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Abstract. Embeddings represent a viable solution to address the challenge of
data and information generation in Heterogeneous Graphs. This paper pre-
sents the approach for generating and processing heterogeneous embeddings
(AGHE), which are built from various data types such as text, images, and sub-
graphs embedded in nodes. The AGHE comprises several steps, from graph
creation to generating embeddings using metapaths and aggregating informa-
tion from neighboring nodes. The experiments conducted investigated the per-
formance of Recommender System tasks applied to the generated embeddings:
node-local text-based, neighbor-aggregated text-based, metapath-based, and
text and metapath composition. Results underscore the effectiveness in repre-
senting data heterogeneity in Deep Learning systems based on Heterogeneous
Graph.

1. Introduction

Nowadays, we have a vast expanse of unexplored and underutilized data, representing
a disconnected and unseen world amidst the abundance of information. Heterogeneous
Graph (HG) is an example of a powerful data structure able to hold valuable insights
about the domain modeled, thus exploring HG, it is possible to navigate this uncharted
territory, uncovering valuable insights and discovering hidden knowledge that can trans-
form the understanding and utilization of data. Turning a digital desert into a fertile and
shareable land of data and information. Representation Learning (RL) using Deep Lear-
ning (DL) models can be used to complement, or even replace, traditional approaches to
data generation with neural network approaches. An example lies in downstream applica-
tions like Recommender System (RecSys), where DL can solve the intricate relationships
within the data itself, providing high-quality data to achieve superior recommendations
[Wang et al. 2015].

Most graphs seem not to concern themselves with complete information about
their components, they typically focus only on the relationships between their nodes. HG
has the potential to become an important dataset embedded within a much larger collec-
tion of data and information because HG has different types of nodes that can contain not
only plain text data. By expanding to other data types, such as images and subgraphs,
node embeddings can be generated from this varied information using DL techniques to
extract information from images and plain text, thereby turning them into embeddings sa-
ved within the nodes. This mechanism can leverage downstream applications to enhance
RL using graph embedding.



The work [Hamilton et al. 2017c, Ying et al. 2018a] introduces the generation of
embeddings based on the neighboring nodes, increasing their expressiveness and recom-
mendation performance. Meanwhile, the works of [Zhang et al. 2019, Wu et al. 2022]
evaluate the heterogeneity of data types embeddings, opening up a new perspective.
[Dong et al. 2017, Wang et al. 2023] propose a new approach for generating embed-
dings from metapaths, capturing semantics based on node relationships. Vision GNN
[Han et al. 2022] and Superpixel Image Classification [Avelar et al. 2020] are examples
of the few works where the graph is an image and the nodes are parts of it, demonstra-
ting the feasibility of having images as nodes. None of the related work addresses the
topic of using heterogeneous graphs with also heterogeneous data types, mainly such as
images and subgraphs, with the potential to extract information from images through DL
techniques, especially Autoencoders, saving them as heterogeneous embeddings.

This paper aims to propose an approach capable of generating heterogeneous em-
beddings through the processing of texts, images, and subgraphs represented in the nodes
of HG, thus enhancing the performance of downstream applications like RecSys. The
approach is named AGHE - Approach for Generating Enhanced Heterogeneous Embed-
dings from Heterogeneous Graphs, which is separated into five steps: the first one is the
creation of the HG with texts, images, and subgraphs associated with the nodes; the se-
cond one is the generation of embeddings using specialized Autoencoders; the third one
is the generation of embeddings from metapaths and neighboring nodes; the fourth one is
the creation of recommendation data based on the generated embeddings; and the fifth and
final step is the reconstruction of the recommended graph and its provision as a dataset.
The experiments were conducted on an HG with 463 nodes, 497 edges, and 13 metapaths,
applying the main RecSys tasks to the different generated embeddings, demonstrating the
performance evolution from a baseline without embeddings to achieve the best perfor-
mance with the heterogeneous composition of Features and Metapath embedding. These
results underscore the effectiveness of this approach in representing data heterogeneity in
DL systems based on HG. Therefore, the main contribution of this approach is to gene-
rate embeddings from many data types, providing a graph as a rich dataset for downstream
applications to enhance their performance.

The remainder of this paper is organized as follows: Section 2 presents the related
work. Section 3 conceptualizes the background techniques applied in this paper. Section
4 presents the proposed approach. Section 5 conducts some experiments while Section 6
exposes the conclusions and future works.

