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Abstract. The COVID-19 pandemic, faced in recent years, has highlighted the
need for new forms of testing that help in the early diagnosis of the disease.
An alternative gaining more and more prominence is the use of Artificial Neu-
ral Networks, algorithms capable of being trained to identify this and other
diseases. However, these architectures have a high demand for hardware re-
sources, making their implementation difficult. In this work, we propose the
optimization of the Fused-DenseNet-Tiny Convolutional Neural Network for the
detection of COVID-19 and Pneumonia in x-ray images, using the pruning tech-
nique. After pruning, a model with a size about 3 times smaller and an accuracy
of 97.17% was obtained, without significant loss.

1. Introduction
The pandemic of the new coronavirus (COVID-19), a disease caused by the SARS-CoV-2
virus, is considered the most serious public health problem of this generation, because it
is a disease with a high rate of dissemination and capable of presenting several symptoms
that can be fatal for those infected, such as severe respiratory failure. [Braga et al. 2020].
Currently, vaccination on a global scale is advancing every day, but testing remains es-
sential to combat the disease, because early diagnosis and treatment at an early stage
of someone who has contracted the disease, decreases the risk of worsening symptoms
[Almeida 2021]. In addition, a good amount of testing allows us to locate more precisely
the regions that are most impacted by the virus, so that the necessary measures can be
taken by the institutions responsible for public health [Almeida 2021]. The same thought
applies to the prevention of pneumonia, which affects about 450 million people world-
wide each year [Oliveira et al. 2016].

According to [Beduin 2021], in this context, many new forms of testing have
emerged that use Artificial Intelligence (AI), and more specifically Deep Learning (DL)
algorithms, to analyze and extract features and information from databases. Even if not
sufficiently accurate for direct diagnosis of COVID-19, these tests can help to stream-
line health care systems as a support tool in countries where more accurate clinical tests
are difficult to obtain, or as primary screening. The Figure 1 shows how difficult it is to
visually identify one of the diseases, without a medical diagnosis or a test of this kind.

Thus, one can work on automatically generating pneumonia and COVID-19 di-
agnoses from medical chest X-ray images using these Deep Learning methods. This



Figure 1. Samples from the image bank of each of the classes.

area covers many techniques useful for performing image classification tasks, such as
this research, which aims to classify input data into pneumonia, COVID-19 or normal
[Hosaki and Ribeiro 2021]. The approach that is adopted for this, enabling the radio-
graphs to be processed and recognized, is Convolutional Neural Networks (CNN), which
are intelligent computer systems inspired by the functioning of biological neural networks
[Haykin 2001]. State-of-the-art CNN architectures guarantee very expressive accuracies
in the detection of Pneumonia and COVID-19 in chest X-ray images. Considering the
study done in [Santos Júnior 2022], for example, an accuracy of 99.25% was obtained
using ResNet50 for the same dataset.

However, despite being powerful and efficient tools, neural networks have a dis-
advantage, which is the high demand for hardware resources required for their imple-
mentation [Montes et al. 2021]. According to [Silva et al. 2022], researchers have been
searching for model compression techniques to reduce the intense computational demand,
either of processing or memory, without significantly worsening the results. For this, an
alternative is the adoption of Artificial Neural Networks (ANN) pruning, proposed by
[LeCun et al. 1989], which makes it possible to optimize the models without loss (or
minimal loss) of accuracy.

In this work, we propose the optimization of the Fused-DenseNet-Tiny Convolu-
tional Neural Network for the detection of COVID-19 and Pneumonia in x-ray images,
using the pruning technique. Model compression was used to reduce computational cost
while maintaining good performance. Thus, an architecture that works well on devices
with low hardware resources can be obtained.

2. Materials and Methods
2.1. Database
Second [Beduin 2021], data acquisition and organization is one of the most important
parts in Machine Learning. Considering the data types, important aspects of the model’s
architecture are defined. In this case, the dataset selected for training and validation of the
optimized architecture was the Curated X-Ray Dataset, which consists of a compilation
of x-ray image sets developed by [Sait 2020]. This is a public dataset that is available on
the Kaggle1 platform for downloading and computational testing.

