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Abstract. Simulation has been employed as a teaching, training, and proce-
dure validation tool in several fields, such as medicine, education, and the mi-
litary. Although the use of Simulation presents advantages compared to tra-
ditional methodologies, several challenges exist in designing, developing, and
implementing these simulation systems. These challenges become even more
complex when the project involves the development of hybrid simulators. These
simulators integrate physical and virtual systems. This integration makes these
simulators more immersive, enhancing the simulation experience. The present
work describes a framework for developing hybrid simulator systems. The fra-
mework was applied in the “Tupi” Class Submarines retrofit simulator project.
The results show that the framework is a feasible solution for hybrid simulation
systems, validated through collaboration with the Brazilian Navy’s technical
team (CIAMA).

1. Introduction
The advances in Information and Communication Technology (ICT) have enabled the de-
velopment of devices and systems capable of simulating real environments. Simulation is
a method or technique for reproducing real scenarios, systems, and procedures in control-
led and guided environments. Simulation involves generating an artificial log of the sys-
tem, and observing and analyzing it allows the user to make inferences about the operatio-
nal characteristics of the represented real system. Thus, simulation can capture the essen-
tial characteristics of the simulated environment to teach new skills, experiment with dif-
ferent approaches, and explore the implications of decision-making in a risk-free environ-
ment [Mentzelopoulos et al. 2011, Moorthy et al. 2005]. In other words, simulation redu-
ces cost, increases safety, and allows visibility of events and reproducibility of operations.
Given these features, simulation can be applied in various scenarios with different appro-
aches, such as network protocol algorithm evaluation [Mohapatra and Kanungo 2012],
Computational Fluid Dynamics (CFD) [Milne-Thomson 1973], Car Aerodynamics De-
sign [Kamal et al. 2021], and Crash Tests [Ambati et al. 2012].

In the military context, simulation techniques have played a crucial role in training
tactical operations and instructing technical actions involving critical environments. In
this perspective, simulators can act in several military fields, such as flights through unk-
nown sites, submarine navigation under critical ocean conditions, and driving of armed



armored vehicles [SENAI 2022, Jr 2022]. Thus, simulation supports developing operatio-
nal and tactical experiences, reaction time, focus, attention, and motor skills in equipment
handling. Although simulation presents advantages compared to traditional methodolo-
gies, several inherent challenges exist in designing, developing, and implementing these
systems. These challenges become even more complex when the project applies the deve-
lopment of hybrid simulators. A Hybrid Simulator contains analog and virtual elements
while using real instruments and equipment from the simulated object. It includes the
emulation of procedures in a virtual manner [Eldabi et al. 2018].

Among the challenges, we highlight the complexity of integrating physical and
virtual systems, efficient network communication techniques with a minimum response
time, time synchronization, testability, and maintenance. Therefore, the lack of technical
documentation that describes the framework for developing hybrid simulators, combined
with the complexity of development and implementation, makes the development of hy-
brid simulators a complex and decisive task in terms of project execution and fulfillment.

This work presents a framework for developing hybrid simulators. The framework
describes the architecture for implementing a simulation system that integrates virtual and
physical systems. The framework has two main systems: the Instructor Operating Station
(IOS) and the Simulation Module (SM). The Instructor Operating Station provides all the
necessary infrastructure to support the simulation. This infrastructure consists of classes
and interfaces that contain the responsibilities and manage the flow of calls to the Simu-
lation Module. On the other hand, the Simulation Module contains all the business rules
of the simulation, the mathematical model of the simulation dynamics, interface mana-
gement, and communication with the physical systems. For the validation purpose, we
implemented the framework in a real-world case study: retrofit project of a Submarines
Simulator for “Tupi” Class. The project was conducted by the SENAI Institute of Innova-
tion of Virtual System Production in partnership with the SENAI Institute of Technology
of Industrial Automation for the Brazilian Navy, Admiral Áttila Monteiro Aché Instruc-
tion and Training Center (CIAMA). The results demonstrate that framework is a viable
solution for developing and implementing hybrid simulation systems.

