
A Pipeline for Monitoring and Maintaining a Text
Classification Tool in Production

Elene F. Ohata1, César Lincoln C. Mattos2, Paulo Antonio L. Rêgo2

1Department of Teleinformatics Engineering (DETI/UFC)
Campus do Pici, Bloco 725, Fortaleza, 60355-636, Ceará, Brazil

2Department of Computer Science (DC/UFC)
Campus do Pici, Bloco 910, Fortaleza, 60355-636, Ceará, Brazil

elene.ohata@lapisco.ifce.edu.br, {cesarlincoln,paulo}@dc.ufc.br

Abstract. Text classification has been a core component of several applications.
Modern machine learning operations strategies address challenges in deploying
and maintaining models in production environments. In this work, we describe
and experiment with a pipeline for monitoring and updating a text classification
tool deployed in a major information technology company. The proposed fully
automatic approach also enables visual inspection of its operations via dash-
boards. The solution is thoroughly evaluated in two experimental scenarios: a
static one, focusing on the Natural Language Processing (NLP) and Machine
Learning (ML) stages to build the text classifier; and a dynamic one, where the
pipeline enables automatic model updates. The obtained results are promising
and indicate the validity of the implemented methodology.

1. Introduction

ML solutions have been adopted in the most diverse production environments, with com-
panies deploying models to improve customer service and enhance internal processes.
ML tools capable of handling textual data using NLP are especially prevalent due to the
large amount of human-generated content in textual format. In that sense, besides ask-
ing how ML can transform a given procedure, recent ML literature has shed light on the
question of how difficult is to deploy models in practice [Paleyes et al. 2022].

Seminal work by [Sculley et al. 2015] has looked at real-world ML solutions
through the lens of software engineering, analyzing the technical debt inherent to such
systems, which results in massive ongoing maintenance. For instance, the authors high-
light how the system components dedicated to the actual ML algorithms are quite small
compared to the other components necessary for the solution to work properly.

The collection of practices to automate all the processes of an ML system us-
ing methodologies from the DevOps literature has been called MLOps [Alla et al. 2021].
Besides sharing the interest of DevOps in the systematization of developing, releas-
ing, and maintaining software, MLOps is also concerned with the automation of the
data handling and modeling [Gift and Deza 2021]. After deployment, the requests re-
ceived by the system and the resulting predictions should be monitored. Newly acquired
data should then be used to update the model with the aim of improving its perfor-
mance [Symeonidis et al. 2022].



The benefits of MLOps are especially relevant when frequent retraining is neces-
sary [Mäkinen et al. 2021]. The result is a cyclic workflow, such as the one defined by the
CRISP-ML(Q), a cross-industry standard process model for developing ML applications
with quality assurance methodology [Studer et al. 2021]. The main steps of CRISP-ML
(Q) are business and data understanding, data preparation, modeling, evaluation, deploy-
ment, monitoring, and maintenance.

In this work, we focus on the modeling, evaluation, monitoring, and maintenance
components of the CRISP-ML(Q) workflow. We consider the task of performing au-
tomatic classification of technical texts within an internal support system from a large
company. The goal is to predict the main category of a given textual description of a tech-
nical problem. The learning task presents challenges such as the predominance of short
texts, the heavy usage of technical jargon and acronyms, and the presence of ambiguous
labels. We detail a learning strategy based on the use of NLP techniques and supervised
models to perform multiclass classification.

Fortunately, the intrinsic nature of the analyzed system operation results in the fre-
quent collection of new labeled instances, which enables periodic model updates. Thus,
we propose and implement a fully automated pipeline to perform model retraining, in-
cluding an inner loop of model selection, leveraging new data acquired while monitoring
the deployed solution. Such a scenario where new labeled examples become available
over time is not uncommon in systems that aim to predict information that may be later
filled by a human, e.g., a product rating or book categorization. Thus, we envision the
proposed pipeline being leveraged in other scenarios and applications.

In summary, the contributions of this work are as follows:

1. The proposal of a comprehensive NLP and ML workflow to perform model train-
ing and selection for a text classification tool;

2. The proposal of a fully automated pipeline to monitor the deployed solution in
production and use new data to retrain the model;

3. Evaluation of the obtained ML tools in two scenarios, a static one, with fixed
model and data, and a dynamic one, where the model is updated periodically.