2. Related Work
The Homogeneous Graph can be traced back to generate data embedding from node featu-
res based on random walk approach [Hamilton et al. 2017c, Ying et al. 2018a] improving
the node expressivity. Based on these studies we build our aim, which is to propose an
approach using HG with heterogeneous data type embeddings. More relevant and close
to our aims is the recent work [Zhang et al. 2019] which includes the definition of He-
terogeneous Graph Neural Network (HetGNN) with the processing of embedding. This
paper contributes by highlighting that heterogeneity lies not only in the node type but also
in the data type of the embeddings, hence our work allows (e.g. in a Family graph) the
node type to be a Pet and the data embedding could be the image of the family pet. The
survey [Wu et al. 2022] shows Graph Neural Networks (GNN) have been widely used in



downstream applications essentially because graph structure and GNN have superiority in
graph representation learning, citing GraphSAGE [Hamilton et al. 2017a] as an important
work regarding generating node embedding from node feature information.

MetaPath2Vec [Dong et al. 2017, Wang et al. 2023] is another crucial aspect of
this research due to its ability to capture the structure of HG, guiding random walks to
generate sequences of heterogeneous nodes with rich semantics. Hence, metapath plays
an important role in our work capturing vital information by leveraging the relationships
among heterogeneous nodes, transforming it into a form of node embedding. Vision GNN
paper [Han et al. 2022] and Superpixel Image Classification [Avelar et al. 2020] are other
sources of inspiration that illustrate image representation in the form of a graph. In this
context, each node corresponds to a distinct part of the same image, implying that every
node encapsulates an image. Adopting a similar conceptualization, we can extend this
idea to employ an image for representing node content. Therefore, both the previously
mentioned study and our work share a commonality in utilizing images as nodes.

HG can be integrated with some applications. However, one usually needs to ca-
refully consider two factors: the first is how to construct HG for a specific application,
and the second is what information or domain knowledge should be incorporated into
a HG to ultimately benefit the application [Wang et al. 2023]. In the RecSys, the inte-
raction between the user and items can be naturally modeled as a HG with two types
of nodes. Therefore, RecSys is a typical scenario that widely uses heterogeneous infor-
mation. Moreover, other types of information, such as social relationships and personal
data, can also be easily introduced into HG [Shi et al. 2015], thus applying heteroge-
neous graph embedding to recommendation applications is an important research field
[Wang et al. 2023]. Hence, this work uses recommendations as an assessment to validate
the value of performance by employing various types of node embeddings from the HG.

3. Conceptualization

This section aims to present techniques in DL that can be combined to formulate an ap-
proach that facilitates the generation and extraction of relevant information in scenarios
where data representation has a significant impact on the application.

Heterogeneous Graph and Embeddings. HG nodes and edges can be of dif-
ferent types, e.g., the graph encoding the relationship between Person and their Cars
and Pets [Fu et al. 2020]. The challenge of the heterogeneous graph representation le-
arning is to figure out the information of nodes from it and their neighborhoods, which
makes the aggregated embedding more powerful [Zhang et al. 2019, Wang et al. 2019,
Jin et al. 2021]. The central problem in DL on graphs is finding a way to incorporate in-
formation about graph structure into DL models. From this perspective, the challenge is
that there is no straightforward way to encode this high-dimensional, non-Euclidean infor-
mation about graph structure into a feature vector [Hamilton et al. 2017c]. Heterogeneous
graph embedding aims to learn a function f : V → Rd that embeds the nodes v into a
low-dimensional Euclidean space with d ≪ |V | shown by Fig. 1(a) [Wang et al. 2023].
Thus, graph embedding is the transformation of property graphs to a vector or a set of vec-
tor spaces. Embedding should capture the graph topology, node features, node-to-node
relationship, and other relevant information about graphs, subgraphs, and nodes. The si-
milarity of embedding between nodes indicates their similarity in the network, i.e., both



nodes are close to each other, connected or not by an edge, potentially used for any kind
of prediction [Hamilton et al. 2017b, Rozemberczki et al. 2020].

(a) Embedding is saved into a dense vector
space.

(b) Aggregated embeddings.

Figura 1. Embeddings representation and aggregation.

The basic idea behind node embedding approaches is to use dimensionality reduc-
tion techniques to figure out the high-dimensional information about the neighborhood of
nodes into a dense vector embedding [Perozzi et al. 2014, Hamilton et al. 2017b]. Neu-
ral networks like GraphSAGE [Ying et al. 2018a, Zhang et al. 2019] can generate indi-
vidual node embedding by passing, transforming, and aggregating [Zhiyuan Liu 2020,
Gilmer et al. 2017], node feature information across the graph [Ying et al. 2018b]. Fig.
1(b) shows a small example of an input graph and two neural network layers that compute
the embedding, h(2)

A of node A using the previous layer representation h
(1)
A from node A

and its neighborhoods N(A) nodes B,C,D.