We organize this paper as follows. After this introduction, Section 2 presents
the related works. Section 3 brings the background information that is necessary for the
proper understanding of this work. Section 4 proposes our framework and explain how
its architecture. We implemented the framework at the Section 5. We present the results
of the implementation at the Section 6. Finally, Section 7 presents our conclusions and
gives directions about open challenges and future works.

2. Related Works

There are several studies in the literature that presents the use of simulation techniques.
Yeong-cheol’s [Kim and Ahn 2010] presents the design and implementation of an opera-
tor procedure training simulator for Korean vertical launch anti-submarine missile sys-
tems. The training simulator provides interaction between simulated and real equipment
(Fire Control System). The authors proposed a development framework that grouped the
components into physical and logical packages to achieve this goal. The simulator con-
tains modules as a computer graphics system, a virtual reality visualization system, an
operating table, a weapons control system, and an audio system.



Zheng [Zheng et al. 2009] describes the development process of a flight simulator
and proposes a software and hardware architecture. The proposed software architecture
includes the Hardware Module, the Behavior Module, and the Software Decision Mo-
dule. The Hardware Module provides an interface, such as hardware devices, to initialize
and run the software. The Behavior Module works as an intermediary agent between
subsystems and simulates the main function of the aircraft system. Finally, the Software
Decision Module contains the implementation of the simulated aircraft aerodynamics.
Lin [Lin et al. 1998] presents the Submarine Voyage Training Simulator. The simulator
has six degrees of freedom motion on a flexible platform and generates navigation infor-
mation during the simulation. The paper describes the system architecture and the motion
and navigation system modeling.

Nan [Nan and Liang 2018] presents the SubSafe system as a game-based subma-
rine safety training system developed by the UK, which provides end users with an inte-
ractive and real-time 3D model of a Trafalgar Class SSN submarine. The paper describes
the history and main functions implemented in SubSafe, as well as an evaluation focused
on the effectiveness of the training.

Sol Ha [Ha et al. 2012] introduces a High-Level Architecture (HLA) interface de-
signed to integrate a combined discrete event and discrete time simulation model into a
distributed simulation environment. The combined model, comprising discrete event and
discrete time components, is considered a standard formalism in modeling and simula-
tion. The HLA interface consists of an “Interface Model,”a “Model Translator”, and an
“HLA/RTI Translator”. The Interface Model is a connection point for combined models
without requiring modifications. The Model Translator facilitates translating data from
the Interface Model into HLA/RTI functions, while the HLA/RTI Translator performs the
reverse translation. A distributed simulation of a diving submarine validates the HLA
interface, demonstrating consistent results.

3. Simulation Definition

Simulation is the process of designing and reproducing a model of a real system, cou-
pled with conducting experiments on that model, to understand the system’s behavior
and evaluate its operational procedures. Simulation is an effective tool for understan-
ding complex operations and systems. Therefore, the model must be designed to repli-
cate the behavior of the real system and the events that may occur throughout the si-
mulation [Shannon 1992]. Simulation involves generating a log of system operations and
events, which enables the analysis and study of that simulation. Additionally, according to
Pritsker [Banks 1999], simulation can be considered as a process of constructing a mathe-
matical model of a system under study to conduct experiments on that model. Simulation
is employed in various contexts, such as technology for performance or optimization,
safety engineering, testing, training, education, and games.

In the context of this work, we extend the simulation definition into four catego-
ries, described bellow:

• Virtual simulation: this simulation’s category involves using graphical computa-
tional models to simulate the operation of real systems. It is widely used in various
fields, such as engineering, science, personnel training, and entertainment. It can



be a 2D or 3D graphical system, and Virtual Reality. For example, aircraft flight,
Medical, and Construction are examples of virtual simulation.