In addition, we illustrate how the deployed model can be monitored using cus-
tomizable dashboards built with the Grafana software. Finally, we use such dashboards
to visualize the improvement behavior of the ML system over successive updates, which
exemplifies the importance of this step for an enduring ML solution.

2. Related Work
Numerous studies within the existing literature have presented techniques and workflows
for executing model monitoring and updates in adherence to modern MLOps conven-
tions and tools. Furthermore, there are studies proposing approaches aimed at enhancing
the comprehension of human language and enabling more proficient responses to human
needs by taking advantage of the capabilities of NLP and ML methodologies.

[Nigenda et al. 2022] introduced the Amazon SageMaker Model Monitor, a ser-
vice designed for continuous monitoring of the performance of ML models deployed on
Amazon SageMaker. This system autonomously identifies various types of model drift
in real-time. It also generates alerts, enabling model owners to take corrective actions,



thereby ensuring the ongoing quality of their models. Their focus was primarily on tabular
ML applications, but users may have a wide array of use cases, including the monitoring
of image classification models or tracking metrics associated with NLP models.

[Kaminwar et al. 2021] presented a collection of recommendations aimed at vali-
dating models, code, and data at various stages of the ML life cycle. They proposed some
guidelines substantiated by an examination of common errors and performance challenges
observed across various industrial contexts. They stated that the root causes of these er-
rors extend beyond the model itself, with code and data assuming significant roles. In
addition, the development of an all-encompassing checklist was deemed impractical due
to the intricate nature of ML tasks.

The combination of NLP and ML has been employed to assist large companies
in various tasks. [Borg et al. 2021] proposed the use of ML techniques to classify emails
into 33 different classes, to enhance customer support within a telecommunications com-
pany. [Arias-Barahona et al. 2023] suggested a methodology that involves utilizing the
combination of Term Frequency-Inverse Document Frequency (TF-IDF) along with the
Synthetic Minority Over-sampling Technique, complemented by the Support Vector Ma-
chine, as a method for categorizing client requests into specific categories.

The learning task in our work is located within the scope of the latter contribu-
tions. However, after designing the NLP strategy and the ML training procedure, we also
pursue a formal pipeline to perform monitoring and model updates, following the recent
MLOps practices and tools. We aim to automate most of those steps, while also enabling
inspection of the deployed solution results via customizable dashboards.

3. Problem Description
We aim to aid the operation of an asynchronous support system within a major IT com-
pany by categorizing new issues to promote a faster and more effective response. In sum-
mary, a technical support agent submits relevant information about equipment or system
components that require maintenance to the business team through a text-based tool. In
this tool, agents can submit general information using select boxes and describe the issue
in detail textually. The business team relies on this information to analyze and address the
issue. Among the select boxes, the main issue category is crucial for efficiently resolv-
ing issues. Correctly categorizing issues helps not only solve problems, but also monitor
recurring problems. However, inaccurately categorized issues can slow down resolution
processes and corrupt system logs, which hinders their value. Since selecting the main
category is mandatory, the business team is advised to correct any inaccuracies in this
selection to maintain system integrity. Moreover, the requirement to choose a main issue
category during operations means that the system can record reviewed issues, including
those corrected and those evaluated without category changes, as newly gathered data.

The above scenario provides an incentive for employing an AI assistant. The AI
assistant should act when the agent submits the issue, where it will check if the written
text corresponds to the main issue category; if it does not, an alert message should appear,
indicating a suggested main category. Figure 1 illustrates the sequence of steps expounded
in the previous paragraphs, beginning with the identification of system issue by technical
agents and concluding with the presentation of suggested solutions by the business team.

Updating the ML model by integrating newly acquired data is essential to ensure



Figure 1. Steps of the resolution of a system issue.

its continued effectiveness and relevance. This practice will serve as a crucial aspect
of model maintenance, allowing the system to adapt to new issues, thus enabling more
accurate predictions. Regularly feeding newly acquired data facilitates ongoing learning
and refinement, which ensures that the model remains valuable in assisting the agents to
better categorize issues.