The database encompasses a total of 9208 radiographs, separated into three
classes: Normal, Covid-19 and Pneumonia. The images are divided into two subsets:

1https://www.kaggle.com/datasets/francismon/curated-covid19-chest-xray-dataset



training and validation, being distributed in 80% separate for training and 20% for vali-
dation. Table 1 show a detailed description of the dataset division, explaining the number
of images in each class.

Table 1. Distribution of data by class.

Class Train (80%) Validation (20%) Total (100%)
Normal 2616 654 3270

COVID-19 1025 256 1281
Pneumonia 3726 931 4657

Total 7367 1841 9208

The data indicate that there are a total of 3270 x-ray samples from the Normal
class, 4657 from patients diagnosed with Pneumonia, and 1281 from patients diagnosed
with COVID-19. The acquired images are in JPG (Joint Photographic Group) format,
with varying dimensions, and were resized according to the convolutional neural network
architecture used, to have the appropriate input dimensions.

2.2. Validation Metrics

According to [Monard and Baranauskas 2003] the confusion matrix plays an essential
role in visualizing the assertiveness of models in classification tasks, since it correlates
the actual classes with those that were predicted, as illustrated in Figure 2. TP being the
number of True Positives, TN the number of True Negatives, FP the number of False
Positives, and FN the number of False Negatives.

Figure 2. Illustration of a confusion matrix.

The performance metrics for the validation step can be extracted from the con-
fusion matrix and, in this study, the ones selected are the accuracy ou ACC, accuracy,
Recall and F1-Score, mathematically expressed by the Equations 1, 2, 3 e 4. The metrics,
defined according to [Iqbal and Aftab 2020], are explained in the following.

• Accuracy: In classification problems, is the number of correct predictions made by
the model over all the types of predictions made. This metric provides a measure



of overall model performance, in terms of number of hits, and can be calculated
using Equation 1.

ACC =
TP + TN

TP + TN + FP + FN
(1)

• Precision: Precision is the ratio of true positives (TP ) to the total number of
samples that classified as positive. To calculate the accuracy with respect to a
certain class (for example, positive class), the Equation 2 is used.

Precision =
TP

TP + FP
(2)

• Recall: Is the ratio of correct predictions to the total number of samples in that
class being evaluated. This metric indicates how many examples of a class, rela-
tive to the total present in the set, were identified by the model. The sensitivity is
given by Equation 3.

Recall =
TP

TP + FN
(3)

• F1-Score: It is the harmonic mean between accuracy and sensitivity. Since its
value is high, it means that the obtained accuracy is relevant, that is, the values of
TP , TN , FP and FN do not present great distortions. Then, this metric can also
be interpreted as a measure of the reliability of the accuracy.

F1− Score =
2 · Precision ·Recall

Precision+Recall
(4)

2.3. Fused-DenseNet-Tiny model

The paper focuses on the optimization of a specific model, proposed in [Montalbo 2021]
and denominated Fused-DenseNet-Tiny2, what is a truncated DenseNet architecture with
partial layer freeze and feature fusion. This architecture stands out by having a low
amount of parameters (1,231,235), when compared to other CNNs, in addition to per-
forming well in detecting Pneumonia and COVID-19. Training and validating the model
in the image bank Curated X-Ray Dataset, the author obtained an accuracy of 97.99%,
precision of 98.38%, recall of 98.15% and F1 Score of 98.26%, even being competitive
with some State of the Art models, such as DenseNet and EfficientNeB0.

Therefore, it can be stated that Fused-DenseNet-Tiny is a very promising architec-
ture with low computational cost, however, to perform model inference and run on mobile
devices, especially those with low hardware resources, it is possible to further reduce in-
significant parameters. In this research, it is desired to optimize the architecture by means
of a type of model compression technique called pruning, with the method presented in
the next subsection.