Thus, is able to generalize the embedding approach as models that learn graph
embedding with methods inspired by the Skip-Gram model. DeepWalk learns embedding
via the prediction of the local neighborhood of nodes, sampled from random walks on the
graph [Perozzi et al. 2014].

Metapath2vec. It is a heterogeneous graph embedding model that formalizes me-
tapath based on random walk to construct the heterogeneous neighborhood of a node and
then leverages a heterogeneous Skip-Gram model to perform node embedding. Maximi-
zing the probability of preserving both the structures and semantics of a given heterogene-
ous network, being able to learn desirable node representations in heterogeneous networks
[Dong et al. 2017]. Fig. 2 shows an example of the application of Metapath2vec archi-
tecture where the purpose is to generate paths that are able to capture both the semantics
and structural correlations between different types of nodes. Under the metapath scheme
CPE the walker is biased towards Person node P given its previous step on a Car node C,
and its next step is a Pet node E, following the semantics of this metapath. Metapath2vec
encourages all types of nodes to appear in metapath definition [Sun and Han 2012].

Autoencoders. They are useful for incorporating structural graph information
from nodes, providing specific implementations. Autoencoder is a kind of neural network
architecture that imposes a bottleneck on the network that forces a compressed kno-
wledge representation of the original input. If the input resources were independent
of each other, the compression and subsequent reconstruction would be a very diffi-
cult task. Thus, AE are neural networks that aim to copy their input to their output,
compressing the input in a latent space representation, called Encoder h = f(x), and
after that, rebuilding the output through this representation, called Decoder r = g(h)
[Bank et al. 2021, Kipf and Welling 2016, Wu et al. 2019]. Learning a representation via



Figura 2. Use case of Metapath2vec architecture.

Autoencoder can be used for various applications, due to the fact that different types of
Autoencoder may be modified or combined to form new models for various applications
such as generative models, classification, clustering, anomaly detection, recommendation,
dimensionality reduction, and capture information [Bank et al. 2020].

4. AGHE - Approach for Generating Enhanced Heterogeneous Embeddings
The primary objective of this approach is to generate embeddings from many data types,
providing a graph as a rich dataset for downstream applications to enhance their results.
The challenge at hand is how to generate data embeddings to enhance node semantics.
Fig. 3 shows the pipeline designed to process embeddings of heterogeneous data types
from HG, resulting in an enriched graph with features and heterogeneous embeddings.
The pipeline shows the big picture regarding the complete process, where the input is the
entire heterogeneous graph HG = (V,E,OHV ) where V is a set of nodes, E is a set of
edges, O is a set of objects embedded in node v ∈ V that describe and representing it, thus
OHV is heterogeneous data type embeddings and OH ∈ {text, image, subgraph}. The
tasks are to design some Autoencoders AEΘ with Θ parameters able to process each node
heterogeneous data features OHV generating as output just text features and respective
embeddings OV attached on each node v. At the end of the pipeline, a Decoder DΘ where
Θ parameter is a dense vector graph representation, is able to rebuild the graph G with
news and standardized data type features and within different types of embedding. HG
has different types of nodes, and each node has its data features, typically based on the
text data type representation. Expanding the node data features to other data types, such
as images, and subgraphs embedded in the node, the RL could leverage applications based
on graph embeddings as input datasets.

The first challenge associated with the Input step is to model some business cases
as a graph. The second one associated with the Processing Data step lies in obtaining
node features from images and subgraphs. Thus, our approach addresses this scenario by
using images and subgraphs as a data source to generate node data embeddings. Hence,
node embedding can originate from local information, subgraph information, or be co-
ming from metapaths and random walk information associated with the node. Given this
challenge, these steps are proposed for generating and processing heterogeneous embed-
dings.

4.1. Steps of the AGHE Approach
Fig. 4 illustrates the main steps and capabilities employed in creating a heterogeneous
graph and generating vectorial numeric embeddings through text and image processing.



Figura 3. Pipeline for generating and processing features and embeddings.

A heterogeneous graph is created by integrating text, image, and subgraph data types,
employing vectorial numeric representations such as embeddings generated through spe-
cialized Autoencoders for processing a set of words and images. Additionally, Meta-
path2vec produces vectorial numeric representations through metapath walks, which are
utilized to generate embeddings, thereby offering a rich dataset for downstream applica-
tions like RecSys. This enhances the data graph, delivering a novel heterogeneous graph
with embedded data and recommendations. Our approach provides valuable data about
nodes, which proves useful for downstream applications. Each step shown in Fig. 4
will be detailed in the sequence, addressing the questions “What is done?” and “What is
delivered”?