The available data includes unconventional text elements characterized by abbre-
viations and industry-specific jargon; some terms are unique to the company’s internal
context. We have also observed numerous spelling errors within the dataset. There is an
additional challenge where agents occasionally assign incorrect main categories, and the
error persists without correction in certain instances. As follows, we describe a method-
ology to process such data via NLP techniques and use it to train supervised ML models.
Importantly, we also describe how to monitor and update the resulting solution.

4. Proposed Methodology
At a higher level, our pipeline consists of API, monitoring, and visualization modules.
The first implements the endpoints of the AI model, while the others enable tracking and
observing the main metrics related to the AI tool. Figure 2 illustrates this workflow and its
technologies. It includes a traffic simulation component, using the Locust library for con-
trolled experimentation, which is suppressed after deployment. We employed the FastAPI
framework to build the API. We chose a combination of Prometheus and Grafana for the
monitoring stage, enabling us to gather metrics and visualize them effectively. In this
work, we use Locust to simulate traffic in the form of model requests for controlled ex-
perimentation. In the following sections, we detail the data representation, the processing
steps, and each macro component of the proposed workflow.

Model AI Endpoints Monitoring VizualizationRequests Monitoring Metrics

Locust FastAPI Prometheus Grafana

Figure 2. High-level view of the considered pipeline and technologies.

4.1. Data Preparation
The collected dataset consists of stored data from an Oracle Database, totaling 6145 sam-
ples. These samples are accompanied by labels that fall into 11 categories1, from which

1Due to confidentiality reasons, the categories are not fully detailed here.



users must select the most relevant one to categorize their reported issue. In Figure 3, the
distribution of samples across each category is depicted, revealing a substantial imbalance
in the dataset. Notably, class “3” contains a significantly higher number of samples, which
can be attributed to two primary factors. Firstly, class “3” represents the most common
problem in the support system. Secondly, many agents tend to select this class when they
are uncertain about the appropriate category to choose. As we will discuss later, this is a
relevant cause of confusion in the ML model predictions.

Figure 3. Amount of samples for each label.

The dataset presents challenges that make its classification difficult. Its texts in-
clude technical acronyms, incomplete phrases, misspellings, and specialized terminology.
Consequently, before the classification phase, the raw data requires careful preprocess-
ing. We adopt the following preprocessing steps: conversion to lowercase text, correc-
tion of common misspellings, identification of language (with current support limited
to English), tokenization, lemmatization, and exclusion of punctuation, special symbols,
unnecessary white spaces, and stopwords.

The next step consists of converting the textual data into a numeric vectorized
format, which can be performed with several techniques. We investigate three extensively
used methods: Term Frequency-Inverse Document Frequency (TF-IDF), Word2Vec, and
Doc2Vec. Due to very specific wording and acronyms, both Word2Vec and Doc2Vec
embeddings were trained from scratch instead of using pre-trained solutions [Kim 2014].

4.2. Model training and evaluation

We consider multiple supervised ML models in the classification step, which were cho-
sen based on their popularity in NLP applications [Haq et al. 2022, Essa et al. 2023]. We
also opted to evaluate diverse learning strategies. The methods are k-Nearest Neigh-
bors (KNN), Light Gradient Boosting (LightGBM), Adaptive Boosting of decision trees
(AdaBoost), Multinomial Naive Bayes (MNB), Multilayer Perceptron (MLP), Random
Forest (RF), and Support Vector Machine (SVM). The latter is considered with either a
linear kernel or a nonlinear RBF (radial basis function) kernel.

The classification stage is performed using a nested cross-validation technique,
as indicated in Figure 4. This method divides the dataset into p outer partitions, form-
ing p unique training and validation pairs. Concurrently, the p training sets are sub-
divided into q inner partitions to create the inner folds. The inner loop is responsi-
ble for optimizing the model hyperparameters, while the outer loop is responsible for



selecting the best ML model [Cawley and Talbot 2010]. This careful approach guar-
antees that the validation sets of the outer folds are not employed in hyperparameter
tuning, preventing any data leakage and overly optimistic bias in the models’ perfor-
mance [Wainer and Cawley 2021].