• Hybrid simulation: combines elements of virtual simulation with hardware-
based or real system-based simulation. It is used when a closer interaction
between a virtual system and a real system is required. For example, in the auto-
motive industry, hybrid simulation may involve combining a computational model
of a vehicle with a physical prototype to test control and safety systems.

• Analytical simulation: it is a computational technique used to study and analyze
complex systems by creating mathematical models. These mathematical models
are designed to represent the behavior and interactions of various components
or variables within the system. The primary goal of analytical simulation is to
provide a deep understanding of the system’s behavior, performance, and charac-
teristics, as well as to predict how it will respond to different inputs or scenarios.

• Process simulation: it is used to study and optimize operations in production sys-
tems, such as factories, industrial facilities, supply chain, and processes in gene-
ral. It involves modeling all the process steps, from raw material input to the final
product output. This representation typically includes various elements, such as
equipment, materials, procedures, and environmental factors, to mimic the entire
sequence of events within the process. In summary, process simulation improves
the efficiency, safety, and quality of operations.

4. Framework Proposal
In this section, we introduce a framework for developing Hybrid Simulators. This fra-
mework describes a crucial structure for developing, implementing, and deploying a so-
lution for a hybrid simulator. In the following, we present the key elements of the fra-
mework.

4.1. Instructor Operating Station

The IOS is the module of the Framework responsible for providing the foundation of
the software that the simulator will contain. This module groups the resources necessary
for managing the simulation software operations. Thus, basic management operations
such as system initialization, user management, report generation, simulation training
control, database connection, and graphical interface projection. The Instructor Opera-
ting Station, primarily calls the Simulation Module, which contains all the business rules
related to simulation operations and dynamics. The software structure was developed
based on layered architecture. In this architectural model, the software is decomposed
into groups of modules, where each group integrates a responsibility and a level of abs-
traction [Belle et al. 2013]. Figure 1 shows, at a high level of abstraction, the software
architecture designed for the scope of the Software System module.

The Presentation Layer is located at the top of the hierarchy, and its main function
is to provide an interface that translates the tasks the user requires into a visually unders-
tandable response. The Application Layer is an intermediate layer that coordinates all the
business logic that the application performs. This business logic is formed by a set of rules
obtained through the organization’s requirements and serves as guidelines for the opera-
tion of the entire application. The Service Layer is responsible for receiving actions from
the Application Layer, processing them, and returning their respective results. This layer



Figura 1. Software System Architecture

contains the domain rules, so it is responsible for executing the specific actions of each
service. The Infrastructure Layer allows the Instructor Operating Station to interact with
hardware and software elements external to the system’s scope. This interaction occurs
through receiving, storing, and providing data when requested. These elements can refer
to communication with external libraries, File Reader and Writer Operations, or even the
Database System. Thus, the purpose of this layer is to encapsulate all external compo-
nents and group them for access by the Service Layer. The External Layer represents the
resources external to the context of the framework.

4.2. Simulation Module

The Simulation Module consists of a self-contained project that supports all responsibili-
ties and business rules related to the simulation process. These rules include implementing
mathematical modeling, communication with the Automation System, and managing the
Audio System. The entire Simulation can be reproduced independently of the Instruc-
tor Operating Station. This characteristic allows simulator designers and developers to
Verify, Validate, and Test (VV&T) issues related to simulation time optimization, com-
munication response time with the physical implementation of the simulator (TCP/IP),
and implementation of mathematical modeling dynamics, for example. The main advan-
tage of conducting tests in an isolated manner lies in reducing the overhead caused by
the Instructor Operating Station module, which includes other technologies that consume
computational resources (network bandwidth, processor, and memory consumption, for
instance).

