
A Probabilistic Model Checking Technique
for the Verification of Self-Organising Emergent Systems∗

Lucio Mauro Duarte1, Luciana Foss2, Flávio Rech Wagner1, Tales Heimfarth3

1Instituto de Informática – UFRGS – Porto Alegre – RS – Brazil

2Instituto de Fı́sica e Matemática – DINFO – UFPel – Pelotas – RS – Brazil

3Departamento de Ciência da Computação – UFLA – Lavras – MG – Brazil

{lmduarte,flavio}@inf.ufrgs.br

luciana.foss@ufpel.edu.br, tales@dcc.ufla.br

Abstract. Developing self-organising emergent systems (SOESs) poses a great
challenge to current software engineering approaches. Model-checking such
systems is difficult as their behaviour cannot be linearly described and their
structure can change dynamically. We propose a technique to model and ve-
rify SOESs applying probabilistic model checking. We applied our technique to
a problem involving an SOES and obtained verification results about relevant
properties of the system. These results demonstrate that our abstractions are
appropriate for describing the behaviour of this SOES and indicate that they
may be applied to other similar systems.

Resumo. O desenvolvimento de sistemas emergentes auto-organizáveis
(SEAOs) constitui-se em um grande desafio para as atuais abordagens de en-
genharia de software. Realizar verificação de modelos para estes sistemas é
difı́cil, visto que seu comportamento não pode ser descrito linearmente e sua es-
trutura pode mudar dinamicamente. Neste artigo, propomos uma técnica para
modelar e verificar SEAOs que utiliza verificação de modelos probabilı́stica.
Esta técnica foi aplicada a um problema envolvendo um SEAO, possibilitando
a obtenção de resultados de verificação de propriedades relevantes. Tais resul-
tados mostram que nossas abstrações são adequadas para descrever este SEAO
e indicam que a mesma ideia pode ser aplicada a outros sistemas similares.

1. Introduction
Self-organising emergent systems (SOES) [De Wolf and Holvoet 2005a] are one of the
most promising answers to the development of massive distributed systems with decen-
tralised control. An SOES comprises a set of quite simple, and not necessarily reliable,
components that interact using local rules and autonomously adapt their behaviour to
changes in the environment. As opposed to conventional systems, the global behaviour
of such a system (macroscopic layer) cannot be simply defined as a linear combination of
the behaviours of all its individual components (microscopic layer); it actually emerges
from the local rules. For this reason, it is difficult to infer global properties just by looking
at local properties of individual components.

∗This work was supported by grant MCT/CNPq/CT-INFO 551031/2007-7.

410

The complexity of SOESs lies not on their components, but on the difficulty of
predicting the behaviours that can emerge from local interactions between these compo-
nents. Therefore, the system does not necessarily follow a linear behaviour, which means
that SOESs cannot be designed by just dividing the problem and then assigning one part
of the solution to each basic element of the system. Characteristics such as emergent
behaviours and self-organisation have to be considered throughout the software develop-
ment process so as to make it possible the early identification of undesirable behaviours
and improve the safety and correctness of the system. Furthermore, when it comes to an
SOES, even the idea of a correct behaviour changes, since many questions do not have
just “true” or “false” as possible answers, but might require a probabilistic or stochastic
analysis.

As a result, conventional software engineering techniques are, in general, not ap-
propriate for the development of SOESs [De Wolf and Holvoet 2005b]. In particular, mo-
delling the dynamic change of behaviour according to environment conditions that charac-
terises an SOES is difficult, due to the requirement of predicting all possible behaviours
beforehand. Moreover, the complexity resulting from the heterogeneity of system compo-
nents and their interactions generally trespasses the limits of current software engineering
paradigms and methodologies. Therefore, new techniques and tools need to be provided
to support the development of this new type of systems.

1.1. Motivation

During the development of the project “A Methodology for the Development of Computa-
tional Systems Considering the Transition From Silicon to New Technologies”, supported
by the Brazilian Research Council (CNPq), we have studied a possibly complete metho-
dology for the design and implementation of SOESs. This is part of the problem presented
in [Wagner et al. 2009] as a refinement of two of the Grand Challenges in Computer Sci-
ence Research in Brazil1. Our general idea is to provide a whole set of techniques and
tools to cope with the characteristics of these new systems. Our study involves identify-
ing conventional approaches that could be extended and/or adapted to give the necessary
support, thus developing new techniques and tools from existing ones.