Figure 4. Nested cross-validation scheme to perform model selection and hyper-
parameter optimization with no data leakage in any step.

In this work, we define p = q = 5. In addition, we used random search to optimize
the hyperparameters. Table 1 shows the hyperparameters considered for each classifier.

Table 1. Hyperparameters grid for each classifier during the optimization phase.

Classifier Parameter Setup

AdaBoost learning rate [0.0001, 0.001, 0.01, 0.1, 1.0]
number of estimators 10 to 500 in steps of 10

KNN number of neighbors [3, 5, 7, 9, 11, 15, 17]

LightGBM learning rate [0.0001, 0.001, 0.01, 0.1, 1.0]
number of estimators 10 to 500 in steps of 10

MLP neurons in the hidden layer 2 to 1000 in steps of 50
MNB - -

Random Forest number of estimators 25 to 2000 in steps of 50
SVM (Linear) C [2−5, 2−3, . . . , 215]

SVM (RBF) C [2−5, 2−3, . . . , 215]
γ [2−15, 2−13, . . . , 23]

We also employed hyperparameter selection for the TF-IDF technique. The
threshold used to eliminate very frequent tokens is adjusted within the interval from 0.3
to 1. Tokens with frequency above this threshold are not considered in the embedding
phase. We also restrict the selection to unigrams, bigrams, or trigrams.

When comparing distinct model strategies and configurations, we consider ac-
curacy and F1-score metrics. The accuracy represents the proportion of the accurately
predicted classes. Since we are dealing with multiple classes, we employ the weighted
F1-score. Thus, the F1-score is initially calculated individually for each label. Subse-
quently, a weighted mean is executed based on the number of instances in each category.

4.3. Monitoring and Maintenance
This section outlines the steps to implement and manage the ML model for monitoring
and maintenance. For the monitoring stage, we use Prometheus for metrics collection and



Grafana for metrics visualization. We use an endpoint to perform the model maintenance.
The workflow used to perform monitoring and maintenance is depicted in Figure 5.

Figure 5. Workflow employed in the monitoring and maintenance stage.

To monitor the performance of the ML model, the main metrics collected from
the designated endpoints are i) accuracy of the last trained model; ii) accuracy and iii)
name of the best-trained model; and iv) frequencies of the predicted classes. Visualizing
these collected metrics is also essential; then, a dedicated dashboard was created in a user-
friendly way that allows users to gain a quick understanding of model performance at a
glance. A suggested dashboard is shown in Section 5.2. The metrics and their visualiza-
tion track the historical validation accuracy scores of the model and performance trends
over time. Moreover, Grafana can be configured to emit alerts to notify when model
performance deviates from predefined thresholds.

To ensure that the ML model remains up-to-date, it is crucial to adapt it to new
data. To facilitate model maintenance, an “Update model” endpoint was established.
This endpoint ensures that the ML model can be continuously improved and adapted to
changing data. The enhancement of the model can be accomplished through the execution
of a request to the endpoint. Additionally, an alternative approach involves the utilization
of a third-party library, such as fastapi-utils, to facilitate the initiation of periodic tasks.

In the context of traffic simulation for controlled experimentation, we partition
the dataset into test and train sets. The train set is employed to initialize the model using
the existing endpoint, while the test set simulates the requests. After each prediction, the
sample updates the dataset used for training. This approach yields a dynamic dataset,
which enables the observation of the collected metrics. It is important to emphasize that
the traffic simulation does not affect the trained models presented in Section 5.1.

5. Experimental Results and Discussion

In this section, we present the outcomes achieved by employing various methods for
extracting textual features and diverse ML approaches to recommend an appropriate main
issue category to enhance a technical support system. This section is divided into two
subsections. The first comprises the static classification metrics, while the second presents
the experiments related to model monitoring and maintenance.



5.1. Static classification experiment
Table 2 presents the outcomes derived from 5 iterations, as previously described in Section
4.2. A total of 24 experiments were conducted, combining three distinct text feature
extraction approaches with eight classification methods. The algorithms were coded in
Python 3.8, with key libraries including scikit-learn, gensim, nltk, and spacy.