The Simulation Module provides a software infrastructure for mathematical mo-
deling, communication with the Automation System, and audio management. Figure 2
shows the proposed architecture for the Simulation Module. The Math Model component
contains all the business rules and implementation of the mathematical modeling related
to the simulation’s dynamics. In this sense, all the logic of the modeling process, which
involves the code structure, can be reused regardless of the business rule. This compo-
nent receives information (inputs) from the External System (Client) and the Automation
System (through read operations). The Math Model gives such information through the



DataInput component. In other words, as the Simulation runs, all updated information is
passed through a data structure implemented in DataOutput. In this sense, the DataIn-
put and DataOutput components are defined as a fundamental data structure that reflects
the state of the Simulation. Moreover, these structures are constantly updated to function
as an Application Programming Interface (API) that allows external systems to consume
information and make appropriate requests to the Simulation Module.

Figura 2. Simulation Module Architecture

The Automation System is an external system that provides complete support for
the configuration, programming, commissioning, and diagnosis of the physical equipment
contained in the simulator. Communication between the physical equipment typically oc-
curs using the Ethernet/IP communication protocol. At the end of the simulation step
(iteration), after the entire process of simulation dynamics, the Simulation Module sends
the updated states to the outputs of the Automation System. This information includes
motor positions, visual and sound signals, for example. Communication between the Si-
mulation Module and the Automation System is performed through the Automation Com-
munication component. Communication in this module can be implemented in two ways:
Synchronous and Asynchronous. In Synchronous Communication, data flows between the
Simulation Module and the Automation System at each iteration of the simulation loop,
meaning communication occurs in real time. On the other hand, Asynchronous Commu-
nication occurs on demand. In other words, data transmission occurs only when there is
an update in the states of the instruments in the Automation System.

4.3. The interaction between the Instructor Station and the Simulation Module

The diagram (Figure 3) shows the components of the Instructor Operating Station and how
they interact with internal and external systems. It contains a graphical interface available
to the user in this communication scheme. In this context, controllers propagate actions
to the services that encapsulate the External Systems to fulfill the requests. The Instructor
Operating Station contains all the infrastructure for managing the Database System, which
allows CRUD1 operations of relevant system information such as users, logs, and exercise
data. The System is responsible for managing the requests to the Simulation Module.
These requests are made in a repeating cycle defined by the service layer.

1Create, Read, Update and Delete operations.



Figura 3. Interaction between System Modules

5. Implementation
This section describes the implementation of the framework as a solution for the subma-
rine simulator project for the Brazilian Navy.

5.1. Project summary
In 2020, both of Firjan SENAI Institute’s, IST AI and ISI SVP, partnered with the Admi-
ral Áttila Monteiro Aché Instruction and Training Center (CIAMA) to develop the retrofit
project for the Immersion Trainer Simulator for “Tupi” class Submarines (IT). The main
objective of the project was to modernize the entire electronic and mechanical infras-
tructure of the simulator and develop a new operating system for Immersion Training,
resulting in a more reliable and realistic simulator [Barros 2022].

The IT is a submarine simulator developed in the 90s for CIAMA to train crew
members. The simulator went through development by various industry companies. Over
time, relevant information, such as the system architecture, software design, and docu-
mentation, became obsolete. Further, the physical infrastructure of the simulator, which
includes electrical, electronic, and mechanical components, has become antiquated.

The project presented several challenges related to physical infrastructure and
software architecture. Regarding the physical infrastructure, it was necessary to remo-
del the simulator and implement, through methods such as 3D printing, parts that were no
longer available for purchase in the market. Regarding the virtual System, new software
for the instructor station was required. Additionally, the primary challenge lies in deve-
loping the mathematical model that encompasses the entire dynamic reproduction of the
submarine.