2.4. Fused-DenseNet-Tiny model optimization

The model optimization followed a line of reasoning similar to that adopted in
[Montes et al. 2021], whose process for optimizing the architecture consisted of three
main steps: (I) removal of insignificant weights, (II) removal of the casings used during

2https://github.com/francismontalbo/fused-densenet-tiny



pruning and, finally, (III) applying a compression algorithm, as shown in Figure 3. This
step by step was implemented in Python using Tensorflow Model Optimization, which is a
Tensorflow toolkit for optimizing Machine Learning models. In the process, basically, the
Tensorflow Model Optimization pruning algorithm is used, which makes some weights
close to zero null, based on a certain threshold, the effect of which can be seen in Figure 4.
According to [Goldbarg 2021], in the iterative algorithm of conventional magnitude prun-
ing, this threshold is given mathematically by Equation 5. Where βk is the threshold of
k-th layer, α is the constant that establishes the aggressiveness of pruning and σk is the
standard deviation of k-th layer.

Figure 3. Stages of the implemented optimization process.

βk = α · σk (5)

In its execution, this algorithm creates a conditional structure that selects the
weight if it is greater than or equal to βk, or zeroes the weight if it is less than βk. Then, the
resulting weights of the architecture, denoted by C(n), can be described by Equation 6,
after applying the pruning function P (., .) to n-th weight W (n) [Goldbarg 2021].

Ck(n) = P (Wk(n), βk) =

{
wk(n), se |wk(n)| ≥ βk

0, se |wk(n)| < βk

(6)



Figure 4. Illustration of the application of pruning to a neural network.

To go through this process, the chosen architecture, already trained with the hyper-
parameters from Table 2, should be submitted to a new training, with a reduced number
of epochs (epochs = 5), where the Fused-DenseNet-Tiny will be pruned with an initial
sparsity of 30%. This means that 30% of the parameters are set to zero and increase
throughout training until the final sparsity of 80%. The strip pruning function was also
used for part (II), referring to the removal of the wrappers, and the zipfile package com-
pression function for step (III). It was possible to check, at the end of the experiment, the
size of the model with compacted pruning and compare it with the size of the original
model, along with the selected performance metrics, allowing us to observe what effects
this technique has for CNN. The parameters for pruning the model, which were adopted,
are contained in Table 3.

Table 2. Training hyperparameters of the original model.

Hyperparameter Value
Learning Rate 0.0001

Batch Size 16
Optimizer Adam
Dropout 0.5
Epochs 25

Table 3. Pruning parameters applied to the model.

Parameter Value
Initial Sparsity 30%
Final Sparsity 80%

Optimizer Adam
Epochs 5

3. Results and Discussions
In Figure 5, the confusion matrices of the validation of the original Fused-DenseNet-Tiny
model before pruning (Figure 5a), and of the optimized Fused-DenseNet-Tiny model,
after pruning (Figura 5b). Looking at the main diagonal of these matrices, one can see



that the pruning algorithm maintained the amount of correct classifications of COVID-19
cases, while increasing the number of correct diagnoses of Pneumonia patients, which is
a very significant result.

There is an attenuation of hits for the Normal class, however, it is important to
note that the focus is on identifying people with one of the diseases. In particular, having
few false positives for the Normal class is important, so that a low number of patients
are misleadingly classified as normal, since not diagnosing the disease can make it worse.
The pruned model showed only 7 false positives for the Normal class. These 7 errors can
also be seen as the false negatives of the COVID-19 class and the Pneumonia class, so
that the sensitivity of these classes related to these quantities.

(a) Original Fused-DenseNet-Tiny (b) Fused-DenseNet-Tiny pruned

Figure 5. Confusion matrix of the model validation.

Briefly, the Table 4 presents the performance of the optimized architecture, for
each class, so that an individual analysis of the metrics of different classes, before and
after pruning, can be performed. The global result is exposed in Table 5, which contem-
plates the averages of each metric, where a column was added for comparison between
model sizes, to emphasize the effect of optimization.