Table 2. Quantitative results (average ± std. deviation) for every text feature ex-
traction and classifier combination. The best result is highlighted in blue.

Feature
Extraction Classifier Accuracy

(%)
F1-score

(%)

Word2Vec

AdaBoost 47.23 ± 1.23 35.54 ± 1.91
KNN 48.14 ± 1.64 43.28 ± 1.47

LightGBM 55.02 ± 1.10 50.07 ± 1.12
MLP 49.8 ± 3.15 38.93 ± 6.24
MNB 43.69 ± 1.74 29.04 ± 2.63

Random Forest 54.0 ± 1.04 47.05 ± 1.09
SVM (Linear) 52.04 ± 1.28 45.42 ± 0.91
SVM (RBF) 50.51 ± 1.33 48.82 ± 1.04

Doc2Vec

AdaBoost 55.04 ± 2.02 49.4 ± 2.62
KNN 57.02 ± 1.08 50.71 ± 1.38

LightGBM 64.0 ± 1.24 60.94 ± 1.24
MLP 60.94 ± 1.41 56.12 ± 1.57
MNB 44.9 ± 1.53 27.84 ± 1.62

Random Forest 60.75 ± 1.46 55.02 ± 1.96
SVM (Linear) 61.64 ± 0.62 58.92 ± 0.96
SVM (RBF) 62.36 ± 0.61 59.45 ± 0.73

TF-IDF

AdaBoost 57.09 ± 12.80 52.24 ± 9.36
KNN 64.39 ± 1.23 58.77 ± 1.75

LightGBM 75.0 ± 1.71 73.31 ± 1.91
MLP 72.61 ± 1.19 70.58 ± 1.45
MNB 53.12 ± 1.55 40.78 ± 1.86

Random Forest 75.66 ± 1.62 72.6 ± 2.28
SVM (Linear) 77.30 ± 1.80 75.94 ± 2.05
SVM (RBF) 77.22 ± 1.69 75.88 ± 1.96

It is noticeable that Word2Vec produced the least favorable results, in contrast
to the other techniques for feature extraction, regardless of the classification approach
employed. The best performance was attained by LightGBM, achieving an accuracy of
55.02% and an F1-score of 50.07%.

Even though the combination of Doc2Vec and LightGBM enhanced the top-
performing Word2Vec outcome by 8.8% in accuracy and 10.9% in F1-score, we still deem
this level of both metrics unsatisfactory. This increase can be attributed to the enhanced
capacity of the generated Doc2Vec embedding in effectively encapsulating the contextual
nuances of a given sentence. The unimpressive overall Word2Vec and Doc2Vec perfor-
mances were not surprising, given the restricted quantity of annotated data and the content
specificity, which can hinder sentence embedding.

On the other hand, the TF-IDF encoding exhibited overall superior performance
compared to the Word2Vec and Doc2Vec, achieving an accuracy of 77.3% and an F1-
score of 75.94% when coupled with the SVM (Linear) classifier. A better performance
for TF-IDF over Word2Vec or Doc2Vec has been reported before for text classification
tasks [Cahyani and Patasik 2021]. One of the reasons for such a superior performance
could be due to TF-IDF’s ability to capture the significance of domain-specific terms.
This effectiveness is likely attributed to assigning higher weights to rare and informative
terms. In contrast, Word2Vec and Doc2Vec may display reduced efficacy in capturing
such nuances, especially due to the dataset not being large enough.



Figure 6 displays the confusion matrix for the best pairing, TF-IDF combined with
SVM (Linear) classifier. It can be noted that most of the errors are concentrated in classes
“5”, “7”, and “10”, which are the classes with fewer samples. In addition, it is possible to
observe that most confusions arise between class “3” or class “6” and other classes. The
confusion surrounding class “3” is expected due to this class’s large quantity of samples.
Moreover, it is the class agents choose when unsure which option to select. Class “6”,
similar to class “3”, is chosen when generic errors occur. Since both classes “3” and
“6” are equally generic, agents choose one or another indiscriminately. The model also
reflects this confusion, as presented in Figure 6. It is important to highlight that this result
may encourage the business team to reformulate the available issue labels in the future.