Figura 4. Main steps of the approach AGHE.

Step 1 - Graph Creation. There are two main implementations, the first one re-
gards adding nodes and defining their types, characterizing a heterogeneous graph. Subse-
quently, should attach the node features with a set of short node descriptions with simple
words. In this context, edge features are not considered as part of this research. The se-
cond one maps relationships between nodes through adding edges to the heterogeneous
graph, providing navigation between the nodes. Another important aspect related to the
creation of the heterogeneous graph is the association of each node of the type image with
its image, which involves uploading the node image from an image database provided by
the application that understands the graph. The entire process can be replaced by inges-
ting the graph components from the graph database, regardless of whether they exist. As



a result, the HG is created and can be used in subsequent steps. It is a critical step because
all the other steps and results depend on it.

Step 2 - Generating Text Node Embeddings. It is responsible for generating
text node embeddings from images, transforming the entire set of node text features into
numeric vectorial embeddings, and saving them into each node. Where the Image Au-
toencoder takes, as input, the image from nodes whose types are images. The Image
Autoencoder implements a Convolutional Neural Network (CNN) to extract image clas-
sification and certain characteristics from the processed image, generating text features
that will later be saved into each node. Thus, the entire graph has text node features, co-
ming from the original text features or the node images. This step is carried out by the
Text Autoencoder, which employs the Word2Vec algorithm to process the complete set
of text feature nodes generating respective node embeddings. The objective is to incorpo-
rate the semantics of text features into continuous numeric vector space and subsequently
learn a compact representation of these vectors, with the aim of dimensionality reduc-
tion while preserving the semantic information of words. As a result, the heterogeneous
graph contains text features across all nodes, represented as numeric vectorial features or
embeddings in the entire set of graph nodes.

Step 3 - Metapath and Aggregated Node Embeddings. It aims to tra-
verse the nodes in the defined metapaths, capturing complex semantic patterns
in the relationships between different types of nodes using the MetaPath2Vec al-
gorithm. This technique tries to learn a compact latent representation of the
graph nodes while preserving the semantic structure and meaningful relationships
between them. Based on the HG used in the experiments, there are three dif-
ferent types of nodes: Car, Person, and Pet, which generate a set of metapaths
{(Car, Person), (Pet, Person), (Car, Person, Person), (Pet, Person, Pet),
(Person, Person, Car), (Person, Person, Pet), (Person, Person, Person)}. After
the processing of metapaths, it produces a new numeric vectorial embedding for each
node. This representation captures semantics from nodes based on each metapath and
their direct or indirect neighbors, depending on the value of the random walk size para-
meter. Using the random walk approach, aggregated node embeddings are generated by
merging local embeddings with embeddings from neighboring nodes.

Step 4 - Graph Enhancing with RecSys Tasks. Enhances the data graph by
aggregating new data into the nodes, including predicted links, classified node, and clus-
tered node, based on the embeddings generated in the previous steps. This step delivers a
heterogeneous graph enhanced with new predicted edges and more semantic information
attached to its nodes.

Step 5 - Rebuild the Recommended Graph. It is the final step, aiming to deliver
the recommended graph with aggregating features and embeddings from different data
types, predicted links, node classified, and clustered. This step provides for downstream
applications a graph enriched by more informative nodes. Consequently, the resulting
graph is ready to be utilized in applications that require a rich data source. Additionally,
this step produces a JSON file within the final heterogeneous graph, serialized and pu-
blished as a public dataset, as shown in Fig. 5.



Figura 5. The final step of the approach AGHE.

5. Experiments
This section intends to execute some experiments guided by the methodology based on
the approach proposed for generating enhanced heterogeneous features and embeddings.
The experiments aim to validate of the assumption that enriching the heterogeneous graph
within heterogeneous embeddings, generated from processing the available data within
the graph, could enhance the performance of downstream applications.

Methodology. Fig. 6 shows the main pipeline as part of the methodology used
to execute the entire set of experiments. Essentially, it involves the generation of features
and embeddings from nodes, and the validation of RecSys performance based on each
type of node embedding.

Figura 6. Steps of experiments methodology.

Heterogeneous Graph Model. Fig. 7 shows an example of a HG within features
of different data types, which represents the model used in the experiments. The graph



includes many node types such as Person, Car, and Pet. Each node has its own features,
which can be in plain text, images, or subgraphs like the family of Mary embedded in its
node. The real graph used in the experiments has exactly the same model shown in Fig.7
only with a larger number of graph elements, i.e., 463 nodes, 497 edges, and 13 metapaths.
Steps 2 and 3 generated five heterogeneous embeddings to support the experiments:

Figura 7. Heterogeneous graph model used in the experiments.