In fact, an efficient model was maintained for diagnosing Pneumonia and COVID-
19, identifying 253 cases of patients with COVID-19 out of 256 (98.83% of cases), and
926 cases of patients with Pneumonia out of 932 (99% of cases).

However, this research was focused on reducing the model, in terms of compu-
tational cost, and it was possible to reduce the size (in Megabytes - MB) of the Neural
Network from 4.635MB to 1.540MB, as shown in bold in Table 5, representing about 3
times less memory footprint. In compressed form, the file is even smaller, at 1.458MB.
The pruned architecture obtained an accuracy of 97.12%, a precision of 98.04%, a sensi-
tivity of 97.16% and an F1-Score of 97.56%.

The Table 6 compares the model with other similar studies, i.e., also aimed at
identifying COVID-19 and/or Pneumonia on chest X-ray images, or CXR (Curated X-



Table 4. Metrics obtained for each class in the validation stage.

Class: Normal
Model ACC (%) Precision Recall F1-Score

Original Fused-DenseNet-Tiny 97.56 0.97 0.97 0.97
Fused-DenseNet-Tiny Pruned 93.28 0.99 0.93 0.96

Class: COVID-19
Model ACC (%) Precision Recall F1-Score

Original Fused-DenseNet-Tiny 98.83 1.00 0.99 0.99
Fused-DenseNet-Tiny Pruned 98.83 1.00 0.99 0.99

Class: Pneumonia
Model ACC (%) Precision Recall F1-Score

Original Fused-DenseNet-Tiny 98.07 0.98 0.98 0.98
Fused-DenseNet-Tiny Pruned 99.36 0.95 0.99 0.97

Table 5. Comparison of overall model performance.

Model Overall Performance
ACC (%) Precision Recall F1-Score Size (MB)

Original
Fused-DenseNet-Tiny 97.99 0.98 0.98 0.98 4.635

Fused-DenseNet-Tiny
Pruned 97.17 0.98 0.97 0.98 1.540

Fused-DenseNet-Tiny
pruned and compacted 97.17 0.98 0.97 0.98 1.458

Ray), in a similar way to comparison made by [Montalbo 2021]. CNN stands out among
these architectures, with an accuracy second only to original Fused-DenseNet-Tiny, but
with a difference of only 0.82%, and with a computational cost about 3 times lower, as
mentioned.

The Figure 6 shows the sizes of other State of the Art models (in
MB), to give you a sense of how small the architecture is compared to other
high performance deep neural networks in the bibliography, where DenseNet121
[Huang et al. 2017] with 33MB, EfficientNetB0 [Tan and Le 2019] with 29MB, the In-
ceptionV3 [Szegedy et al. 2016] with 92MB, the ResNet152V2 [He et al. 2016] with
232MB, the XCeption [Chollet 2017] with 88MB, the MobileNetV2 [Sandler et al. 2018]
with 14MB, the VGG16 [Simonyan and Zisserman 2014] with 528 and finally the In-
ceptionResNetV2 [Szegedy et al. 2017] with 215MB, in the Keras format, with the pre-
trained weights.

4. Conclusions

The present work dealt with the application of an optimization technique to an CNN
model, called Fused-DenseNet-Tiny, which was proposed by [Montalbo 2021] and
trained on the chest x-ray image bank Curated X-Ray Dataset [Sait 2020], for the task
of classifying patients into Normal, COVID-19 and Pneumonia classes. The pre-trained
algorithm was submitted to a model compression method, known as magnitude pruning,



Table 6. Comparison of the architecture performance with other studies.