5.2. Instructor Operating Station
The Instructor Operating Station was developed following the principles described in Sec-
tion 4. For the project implementation, the C# programming language and the Windows
Presentation Foundation (WPF) Framework were selected. The C# language offers va-
rious features that make the development process faster, including a statically typed and
easily understandable language and, most importantly, a vast library with high-level func-
tionalities. Additionally, C# is an object-oriented programming (OOP) language, which



makes it highly efficient, flexible, scalable, and easy to maintain. The WPF framework
provides a range of features for building the graphical interface. Moreover, it offers an
architecture that separates the code handling the visual style of the interface (XAML)
from the code implementing the behavior of the interface. These characteristics made
WPF efficient for implementing the graphical interface of the simulator. The simulator
architecture has a dedicated computer to run the Instructor Operating Station and the Si-
mulation Module. The computer is connected to the simulator network, which remains
connected to the Automation System and the Audio System.

Figure 5 shows the Instructor Operatiing Station (IOS) software installed on the
panel in the instructor’s cabin.

Figura 4. Instructor Operating Station

5.3. Simulation Module

The Simulation Module, as described in Section 4 is responsible for running all
simulation-related dynamics, including reproducing the mathematical modeling of the
submarine and carrying out all communication management with the Automation System
and the management of the Audio System.

The C++ programming language was selected to develop the Simulation Module
project. The C++ programming language performs better, that is, fewer computational
cycles and, consequently, better energy consumption [Pereira et al. 2017]. C++ also pre-
sents greater efficiency related to the treatment of numerical problems. Regarding deve-
lopment, the selected language presents flexibility in implementation due to its multipara-
digm character (functional or object-oriented). In addition, the language offers the ability
to integrate with C#-based systems through dynamic-link libraries (DLLs).

5.4. Communication with the Automation System

The communication between the Simulation Module and the Automation System is car-
ried out through OPC Classic protocol (Open Platform Communications) above the Ether-
net/IP protocol. The OPC protocol defines a series of specifications and standards for
communication between Computers, HMIs (Human Machine Interface), and Program-
mable Logic Controllers, the PLCs.



The OPC protocol utilizes the Distributed Component Object Model (DCOM) for
communication between distributed components on the network. Data exchange occurs
via OPC Data Access (OPC DA), allowing time synchronization and sending/receiving
values from PLC tags. An OPC tag is a symbolic name that can be visible to OPC clients.
The tag is a single data point and can be read or written. In this project, tags are used
to represent both reader instruments (such as joysticks and valves) and writer instruments
(such as smoke machines and light panels). In the specification of this project, tags are
classified into analog and digital categories. Analog tags represent instruments/sensors
with float values, such as tank volume, rudder, and valve positions. Digital tags represent
discrete values (boolean/int), such as panels’ on/off status.

Communication with the Automation System was implemented both synchro-
nously and asynchronously, as specified in Section 4. Synchronous communication is
responsible for writing tags (digital and analog). The instructions that send data via the
network are blocking; that is, at each instruction, there is an interruption in the execution
flow of the simulation. This factor generates a negative impact on the simulation time.
A parallelism mechanism (thread) was implemented to separate the process of sending
information from the main flow in order to reduce the negative impact. It was used for
reading tags (digital and analog) for synchronous communication.

6. Evaluation and Results
The proposal framework was evaluated based on the simulator requirements and experter
trainers’ perspectives. In this sense, the evaluation aiming to validate its applicability in a
real environment. In the following, we describe the requirements and their analysis.

Figura 5. Simulator.

6.1. Requirements Test cases

FR01 - Start the system in an automated manner: The system was designed to allow
the automated startup of the components involving the Instructor Station software and the
Simulation Model. Tests performed in a production environment (simulator) alongside the
key actors (Trainers). The tests indicated that the system’s startup process is functioning
correctly when various system components are involved. Therefore, the test execution
showed that the system satisfactorily met the requirement. Additionally, the operators did
not show difficulties regarding operations related to system startup.



FR02 - Information about simulator state: The IOS software and SM were deve-
loped to provide real-time information about the state of the simulator. This information
is processed and communicated to the automation system, updating the visualization of
equipment and instruments, through simulation parameters, such as the submarine’s pitch
and roll angles, which influence the simulator’s movement. The information presented in
this panel provides the necessary parameters, including safety ones, to start the simulation
with all the functionalities of the Instructor Operating Station and the Automation System.
Tests indicated that the system can display real-time information from the simulator. In
this sense, as changes occur in the physical state of the simulator (Automation System),
the information in the ”Diagnostic Recording Interface”panel is updated for the user.