In this paper, we focus on a particular part of the methodology, which is the veri-
fication of SOESs. This verification involves modelling the system behaviour, specifying
properties that it should preserve, and checking that the necessary properties indeed hold
in the model. In this context, we apply model checking [Clarke et al. 1999], which is
one of the most important approaches for the analysis of properties of systems. It pro-
vides an automatic way of checking that a system, represented as a finite-state model,
preserves some temporal properties. More specifically, we use probabilistic model chec-
king [Vardi 1985], which is an extension of model checking that allows the assignment of
probabilities and timing information to transitions.

Applying model checking is usually not trivial because it requires the thorough
exploration of a model of the system, which means that the model size has to be controlled
via abstractions precise enough to guarantee confidence on the results, but coarse enough
to not be intractable by model checking tools [Duarte et al. 2008]. This is even more

1Available from http://www.sbc.org.br/index.php?language=1&subject=8&content=downloads&id=231.

411

challenging when one considers the non-linearity of an SOES behaviour. Furthermore,
the dynamic aspects of the system must also be represented in the models.

1.2. Objectives

Essentially, engineering SOESs has two big challenges [Gardelli 2008]: how to design the
individual entities to produce a target global behaviour and how to provide guarantees of
some sort about the emergence of a specific behaviour. In this paper, we focus on trying
to find an answer for the second question by applying probabilistic model checking.

There have been a few attempts to model and verify an SOES using probabilistic
model checking, such as [Casadei and Viroli 2009] and [Gardelli 2008], where they verify
properties of coordination systems and properties of multi-agent systems, respectively,
using the Probabilistic Symbolic Model Checker (PRISM) [Kwiatkowska et al. 2002].
They use simulation to help the verification process, either by using it to adapt the model
to the abstractions necessary to check some property or by applying simulation to produce
results to complement verification. Unlike these approaches, we do not apply simulation
as part of our technique. Hence, the results of our analysis are more precise, since they are
not based on approximations considering a set of scenarios obtained from an abstraction
of the system. Rather, our results come from a complete exploration of this abstraction,
thus increasing our confidence on the correctness of the model.

We present an approach focused on modelling and verifying an SOES. This
approach involves the use of the PRISM tool to model the system, specify the
relevant properties using a probabilistic temporal logic, and check these properties
against the model using probabilistic model checking. To demonstrate this ap-
proach, we describe results of a case study involving the ant colony optimisation
(ACO) [Dorigo and Gambardella 1997] applied to the travelling salesman problem
(TSP) [Applegate et al. 2006]. The ACO defines a bio-inspired self-organisation algo-
rithm and has been used to guide the solution for the TSP. We combined the TSP and
the ACO in a small scenario aiming to investigate how to model the problem and, in
particular, how to model self-organisation and deal with emergent behaviours.

We describe how we modelled the problem as a discrete-time Markov chain
(DTMC) in the PRISM language and present some probabilistic properties we checked.
The results indicate that the application of the ACO to the TSP eventually leads to a be-
haviour that complies with requirements for solving the problem. Therefore, the results
show that our abstractions successfully capture the desired characteristics of the scenario,
in particular those related to emergent behaviours and self-organisation. This is demons-
trated by the fact that, as expected, the system converges to the expected solution. This
result supports our confidence that our modelling ideas could be applied in other scenarios
to describe self-organising mechanisms and check emergent behaviours.

1.3. Paper Structure

This paper is organised as follows: Section 2 presents background information on proba-
bilistic model checking; Section 3 describes how we modelled and verified the problem
and the results we obtained; Section 4 presents a discussion about related work regarding
the verification of SOESs; and Section 5 contains the conclusions.

412

2. Background
This section presents the concepts involving probabilistic model checking and a brief
description of the PRISM tool. We discuss why probabilistic model checking is more ap-
propriate for verifying properties of an SOES than traditional model checking and present
the basic ideas on how to model behaviours and specify probabilistic properties.

