAware mobile application.

Figures 3(a) and (b) show if the decibel level of the location is adequate. This
data is provided in real-time by the sound sensor. If the level is below the threshold set
as appropriate, the LED will turn green. Otherwise, the LED will turn red, indicating the
limit has been reached. Figure 3(c) illustrates the average noise level data of the locations
where the various sensor nodes are placed.



The third module is the server, which is responsible for storing and processing the
noise level data. The server stores the captured noise data in a MySQL relational database,
which serves as input to feed the history of the mobile and web applications. The server
sends the data in real time to the web application through the HTTP protocol. The Broker
is installed on the server to use the MQTT protocol.

Finally, the fourth module is the web application, which is responsible for show-
ing the inspection organ where the noise has exceeded the limit established by law. The
web application indicates the location of the sensor nodes scattered throughout the streets,
and when selecting the sensor node, the noise level data of the elected position can be ob-
tained. Figure 4 displays the screenshots of the NoiseAware web application. This module
was designed for the inspection organ to monitor, and based on [Marinov et al. 2017], we
set the value of 48 dB as a threshold reference (red color) for the noise level.

(a) Average neighborhood noise. (b) Real-time noise data.

Figure 4. Screenshot of the Web Application.

3. Experiments and Results
This section will present the experiments performed to validate the proposed NoiseAware
system. The objectives of the experiments are:

• To evaluate the availability of the MQTT Broker;
• To perform a server load test and evaluate its performance with an increasing

number of clients.

It will describe the materials and methods used to implement the system and
present the results obtained from each experiment. Lastly, we will discuss the results’
implications and the study’s limitations.

3.1. Materials
The materials used in our experiment were:

• The sensor node is composed of an Arduino ATMEGA2560 together with the
LM393 sound sensor module, an ESP8266 communication module and an RGB
led (Red-Green-Blue);

• The Broker used is the Mosquitto version 3.1, which is an open-source Eclipse
Broker1;

1An open Source MQTT - https://mosquitto.org/



• The mobile device used in our experiments was an LG G3 Beat smartphone with
Qualcomm Snapdragon 400 MSM8226 Cortex-A7 1.2 GHz Quad Core, internal
memory of 8GB and 1 GB RAM, running Android 5.0.2;

• The server was a laptop running Linux Mint 17.2 64 bit operating system, with 8
GB RAM and Core i5-4200U (1.6 GHz Quad Core) processor. The web service
was implemented in Node.js 6.132

3.2. Availability Experiment
System availability is a metric that measures the probability that a system is not failed or
undergoing a repair action when it needs to be used. System availability is calculated by
dividing uptime by the total sum of uptime and downtime:

Availability =
Uptime

Uptime+Downtime
× 100% (1)

Where uptime is a computer industry term for the time during which a computer
is operational, and downtime is the time when it isn’t operational.

Figure 5 shows the noise level recorded by the sensor node in a controlled envi-
ronment. It is evident from the graph that the noise level reached the threshold within a
few minutes after 3 hours and 12 minutes (192 minutes) of measurement, and the average
remained consistent with this threshold.

Figure 5. Noise level capture experiment using the NoiseAware system.

NoiseAware ran for 1000 minutes for this experiment. During the experiment,
the broker disconnected around 5633 times. Each time this occurred, the NoiseAware
sensor node took approximately 2 seconds to reconnect to the broker. Consequently, the
NoiseAware was unavailable for a total of approximately 11266 seconds. Although the
algorithm is designed to reconnect automatically, this high number of failures can result
in data loss during sensor node operation. By converting the values to seconds and using
Equation 1, we can determine the impact of these disconnections:

Availability =
60000− 11266

60000
× 100%Availability = 81, 22% (2)

2https://nodejs.org



Therefore, the availability was 81,22%, which shows that the NoiseAware has a
simple noise capture environment, and due to intermittent capture, availability is impaired.
Despite this, the system is helpful for what it proposes, capturing noise and notification
when it exceeds the threshold.

3.2.1. Load Test

To conduct the load test, we utilized the loadtest library3. The test involved creating a
specified number of clients with a concurrent parameter determining how many requests
would arrive concurrently at the server. While the requests were not sent in parallel from
different processes, they were sent concurrently, allowing a second request to be sent
before the first one was answered.

The load test was executed 30 times, each running for 60 seconds. A total of 10,
100, and 1000 concurrent levels were tested in the experiment. Figure 6 depicts the charts
of the load test, where it can be observed that the server was able to handle an average of
56220, 90716, and 91600 completed requests, respectively, for each concurrent level (see
Figure 6(a)).