Figure 6. Average confusion matrix of the TF-IDF and linear SVM combination.

We employed the Kruskal-Wallis nonparametric test with Dunn’s post-hoc test on
the F1-score outcomes from the five outer loop iterations to verify the null hypothesis that
the classifier and feature extractor pairings exhibit no significant difference between them.
The Kruskal-Wallis test yielded a p = 1.7 × 10−5, along with a Kruskal-Wallis statistic
value of 33.97, which is enough to reject the null hypothesis. Then, we apply Dunn’s
post-hoc test to determine which of the sample pairs are significantly different. Figure
7 shows the adjusted p-value from Dunn’s test considering only TF-IDF; ∗ represents a
p-value between 10−2 and 5× 10−2, ∗∗ is a p-value between 10−3 and 10−2, and ∗ ∗ ∗ is
a p-value between 10−4 and 10−3. We can see that SVM (both variants), LightGBM, RF,
and MLP are the best results, which are statistically similar and better than the others.

5.2. Monitoring and maintenance experiment

Prometheus works as a metrics aggregator, collecting all data received from the appli-
cation requests and sent by the model responses. Subsequently, Grafana is employed to
render such data visually. By employing Grafana, diverse panel types are seamlessly in-
tegrated into a dashboard interface, where Prometheus metrics find visualization through
fitting panels incorporated via an API. This integration process facilitates the monitoring
of the ML model. We use traffic simulation with Locust to feed the dashboard, which
simulates real users interacting with the system.



Figure 7. Kruskal-Wallis with Dunn’s post-hoc test for multiple comparisons be-
tween classifiers when TF-IDF is used as a feature extractor. The box-plot
graph illustrates the median F1-score in each outer-fold.

Figure 8 illustrates an exemplified dashboard arrangement. We can observe three
main rows: i) accuracy and name of the model currently in production, ii) history of
train accuracy, and iii) distribution of the predicted values. The prediction distribution
is shown using a histogram, which resembles the counts presented by Figure 3, since
the data for the request simulation was stratified. Using a bar plot in “History of Train
Accuracy” makes it possible to note the metric improvement over time due to the newly
labeled samples included in the train set. Finally, the third row can be used to monitor the
best model deployed in production. As expected, we can see in the second row of Figure
8 that the overall accuracy increases over time, following the model update with new data
from past requests.

Figure 8. Example of a Grafana dashboard arrangement layout comprising three
primary rows.

We emphasize that the model update is automatic and does not require manual
intervention. It is also worth mentioning that the entire double loop depicted in Figure



4 is executed after some predetermined time window, related to the availability of new
labeled data. Thus, different learning algorithms with varying configurations of hyperpa-
rameter can be automatically selected from time to time based on their cross-validation
performances, which includes the comparison with the model currently in production. It
is also worth mentioning that in the case of massive data regimes, one should undersam-
ple the training data, possibly with a bias towards newer instances, or pursue incremental
learning strategies to update the model without fully retraining it [van de Ven et al. 2022].
The latter is a promising direction for future investigations.

6. Conclusion
In this study, we have created and assessed a natural language processing system designed
to assist in selecting an issue category in a text-based technical support platform. Follow-
ing recent machine learning literature, besides handling model training and evaluation,
we also focus on applying MLOps practices to automate a pipeline for the solution. The
suggested workflow encompasses data processing, model training, and both monitoring
and maintenance modules. The monitoring module enables the assessment of model per-
formance, while the updating module leverages new data to periodically refine the model.
The result is a cyclic workflow of automated steps to maintain the system in production.

Through experimentation and evaluation, we have provided evidence of the ef-
fectiveness of our approach. The static results showed that the optimal performance was
achieved using a TF-IDF combined with SVM with the Linear kernel, yielding an accu-
racy of 77.3% and an average weighted F1-score of 75.94%.

Moreover, in a dynamic setting with simulated requests, the proposed automatic
model retraining strategy increased the model accuracy over time, given additional data.
This study demonstrated the validity and practical applicability of our methodology, of-
fering valuable insights for the deployment of text classification tools in large organiza-
tions and dynamic real-world settings, especially the ones that require frequent updates.
This research contributes to the ongoing advancement of automatic text classification and
MLOps strategies, paving the way for more accurate and adaptive solutions in the future.