2.1. Probabilistic Model Checking

Probabilistic model checking [Vardi 1985] is a model checking technique for the analysis
of systems that exhibit probabilistic or stochastic behaviour. It mainly differs from tradi-
tional model checking in that it involves additional information on probabilities or timing
of transitions between states. There are several commonly used model representations
for probabilistic and stochastic systems, most of them based on Markov chains, which
are models traditionally used for performance and reliability analysis. In Markov chains,
transitions between states depend on some probability distribution, where only the cur-
rent state of the system influences the probability of the next transitions. Depending on
how time is treated, a Markov chain can be a discrete-time Markov chain (DTMC) or a
continuous-time Markov chain (CTMC). A DTMC model is represented by a transition
system that defines the probability of moving from one state to another considering dis-
crete steps, whereas in a CTMC system state changes can occur at any arbitrary time and
the probability of moving to a next state depends on transition rates. We concentrate on
DTMCs, as we deal with discrete time events.

Properties of a DTMC are specified using the Probabilistic Computation
Tree Logic (PCTL) [Hansson and Jonsson 1994]. PCTL extends the temporal logic
CTL [Ben-Ari et al. 1983] with discrete time and probabilities. It is used to express pro-
perties over states or paths. The syntax of PCTL is as follows:

state formulas: ϕ ::= true | a | ϕ ∧ ϕ | ¬ϕ | P◃▹p[ψ]
path formulas: ψ ::= X ϕ | ϕ U≤k ϕ | ϕ U ϕ

where ◃▹∈ {≤,≥, <,>}, 0 ≤ p ≤ 1 and k ∈ N. A property of a model will always be
expressed as a state formula. Path formulas only occur as the parameter of the probabilis-
tic path operator. A state formula can be an atomic proposition a, formulas true, ϕ ∧ ϕ
or ¬ϕ, having their usual meaning, or the probabilistic path operator P◃▹p[ψ]. Intuitively,
a state s satisfies P◃▹p[ψ] if the probability of taking a path from s satisfying ψ is in the
interval specified by ◃▹. Path formulas contain the next (X), the bounded until (U≤k) or
the unbounded until (U) operator, all of which are standard in CTL. Intuitively, Xϕ is true
if ϕ is satisfied in the next state; ϕ1U≤kϕ2 is true if ϕ2 is satisfied within k time-steps and
ϕ1 is true up until that point; and ϕ1Uϕ2 is true if ϕ2 is satisfied at some point in the future
and ϕ1 is true up until then.

2.2. Probabilistic Symbolic Model Checker - PRISM

The Probabilistic Symbolic Model Checker (PRISM) [Kwiatkowska et al. 2002] is a tool
used for verifying quantitative properties. The tool takes two inputs: a model description
(written in the PRISM language) and a property (e.g., specified in PCTL). It parses this
description, constructs a model of the appropriate type (either a DTMC or a CTMC) and
then determines the set of reachable states of this model and checks whether these states
preserve the required properties.

413

A model in the PRISM language is composed by modules that can interact with
each other. A module contains a set of local variables whose values constitute the state of
the module. The global state of the model is determined by the combination of the local
states of all modules, along with the values of global variables. All variables are typed
as integer or boolean. Integer variables are defined as a range of values, so as to allow
bounded model checking. Besides variables, constants of type integer, boolean or double
can be defined.

The behaviour of each module is described by a set of commands of the form:
[]g → λ1 : u1 + . . . + λn : un. The guard g is a predicate over all the variables in the
model (including those belonging to other modules). Each update ui describes a transition
that the module can make if the guard is true. A transition is specified by giving the
updated values of the variables in the module, possibly as an expression formed from other
variables or constants. The expressions λi are used to assign probabilistic information to
the transitions.

3. Verifying a Self-Organising Emergent System
This section presents the results of a case study on verifying properties of an SOES. This
case study shows the application of our ideas for modelling and verifying SOESs. The
problem we chose to model was the travelling salesman problem, based on the criteria
that this is a famous complex problem and, yet, easy to understand. To drive the solution
to the problem, we applied the ant colony optimisation, which is a bio-inspired mech-
anism that has already been used to speed up the process of finding a solution to this
problem [Dorigo and Gambardella 1997]. This mechanism adds the necessary characte-
ristics of emergence and self-organisation to the problem scenario, thus allowing us to
apply our technique and demonstrate that it is appropriate as part of a methodology for
the development of SOESs.

3.1. Problem Description
The travelling salesman problem (TSP) [Applegate et al. 2006] is a classic and well-
studied problem in Theoretical Computer Science that can be used to formalise a number
of real-world problems [Cormen et al. 2001]. It involves determining the shortest tour for
a salesman through a given finite set of n cities. The salesman starts his tour in some city
and must visit all other n− 1 cities exactly once before returning to the initial city. More
formally, this problem consists in finding the shortest Hamiltonian circuit [Gould 1991]
in a fully-connected graph G = (N,E), where N represents the set of n cities and E
describes the set of routes between pairs of cities.