Regarding requests per second, the load test showed 937, 1512, and 1526, with
an average latency of 10.7 ms, 66.1 ms, and 664.9 ms, respectively. Based on this data,
when concurrent levels increase, the request per second increases, and the average latency
increases in NoiseAware.

The errors encountered during the load test were 9961, 6800, and 5955, respec-
tively, for 10, 100, and 1000 concurrent levels (see Figure 6(b)). To examine the rela-
tionship between the complete requests and errors data and verify the proportion between
them, we calculated the following equation:

Result =
CompleteRequests

CompleteRequests+ TotalErrors
× 100% (3)

By applying Equation 3 to 10, 100, and 1000 concurrency levels, we calculated the
percentages of completed requests and obtained values of 84,94%, 93,02%, and 93,89%,
respectively (see Figure 6(c)). From this data, we can conclude that the system’s ability
to respond to requests correctly increases with the number of concurrent requests, and
there is a direct relationship between the total requests and total error metrics. Therefore,
the load test results indicate that NoiseAware can meet relevant request capacity require-
ments.

4. Related Work
To support the development of NoiseAware, a state-of-the-art review of noise monitoring
systems was conducted. As a result, four papers that present NoiseAware-like applications
were selected: City Soundscape [Zappatore et al. 2016], NoiseCo [Al-Saloul et al. 2015],
NoiseSense [Qin and Zhu 2016], and Sense2Health [Hachem et al. 2015]. These systems
are briefly described below.

3https://github.com/alexfernandez/loadtest



(a) Completed Requests. (b) Total Errors.

(c) Percentage of Requests for Errors.

Figure 6. Charts of Load Test.

Vanitha et al. (2021) proposed the work for automation of noise detection using
Internet things. The work reduce the noise in the way of controlling noise pollution. The
main focus of this system is to reduce human voices. The maintenance of the noise is
made efficient, as all the recorded voice are stored in the secure database, through which
data can be retrieved easily. By this system, the person who speaks in the enclosed area
will get a mail to his/her mail address.

City Soundscape is an Android crowdsensing system part of a platform of the
same name created by Zappatore et al. (2016) to identify and generate noise maps. The
application sends location data and the noise level detected through the user’s mobile
device sensors to a server. Once in the server database, the platform checks the noise level
averages of the regions and then measures the level of noise pollution at each location.
This information is used by a noise management web application that generates a noise
map and proposes solutions to reduce noise pollution in a region. The City Soundscape
application also displays information about the local noise level and allows the customer
to send comments about the noise in their location.

NoiseCo is an Android prototype system developed by Al-Saloul et al. (2015) that
uses mobile device sensors to monitor the local noise level. The system uses a calibra-
tion formula to adjust measurements for different types of mobile devices, and specific
techniques are used to smooth the measurements. The application also displays the series
of measurements made by the device while the application is still running. Zhaokun and
Yanmin (2016) developed NoiseSense, a mobile system for Windows Phone and Android,
which is used to obtain noise level data in large cities. The application captures the noise
level and sends the data to a web service, along with the device’s location. These data are



processed using a measurement technique proposed by the authors to ensure greater pre-
cision. Using the data captured by mobile devices and data provided by other sources of
measurement, the authors generated a noise map of the city of Shanghai with acceptable
accuracy to prove the efficiency of their technique and the effectiveness of crowdsensing
applications in monitoring noise pollution in urban centers.

In [Hachem et al. 2015], the authors introduce Sense2Health, a system developed
for Android that sends data on the location and noise level identified by the user’s mobile
device to a server and presents a series of daily averages of measurements. On the server,
a crowdsourcing application called GoFlow is responsible for processing the data and
providing the averages for Sense2Health. Besides, GoFlow sends the noise level data and
the location of the measurements to an urban noise monitoring system also proposed by
the authors in the same work.

Table 1 shows a comparison between the related works and NoiseAware. Accord-
ing to the literature review, relevant characteristics of a noise monitoring system include
an integrated environment, sensor node, real-time monitoring, and protocols. The inte-
grated environment indicates if the system is composed of more than a single module.
The sensor node indicates if there is any module responsible for noise capture. Real-time
monitoring refers to whether the system provides monitoring information in real-time. Fi-
nally, the protocols column indicates the communication protocols used by the approaches
for information exchange.

Table 1. Related Works.