Future work includes improving the solution by incorporating metadata related to
the textual data, such as information from the user who reported the issue. Furthermore,
we intend to analyze how correcting the main issue category affects the support system
workflow and the agents’ interaction with it.

References
Alla, S., Adari, S. K., Alla, S., and Adari, S. K. (2021). What is mlops? Beginning MLOps

with MLFlow: Deploy Models in AWS SageMaker, Google Cloud, and Microsoft Azure,
pages 79–124.

Arias-Barahona, M. X., Arteaga-Arteaga, H. B., Orozco-Arias, S., Flórez-Ruı́z, J. C.,
Valencia-Dı́az, M. A., and Tabares-Soto, R. (2023). Requests classification in the
customer service area for software companies using machine learning and natural lan-
guage processing. PeerJ Computer Science, 9:e1016.

Borg, A., Boldt, M., Rosander, O., and Ahlstrand, J. (2021). E-mail classification with
machine learning and word embeddings for improved customer support. Neural Com-
puting and Applications, 33(6):1881–1902.



Cahyani, D. E. and Patasik, I. (2021). Performance comparison of tf-idf and word2vec
models for emotion text classification. Bulletin of Electrical Engineering and Infor-
matics, 10(5):2780–2788.

Cawley, G. C. and Talbot, N. L. (2010). On over-fitting in model selection and subsequent
selection bias in performance evaluation. The Journal of Machine Learning Research,
11:2079–2107.

Essa, E., Omar, K., and Alqahtani, A. (2023). Fake news detection based on a hybrid bert
and lightgbm models. Complex & Intelligent Systems, pages 1–12.

Gift, N. and Deza, A. (2021). Practical MLOps. O’Reilly Media, Inc.

Haq, M. A., Khan, M. A. R., and Alshehri, M. (2022). Insider threat detection based on
nlp word embedding and machine learning. Intell. Autom. Soft Comput, 33:619–635.

Kaminwar, S. R., Goschenhofer, J., Thomas, J., Thon, I., and Bischl, B. (2021). Structured
verification of machine learning models in industrial settings. Big Data.

Kim, Y. (2014). Convolutional neural networks for sentence classification. In Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP).

Mäkinen, S., Skogström, H., Laaksonen, E., and Mikkonen, T. (2021). Who needs mlops:
What data scientists seek to accomplish and how can mlops help? In 2021 IEEE/ACM
1st Workshop on AI Engineering-Software Engineering for AI (WAIN), pages 109–112.
IEEE.

Nigenda, D., Karnin, Z., Zafar, M. B., Ramesha, R., Tan, A., Donini, M., and Kentha-
padi, K. (2022). Amazon sagemaker model monitor: A system for real-time insights
into deployed machine learning models. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 3671–3681.

Paleyes, A., Urma, R.-G., and Lawrence, N. D. (2022). Challenges in deploying machine
learning: a survey of case studies. ACM Computing Surveys, 55(6):1–29.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V.,
Young, M., Crespo, J.-F., and Dennison, D. (2015). Hidden technical debt in machine
learning systems. Advances in neural information processing systems, 28.

Studer, S., Bui, T. B., Drescher, C., Hanuschkin, A., Winkler, L., Peters, S., and Müller,
K.-R. (2021). Towards crisp-ml (q): a machine learning process model with quality
assurance methodology. Machine learning and knowledge extraction, 3(2):392–413.

Symeonidis, G., Nerantzis, E., Kazakis, A., and Papakostas, G. A. (2022). Mlops-
definitions, tools and challenges. In 2022 IEEE 12th Annual Computing and Com-
munication Workshop and Conference (CCWC), pages 0453–0460. IEEE.

van de Ven, G. M., Tuytelaars, T., and Tolias, A. S. (2022). Three types of incremental
learning. Nature Machine Intelligence, 4(12):1185–1197.

Wainer, J. and Cawley, G. (2021). Nested cross-validation when selecting classifiers
is overzealous for most practical applications. Expert Systems with Applications,
182:115222.