As a metric to determine the shortest tour, each route (i, j) ∈ E is assigned a
cost cost(i, j), describing the distance between city i and city j. Thus, the total cost of a
certain tour t = (c0, c1, ..., cn) is given by the sum presented in (1), which represents the
sum of the costs of every route included in the tour. Therefore, the shortest path would be
the one with the lowest total cost.

n−1∑
i=0

cost(i, (i+ 1)mod n) . (1)

414

One way proposed to help solve the TSP is the use of the ant colony optimisa-
tion (ACO) [Dorigo and Gambardella 1997], which is an algorithm that reproduces the
behaviour of ants looking for food sources. As they move around, ants mark the paths
they take by leaving a trail of pheromone, which is a natural hormone. Paths more fre-
quently used are those that contain good food sources, thus having higher concentrations
of pheromone (positive feedback). Hence, paths leading to food sources close to the
nest tend to be more used, concentrating higher levels of pheromone and becoming more
attractive to other ants. After some time, the pheromone on paths decays, which guaran-
tees that paths not used very often will have less probability of being taken in the future
(negative feedback). This means that the pheromone mechanism provides all the informa-
tion ants need to choose paths to be taken and this interaction through concentrations of
pheromone is enough for them to achieve the necessary organisation. Therefore, their sys-
tem involves the idea of self-organisation and the behaviour of the whole colony emerges
from the interactions through pheromone, thus characterising an SOES.

The algorithm of the ACO applied to the TSP described in
[Dorigo and Gambardella 1997] proposes to use an abstraction of pheromone to
guide the choice of paths between N cities in order to find the shortest tour. The
probability of taking a certain route at each part of the path is based on the length of
the route and on the concentration of pheromone on that route, which is called the
desirability of the route. Therefore, the objective is that, after some iterations of the
algorithm, shorter paths should have higher probabilities of being taken. The decay of
pheromone is represented by a decrease of pheromone concentration and recalculation
of probabilities of all paths after some time units, which ensures that long paths may
eventually be completely avoided.

3.2. Modelling

We modelled the symmetric version of the TSP (i.e., for a route (i, j), cost(i, j) =
cost(j, i)) using the PRISM language. To control the state space we decided to work
with a graph composed by 4 cities, where each city is identified by a sequential number
and city number 1 is always the initial city (which simplifies the modelling of the problem
but does not affect the analysis). The number of cities is related to the minimum number
of vertices required to introduce some complexity to the problem of choosing paths.

Instead of modelling several individual ants, we constructed a model with one ant
that iteratively travels along the edges of the graph. This way we simulate with one ant the
work of many, each one represented by a tour executed by this single ant. Note that this
reduces the complexity of the problem, but does not influence the results of any analysis
on the model. The final result is essentially the same as having multiple ants moving
around simultaneously.

Although we followed the original algorithm when modelling the ACO, calcula-
ting the probabilities of paths based both on costs and desirability (amount of pheromone),
we adopted different formulas to simplify the model and the verification. Our desirability
component, called preference, refers to the amount of pheromone associated to each route
between two cities and ranges from 1 (MIN PREF) to 10 (MAX PREF). All routes
are initialised with MIN PREF and, after each cycle, are updated according to usage
and path lengths. The local update of preferences after a tour is calculated as presented in

415

(2), where pij denotes the preference of the route (i, j) and tot dist is the sum of the costs
of all routes comprising the most recent tour taken. The function inc factor determines
by how much the preference of a route will be increased depending on the total cost of the
complete path. It assigns an increase value to paths according to the group they belong
to (shortest, mid-length or longest), which is determined by the definition of the costs
assigned to each route.

p′ij = min(pij + inc factor(tot dist),MAX PREF) . (2)

The probability of taking a certain route (i, j) is given by the formula in (3), where
N CITIES is the number of cities involved (in our case, 4) and visited cities is the set
of cities already visited during this tour.

probij = pij/

N CITIES∑
k=1

pik s.t. k ∈ {1, ..., N CITIES} − visited cities . (3)

Consider, for instance, a scenario with four cities. From the initial city 1, the
probability of taking, for example, route (1, 2) is given by the formula prob12 = p12/(p12+
p13 + p14).