The column “Embeddings” in Table. 1 means:

• No Embeddings. Represents the performance of RecSys calculated from the same
heterogeneous graph but without any features and embeddings. Thus, it serves as
a baseline to compare the performance with other types of embedding;

• Features. Using the original text features of nodes, as well as the class and charac-
teristics of images generated from the Image Autoencoder. A set of text features
and their respective embeddings are generated and saved into each node;

• Aggregated. Each node aggregates its text features with its neighbors through the
random walk approach generating its corresponding embeddings;

• Metapaths. Based on the metapaths defined in Step 3, the metapath embedding is
generated by traversing metapaths to capture the relationship and semantic infor-
mation of nodes and saving it into the central node.

• Features Metapaths. Based on the features and metapaths embedding was created
a specific embedding that captures the local node semantic by its text features, and
the relationship between the nodes through metapath.

Results and Analysis of the Experiments. The assumption that enriching the
heterogeneous graph within heterogeneous embeddings, generated from processing the
available data within the graph, could enhance the performance of downstream applicati-
ons, such as RecSys, was validated. Table 1 illustrates the evolution of this performance



starting with Features embeddings and progressing to the best performance achieved by
the combination of Features and Metapaths node embeddings, as indicated by the Ac-
curacy and F-1 Score metrics. Link Prediction was calculated using Cosine Similarity
with a threshold of 80% and using a specific Person “Erika” as the node target. Link
prediction from “No Embeddings” was calculated using the Jaccard algorithm based on
the intersection and union set operation J(A,B) = |A∩B|

|A∪B| . Link prediction count using
Features embedding is so high, it can indicate data homogeneity with lack of distinctive
features. Although it varies based on certain factors, predictions from Metapaths and Fe-
atures Metapaths may be deemed more reliable. Node clustering already reveals similar
cluster distributions independent of the embedding used, except Aggregated embedding.
“No Embeddings” Clusters were calculated using the Louvain algorithm based on the
nodes community where nodes without community identified have no cluster assigned.

Tabela 1. Performance of Different Types of Graph Embeddings

Nodes: 463, Edges: 497, Metapaths: 13

Prediction Classification Clusters
Embeddings Links Acc F-1 Correct Incorrect C0 C1 C2
No Embeddings 7 44.71% 61.79% 207 256 36 32 32
Features 459 50.11% 66.76% 232 231 256 20 187
Aggregated 114 64.36% 78.32% 298 165 24 346 93
Metapaths 7 65.44% 79.11% 303 160 213 100 150
Features Metapaths 7 71.06% 83.08% 329 134 213 100 150

6. Conclusion
This paper presents an Approach for Generating Heterogeneous Embeddings (AGHE)
from HG, enhancing the graph as a dataset and improving downstream applications, thus
demonstrating the high RL achieved. This enhances the performance of RecSys, which is
used as a system reference in this paper. Developing effective and efficient graph analytics
from information embedding, can greatly help to better understand complex graphs, and
provide innovative solutions for data models. Based on the obtained results, we believe
that the conducted study can open doors for its use in different downstream applications
as demonstrated in this work. Some specific evaluations can be achieved: the choice of
appropriate embeddings plays a crucial role in the performance of downstream tasks. The
results indicate that a one-size-fits-all embedding approach is not necessarily the best for
all tasks and datasets.

It is important to explore a variety of embedding generation techniques and consi-
der the unique characteristics of the data and tasks at hand. Combining information from
different sources, such as node features and structural relationships defined by metapaths,
can lead to more comprehensive and informative node representations in the graph. This
highlights the importance of exploring hybrid approaches that combine multiple types of
embeddings to improve the performance of RecSys tasks and other downstream applica-
tions. However, it is important to note that combining feature and metapath embeddings
may increase the dimensionality of the data, which can lead to computational and gene-
ralization challenges, especially in large and complex HG. Hence, it is important to strike



a balance between model complexity and performance in terms of efficiency and gene-
ralization capability. Additionally, careful validation of the results is crucial, including
evaluation of separate test datasets and comparison with benchmarks and state-of-the-art
approaches to ensure the reliability and robustness of the findings, whether it is feasible.

Future works include evaluating recommendation performance using both a ta-
bulated dataset and the same dataset modeled as a HG with heterogeneous embeddings;
creating a heterogeneous embedding combining Features Aggregated and Metapaths; dee-
ply analyzing the architecture and methods of algorithm; applying the proposed approach
to a popular dataset as a performance baseline; evaluating the application of AGHE to
different downstream applications; and aggregating edge data features into AGHE.
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