Model ACC (%) Class
This work 97.17 Normal, COVID-19, Pneumonia

Fused-DenseNet-Tiny [Montalbo 2021] 97.99 Normal, COVID-19, Pneumonia
COVID-Net [Wang et al. 2020] 93.30 Normal, COVID-19, Pneumonia

Modified ResNet-18 [Al-Falluji et al. 2021] 96.37 Normal, COVID-19, Pneumonia
ECOVNet-EfficientNetB3 [Garg et al. 2022] 97.00 Normal, COVID-19, Pneumonia

Modified Xception [Singh et al. 2020] 95.70 Normal, COVID-19, Pneumonia
DarkCovidNet [Ozturk et al. 2020] 87.02 Normal, COVID-19, Pneumonia

DeTraC-ResNet18 [Abbas et al. 2021] 95.12 Normal, COVID-19, SARS
Hierarchical EfficientNetB3 [Luz et al. 2021] 93.51 Normal, COVID-19, Pneumonia

Figure 6. Comparison between the size of the architecture and other State of the
Art models.

aiming to reduce the weights in order to obtain a simpler and more compact architec-
ture, meeting, for example, memory and latency constraints, without a significant loss of
accuracy.

The pruned architecture achieved good performance metrics, in validation, reach-
ing an accuracy of 97.17%, below the original model result (97.99% in this case) by only
0.82%. Furthermore, considering that an algorithm is desired that can become an aid in
the diagnosis of Pneumonia and COVID-19, the individual metrics of these two classes
represent good results, especially regarding sensitivity, which is a very important mea-
sure in medical applications. It is known that the worst type of error you can have is
the false negative, which must be close to 0, meaning that the sensitivity, inversely pro-



portional, must be high. With the pruned model, a sensitivity of approximately 99% for
the COVID-19 class and 99% for the Pneumonia class was obtained, indicating a true
positive rate close to 100% and that the number of false negatives is low, as shown in
Table 4. Only in 7 predictions sick people were confused by the algorithm with those of
the Normal class, 1 of which had COVID-19 and the other 6 had Pneumonia, as shown in
the confusion matrix of Figure 5b.

In addition, the architecture performed highly relative to other similar studies,
which also had the purpose of classifying COVID-19 and/or Pneumonia on chest x-ray
images, according to Table 6, besides being a significantly reduced model, when com-
pared to other architectures that are in the State of the Art. The obtained model presented
low computational cost, maintaining good performance, in such a way that in a physical
file, the size of the architecture can reach about 1.5MB, 3 times smaller than the original
size. The smaller this memory footprint, the better it is for automatic diagnostic gener-
ation tools, since there is a growing demand for smart devices and embedded systems
that operate mostly in real time and whose processing power is limited, motivating the
creation of neural networks adapted to devices with limited memory, processor or battery
power.

In future work, it is suggested to use other model compression approaches by
pruning, to investigate the effects that other types of optimization algorithms can bring to
the architecture, considering the same model and dataset. In this research, was used mag-
nitude pruning from the Tensorflow Model Optimization package in all layers of the neural
network, but there are other alternatives to be tested, for example, implementing pruning
in specific layers of the network. Since there are layers that impact the outcome more
than others, exclusively selecting these layers can provide better model performance.
There is also interest in examining other model compression techniques, such as quan-
tization, which can reduce the amount of memory required to store and load the model by
mapping the weights, normally encoded as 32-bit floating-point, to representations with
reduced precision, such as 16 bits, for example.
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otimizadas para a detecçao de supernovas. In Anais do XV Brazilian e-Science Work-
shop, pages 1–8. SBC.

Oliveira, F. M. d. J. et al. (2016). Impacto da pneumonia grave no sistema nervoso
centralefeitos de curto e longo prazo. PhD thesis.



Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., Yildirim, O., and Acharya, U. R.
(2020). Automated detection of covid-19 cases using deep neural networks with x-ray
images. Computers in biology and medicine, 121:103792.

Sait, U. (2020). Curated chest x-ray image dataset for covid-19. Kaggle Repository.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4510–4520.

Santos Júnior, E. S. d. (2022). Classificação de pneumonia e covid-19 em imagens de
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