Figure 1 presents the PRISM model of the TSP with the ACO. We chose to model
the problem as a DTMC, since our focus is on determining that our modelling correctly
abstracts a behaviour that leads to the solution of the problem and not on how long it
takes for this solution to be found. Although the system modelled has only four cities,
the PRISM model is quite large since we need to define the system behaviour for each
sequence of visited cities. This is because the PRISM language does not provide any abs-
tract structure, such as arrays, that could allow us to generalise these behaviours. Note,
however, that a tool to automatically generate models like this one could be easily devel-
oped, but our focus is on the technique and not on the case study.

Each constant Dij determines the distance (or cost) between cities i and j. Cons-
tants EVAP RATE and N CYCLES are used to set the rate at which the pheromone on
routes evaporates and the number of cycles to be executed, respectively. Their values
are assigned at the beginning of the verification, so that it is possible to analyse different
scenarios with only one model just by varying the values of these parameters.

Based on the defined constants, Figure 2 shows an illustration of the scenario
considered in our experiments. Each circle represents a city and each edge determines the
route between two cities. Distances are displayed next to each route.

Variable cont in the model (see Figure 1) controls the number of cycles, acting as
a counter, whereas each variable pij defines the preference of a route (i,j). Lines 20-30
describe the formulas used to calculate the probability probij of each route (i, j). The
distances defined for each route in the graph create 3 groups of path lengths: the longest
paths have a total distance of 19, mid-length paths have a cost of 15, and the shortest paths
have a total distance of 10. We simplified the calculation by testing, according to the total

416

1 dtmc
2
3 const int N_CITIES = 4 ;
4 const int MIN_PREF = 1 ; const int MAX_PREF = 1 0 ;
5 const int D12 = 1 ; const int D23 = 8 ;
6 const int D34 = 2 ; const int D14 = 4 ;
7 const int D13 = 4 ; const int D24 = 3 ;
8 const int MAX_DIST = (D12+D23+D34+D14+D13+D24) ;
9 const double EVAP_RATE ;

10 const int N_CYCLES ;
11
12 global cont : [0 . . N_CYCLES] init 0 ;
13 global p12 : [MIN_PREF . . MAX_PREF] init MIN_PREF ;
14 global p13 : [MIN_PREF . . MAX_PREF] init MIN_PREF ;
15 global p14 : [MIN_PREF . . MAX_PREF] init MIN_PREF ;
16 global p23 : [MIN_PREF . . MAX_PREF] init MIN_PREF ;
17 global p24 : [MIN_PREF . . MAX_PREF] init MIN_PREF ;
18 global p34 : [MIN_PREF . . MAX_PREF] init MIN_PREF ;
19
20 formula prob12 = (p12 / (p14+p13+p12)) ;
21 formula prob13 = (p13 / (p14+p13+p12)) ;
22 formula prob14 = (p14 / (p14+p13+p12)) ;
23 formula prob123 = (p23 / (p23+p24)) ;
24 formula prob124 = (p24 / (p23+p24)) ;
25 formula prob132 = (p23 / (p23+p34)) ;
26 formula prob134 = (p34 / (p23+p34)) ;
27 formula prob142 = (p24 / (p24+p34)) ;
28 formula prob143 = (p34 / (p24+p34)) ;
29 formula inc_factor =
30 (tot_dist<15) ? 7 : ((tot_dist=15) ? 4 : 1) ;
31
32
33 module traveller
34
35 loc : [1 . . N_CITIES+1] init 1 ;
36 path : [0 . . 6] init 0 ;
37 tot_dist : [0 . . MAX_DIST] init 0 ;
38
39 [] loc=1 & path=0 −> prob12 : (loc ’ = 2) +
40 prob13 : (loc ’ = 3) +
41 prob14 : (loc ’ = 4) ;
42
43 [] loc=2 & path=0 −>
44 prob123 : (loc ’ = 3) &
45 (path ’ = 1) &
46 (tot_dist ’=D12+D23+D34+D14) +
47 prob124 : (loc ’ = 4) &
48 (path ’ = 2) &
49 (tot_dist ’=D12+D24+D34+D13) ;
50 [] loc=3 & path=0 −>
51 prob132 : (loc ’ = 2) &
52 (path ’ = 3) &
53 (tot_dist ’=D13+D23+D34+D14) +
54 prob134 : (loc ’ = 4) &
55 (path ’ = 4) &
56 (tot_dist ’=D13+D34+D24+D12) ;
57 [] loc=4 & path=0 −>
58 prob142 : (loc ’ = 2) &
59 (path ’ = 5) &
60 (tot_dist ’=D14+D24+D23+D13) +
61 prob143 : (loc ’ = 3) &