Work Integrated
Environment Sensor Node Real-Time Communication

Protocol
Vanitha et al. ✓ ✓ ✗ HTTP

City Soundscape ✓ ✓ ✗ HTTP
NoiseCo ✗ ✓ ✓ HTTP

NoiseSense ✓ ✓ ✗ HTTP
Sense2Health ✓ ✓ ✗ HTTP
NoiseAware ✓ ✓ ✓ MQTT / HTTP

According to the table, it is clear that NoiseAware is the only work that possesses
all the identified characteristics. It is a multi-module system with mobile, web, server, and
sensor node components. It offers real-time and historical noise monitoring information
and uses multiple protocols for communication, including HTTP and MQTT.

5. Conclusion
The NoiseAware system is a smart urban noise monitoring solution designed to monitor
noise levels in specific city locations using sensor nodes. Whenever the system detects
noise levels exceeding the established limit, it automatically alerts the inspection author-
ities to take appropriate actions, making the system autonomous. By doing so, NoiseA-
ware proactively alerts the rules to excessive noise, reducing the need for residents to
report noise pollution.

In future work, we plan to explore other IoT communication protocols, such as the
CoAP (Constrained Application Protocol). Additionally, we aim to evaluate the system’s



performance on a larger scale by using multiple sensor nodes to monitor noise levels
across various locations.

References
Al-Saloul, A. H. A., Li, J., Bei, Z., and Zhu, Y. (2015). Noiseco: Smartphone-based noise

collection and correction. In Computer Science and Network Technology (ICCSNT),
2015 4th International Conference on, volume 1, pages 369–373. IEEE.

Bikmetov, R., Raja, M. Y. A., and Sane, T. U. (2017). Infrastructure and applications of
internet of things in smart grids: A survey. In 2017 North American Power Symposium
(NAPS), pages 1–6.

Corotinschi, G. and Găitan, V. G. (2015). Smart cities become possible thanks to the
internet of things. In 2015 19th International Conference on System Theory, Control
and Computing (ICSTCC), pages 291–296.

Hachem, S., Mallet, V., Ventura, R., Pathak, A., Issarny, V., Raverdy, P.-G., and Bhatia,
R. (2015). Monitoring noise pollution using the urban civics middleware. In Big Data
Computing Service and Applications (BigDataService), 2015 IEEE First International
Conference on, pages 52–61. IEEE.

Hong, Z.-Y., Qiu, Z.-P., Zeng, S.-L., Wang, S.-D., and Sandrine, M. (2017). Research on
fusion encryption algorithm for internet of things monitoring equipment. In Pervasive
Systems, Algorithms and Networks & 2017 11th International Conference on Frontier
of Computer Science and Technology & 2017 Third International Symposium of Cre-
ative Computing (ISPAN-FCST-ISCC), 2017 14th International Symposium on, pages
425–429. IEEE.

Junaid, M., Shah, M. A., and Satti, I. A. (2017). A survey of internet of things, enabling
technologies and protocols. In 2017 23rd International Conference on Automation and
Computing (ICAC), pages 1–5.

Kang, B., Kim, S., Choi, M.-I., Cho, K., Jang, S., and Park, S. (2016). Analysis of types
and importance of sensors in smart home services. In High Performance Computing
and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd
International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2016
IEEE 18th International Conference on, pages 1388–1389. IEEE.

Lokhande, D. G. and Mohsin, S. A. (2017). Internet of things for ubiquitous smart home
system. In 2017 1st International Conference on Intelligent Systems and Information
Management (ICISIM), pages 314–320.

Marinov, M., Nikolov, D., Ganev, B., and Nikolov, G. (2017). Environmental noise moni-
toring and mapping. In Electronics Technology (ISSE), 2017 40th International Spring
Seminar on, pages 1–7. IEEE.

Qin, Z. and Zhu, Y. (2016). Noisesense: A crowd sensing system for urban noise mapping
service. In Parallel and Distributed Systems (ICPADS), 2016 IEEE 22nd International
Conference on, pages 80–87. IEEE.

Vanitha, C., Sridhar, K., and Dhivakar, R. (2021). Automation of noise detection using
internet of things. In 2021 6th International Conference on Inventive Computation
Technologies (ICICT), pages 184–189.



Zappatore, M., Longo, A., and Bochicchio, M. A. (2016). Using mobile crowd sensing
for noise monitoring in smart cities. In Computer and Energy Science (SpliTech),
International Multidisciplinary Conference on, pages 1–6. IEEE.