FR03 - Simulation Management: The tests showed that the operators could create
new simulation exercises by configuring required information such as sea state, type of
seabed, malfunctions, and instructors and students assigned to the exercise. The operators
were capable of making edits and deletions to the existing exercises. Users could easily
handle the Instructor Station software. During exercises, trainers were able to modify
the simulation by introducing malfunctions, changing sea conditions, and altering tank
volumes for example. In addition to the manual and training provided to the CIAMA
team, the system presented a user-friendly and easily understandable interface.

FR04 - Communication system: During the tests, the system demonstrated a high
capacity for faithfully reproducing the real sounds that occur within an actual submarine.
The audio validation was performed alongside trainers who were experts in submarine
operations. The tests also included the validation and adjustment of audio volume and
position. The audio system adopted by the Retrofit project utilizes a Surround 5.1 audio
system, allowing audio to be played in different positions. The tests showed that the
system could manage audio playback in specific channels. The ability to dynamically
reproduce and adjust audio was also confirmed. The tests revealed that operators did not
encounter difficulties performing audio-related operations, which confirmed the fidelity
of the audio events in the simulation.

6.2. Comparison with the previous version

The software system update brought the implementation of a modern and modular ar-
chitecture. This architecture separated the system into two main modules: the Instructor
Operating Station and the Simulation Module. This separation allows for better project
maintainability since they can be managed isolated. Furthermore, the technologies used
in the project development provide an extended lifespan. It can be achieved by using
robust technologies available in the marketplace.

The system implementation shifted the design from a distributed layout to a cen-
tralized one. This new computer organization makes the project’s implementation easier
to understand and maintain.

The study of the previous version of the project was thoroughly examined and
analyzed, serving as a foundation for the new implementation. This in-depth study led
to the incorporation of previously missing features, such as some malfunctions. Several
malfunctions were not available for the instructor in the previous version.



6.3. Feedback from expert trainers

In the following, we list the collected feedback from the trainers to improve the quality of
the simulation in the future works:

• Improve the response time between the Control Console System (CONGOP) and
the Simulation System. There is a delay in operation that involves interaction
between hardware and software. The delay negatively impacted trainer experi-
ence despite using async methods and parallel communication due to the network
technology and techniques being used. It is necessary to use a lightweight com-
munication protocol due to the numerous variables involved in the simulation pro-
cess.

• Implement a media player system capable of adding audio in a modular way. This
way, the trainer can add or change audio files as needed.

7. Conclusions and Future Works

We presented a framework to guide the development of systems for hybrid simula-
tors. It describes the fundamental architecture to implement a hybrid simulation system.
The framework comprises two main modules: the Instructor Operating Station and the
Simulation Module. For the validation, a real-world case study was applied: the retrofit
project of the Immersion Trainer for “Tupi”Class Submarines. The simulator was develo-
ped by the SENAI Institute of Innovation of Virtual Production System in partnership with
the SENAI Institute of Technology of Industrial Automation for the Brazilian Navy (CI-
AMA). The simulator takes input from the instructor’s panel data and automation system
instruments, allowing the instructor to create exercises with configurable and parameteri-
zed operations. The developed system simulates the physical behavior of the submarine
based on the model and scales extracted from the real system. Additionally, the instruc-
tor has complete control over the simulation through an intuitive graphical control panel.
The results demonstrate that the framework is a viable solution for developing and imple-
menting hybrid simulation systems. These results were validated based on the functional
requirements established in collaboration with the technical team at Brazilian Navy (CI-
AMA). In future work, we intend to evaluate the framework’s performance regarding
simulation time and network response time with the Automation System.
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