62 (path ’ = 6) &
63 (tot_dist ’=D14+D34+D23+D12) ;
64
65 [] (loc=2|loc=3|loc=4) & path !=0 −> 1 . 0 : (loc ’ = 5) ;
66
67 [] loc=5 & path=1 −> 1 . 0 :
68 (path ’ = 0) &
69 (p12 ’=min (p12+inc_factor ,MAX_PREF)) &
70 (p23 ’=min (p23+inc_factor ,MAX_PREF)) &
71 (p34 ’=min (p34+inc_factor ,MAX_PREF)) &
72 (p14 ’=min (p14+inc_factor ,MAX_PREF)) &
73 (tot_dist ’ = 0) ;
74 [] loc=5 & path=2 −> 1 . 0 :
75 (path ’ = 0) &
76 (p12 ’=min (p12+inc_factor ,MAX_PREF)) &
77 (p24 ’=min (p24+inc_factor ,MAX_PREF)) &
78 (p34 ’=min (p34+inc_factor ,MAX_PREF)) &
79 (p13 ’=min (p13+inc_factor ,MAX_PREF)) &
80 (tot_dist ’ = 0) ;
81 [] loc=5 & path=3 −> 1 . 0 :
82 (path ’ = 0) &
83 (p13 ’=min (p13+inc_factor ,MAX_PREF)) &
84 (p23 ’=min (p23+inc_factor ,MAX_PREF)) &
85 (p24 ’=min (p24+inc_factor ,MAX_PREF)) &
86 (p14 ’=min (p14+inc_factor ,MAX_PREF)) &
87 (tot_dist ’ = 0) ;
88 [] loc=5 & path=4 −> 1 . 0 :
89 (path ’ = 0) &
90 (p13 ’=min (p13+inc_factor ,MAX_PREF)) &
91 (p34 ’=min (p34+inc_factor ,MAX_PREF)) &
92 (p24 ’=min (p24+inc_factor ,MAX_PREF)) &
93 (p12 ’=min (p12+inc_factor ,MAX_PREF)) &
94 (tot_dist ’ = 0) ;
95 [] loc=5 & path=5 −> 1 . 0 :
96 (path ’ = 0) &
97 (p14 ’=min (p14+inc_factor ,MAX_PREF)) &
98 (p24 ’=min (p24+inc_factor ,MAX_PREF)) &
99 (p23 ’=min (p23+inc_factor ,MAX_PREF)) &

100 (p13 ’=min (p13+inc_factor ,MAX_PREF)) &
101 (tot_dist ’ = 0) ;
102 [] loc=5 & path=6 −> 1 . 0 :
103 (path ’ = 0) &
104 (p14 ’=min (p14+inc_factor ,MAX_PREF)) &
105 (p34 ’=min (p34+inc_factor ,MAX_PREF)) &
106 (p23 ’=min (p23+inc_factor ,MAX_PREF)) &
107 (p12 ’=min (p12+inc_factor ,MAX_PREF)) &
108 (tot_dist ’ = 0) ;
109
110 [] loc=5 & path=0 & cont<N_CYCLES −> 1 . 0 :
111 (p12 ’ = (max (p12−ceil (EVAP_RATE∗p12) ,MIN_PREF))) &
112 (p23 ’ = (max (p23−ceil (EVAP_RATE∗p23) ,MIN_PREF))) &
113 (p34 ’ = (max (p34−ceil (EVAP_RATE∗p34) ,MIN_PREF))) &
114 (p14 ’ = (max (p14−ceil (EVAP_RATE∗p14) ,MIN_PREF))) &
115 (p13 ’ = (max (p13−ceil (EVAP_RATE∗p13) ,MIN_PREF))) &
116 (p24 ’ = (max (p24−ceil (EVAP_RATE∗p24) ,MIN_PREF))) &
117 (loc ’ = 1) & (cont ’=cont+ 1) ;
118
119 [] loc=5 & path=0 & cont=N_CYCLES −> 1 . 0 : true ;
120
121 endmodule

Figure 1. PRISM model of TSP-ACO.

distance travelled to complete a path, which group this path belongs to. The shortest
paths receive an increase of 7, mid-length paths have their preference incremented by 4,
and only 1 is added to preferences of the longest paths2.

Module traveller (lines 33-121) describes the behaviour of the artificial ant
moving from city to city to execute tours on the graph. Variable loc determines which
city the ant is currently in, variable tot dist determines the total distance travelled
during the tour and variable path determines which out of the 6 possible paths has been
taken during the current tour. For our experiments, we assigned a numerical identification
to each possible path as follows, where the sequences of numbers describe sequences
of visited cities: Path 1 = 1-2-3-4-1, Path 2 = 1-2-4-3-1, Path 3 = 1-3-2-4-1, Path 4 =
1-3-4-2-1, Path 5 = 1-4-2-3-1 and Path 6 = 1-4-3-2-1.

2Command ⟨cond⟩?val1 : val2 represents a selection operation where value val1 is returned in case
the boolean expression cond is evaluated as true and val2 is returned otherwise.

417

Figure 2. Scenario of experiment with TSP-ACO.

As mentioned before, the tour always starts in city number 1. Therefore, the ini-
tial state is that described in line 39. Consequently, there are three possible routes to
take (lines 39-41), each one with its own probability. Because all preferences are ini-
tialised with the minimum preference (see lines 13-18), at the beginning, probabilities are
the same for all possible routes. Depending on the next location, which is determined
probabilistically, the choices for next route are different, so that we comply with the re-
quirement that all cities should be visited only once during a tour. For instance, consider
that a transition to city number 2 has been selected. Then lines 43-49 describe the be-
haviour at this location. If we reached city 2 from city 1, then there are still two cities to
visit (3 and 4). Because there are only four cities involved, once the third city to be visited
is chosen, we can already identify which path was taken. For example, if city number 3 is
selected, we know for a fact that the next city is necessarily city number 4 and that, from
there, we will move back to city number 1 to complete the tour. Hence, the path taken
was 1-2-3-4-1, which is path 1 (line 45). Since we know the path, we can determine the
total distance travelled (line 46).

We defined a special location (city 5) that is used to apply the necessary updates
and is reached whenever a tour is completed (line 65). Depending on the path taken, the
preferences of the route involved are updated according to the formula in (2) (lines 67-
108). Variables path and tot dist are reset to signal that the preference update has
been executed, which allows the evaporation update to happen (lines 110-117). Using
the defined evaporation rate, preferences are updated by removing part of the abstract
pheromone. Function ceil is used to guarantee that the result of the operation is an integer
so that it falls into the range of the corresponding preference variable.

The evaporation rate occurs at the end of every tour until cont reaches the prede-
termined number of cycles. When all programmed cycles have been executed, the model
enters a sink state (line 119). This limit on the number of cycles is necessary to avoid
state-space explosion and to allow the execution of bounded model checking.

3.3. Property Specification
For the presented problem, we can define the following four requirements to guarantee
that the system works properly:

1. If ant a1 starts a tour with probability p1 of finding one of the shortest paths, and
ant a2 starts its tour after a1 with probability p2, then p1 ≤ p2;

2. The majority of ants will eventually follow one of the shortest paths;
3. Routes that compose the shortest paths tend to have their preferences increased

after each cycle;
4. Routes belonging to the longest paths tend to become unused over time.

418

Requirement 1 defines that ants starting tours later must “learn” from previous
tours through pheromone concentration to avoid long paths, increasing the probability of
them taking one of the shortest paths, whereas requirement 2 ensures the emergence of a
global behaviour that satisfies the collective aim, which is to turn the shortest paths into
the most likely to be taken when a new tour begins. Requirement 3 determines that routes
composing the shortest paths should become more attractive to ants after each cycle, while
requirement 4 defines that routes in the longest paths tend to have a minimum probability
of being taking after some cycles.

Properties of the TSP-ACO experiment were specified using PCTL based on
the requirements presented above. The checked properties are presented below, where
“stopped” is a label that represents the formula (cont=T & loc=5), which de-
fines the end of cycle T, where T is a parameter used during verification. La-
bel “R12” represents the formula ((p12>p14)&(p12>p23)), “R13” the formula
((p13>p14)&(p13>p23)), “R24” the formula ((p24>p14)&(p24>p23)), and
“R34” the formula ((p34>p14)&(p34>p23)). Labels “shortest paths”, “mid-
length paths” and “longest paths” represent formulas ((path=2) | (path=4)),
((path=1) | (path=6)) and ((path=3) | (path=5)), respectively.

P1: P=? [F (‘‘stopped’’&‘‘R12’’&‘‘R13’’&‘‘R24’’&‘‘R34’’)]
P2: P=? [F (‘‘stopped’’ & ‘‘shortest paths’’)]
P3: P=? [F (‘‘stopped’’ & ‘‘mid-length paths’’)]
P4: P=? [F (‘‘stopped’’ & ‘‘longest paths’’)]
P5: P=? [F (‘‘stopped’’ & (p12=MAX PREF) & (p34=MAX PREF))]
P6: P=? [F (‘‘stopped’’& (p14=MIN PREF) & (p23=MIN PREF))]

Property P1 asks what is the probability of the preferences of routes that compose
the shortest paths being higher than those of the other routes when cycle T ends. Properties
P2, P3 and P4 ask what is the probability of taking the shortest, the mid-length and the
longest paths, respectively, when cycle T ends. Finally, properties P5 and P6 define,
respectively, the probability of routes composing the shortest paths ((1, 2) and (3, 4))
reaching saturation and the probability of routes belonging to the longest paths ((1, 4) and
(2, 3)) having the minimum preference.

3.4. Verification

Equipped with the model presented in Figure 1, considering the scenario shown in Fi-
gure 2 and having the properties described in Section 3.3, we were able to carry out some
experiments using the PRISM tool. Our first experiment was to compare different evapo-
ration rates and analyse how they affect the results of our properties. The objective was to
check that in fact the pheromone correctly influences the preference for shorter paths and
to determine what is the most appropriate evaporation rate to guarantee that our require-
ments are fulfilled. For this analysis, we used a model with 20 cycles, which was enough
to detect a pattern of increase or decrease of probabilities, and T ranging from 0 to 20.
To determine the number of cycles to be used, we executed a simulation of the results of
property P2 considering 1000 cycles, which showed that the model reaches a firm majo-
rity (approx. 55%) after 20 cycles and remains around this value from that point on. It is
worth emphasising that we applied simulation just as a means of accelerating the process,
since we only needed a rough idea of how large our model should be to guarantee that the
analyses would not be biased by the number of cycles considered. The use of verification
confirms the stability of the results for property P2 from the 20th cycle on.

419

Table 1 presents the results for the properties for evaporation rates ranging from 0
to 0.8. Values 0.9 and 1 are ignored as they have the same results as those of value 0.8.
Properties P5 and P6 were not relevant for this analysis.

Table 1. Property results for different evaporation rates.
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P1 0.9927 0.8068 0.8406 0.7933 0.7134 0.4841 0.3455 0 0
P2 0.3459 0.4796 0.5006 0.5483 0.5616 0.5583 0.4805 0.4166 0.3333
P3 0.3386 0.3295 0.3547 0.3264 0.3014 0.2784 0.3031 0.2917 0.3333
P4 0.3155 0.1909 0.1447 0.1253 0.137 0.1633 0.2164 0.2917 0.3333

Analysing the results, we can see that the pheromone abstraction correctly gua-
rantees that the shortest paths (probability of property P2) are, in almost all cases, more
likely to be taken than longer paths (properties P3 and P4). Moreover, we can notice that
extreme values, such as 0 and 0.8, reduce the pheromone effect as they either define no
decay (value 0), causing preference to accumulate in all routes (that is why property P1
reaches nearly 100%), or determine a decay of a great amount of preference (value 0.8)
that ends up balancing the probabilities of all paths. The values that guarantee the best
results are those between 0.3 and 0.5, where a probability above 51% is achieved. How-
ever, amongst these values, it is with value 0.3 that we obtain the lowest probability result
for the longest paths and the highest value for property P1.

Adopting value 0.3 as the evaporation rate, we produced a model with 20 cycles
and verified the results for properties P2, P3 and P4 at each cycle. The goal was to obtain
evidence that indeed the shortest paths tend to be taken with a higher probability after
each cycle at the same time that the longest paths are bound to become less used. The
results are displayed on the graph of Figure 3.

Figure 3. Properties P2 (line with circles), P3 (line with squares) and P4 (line with
triangles upside down), with evaporation rate 0.3 and 20 cycles.

The graph clearly shows three separate behaviours, one for each group of paths.

420

All paths start with the same probability but, as the pheromone starts acting, the shortest
paths already have the highest probability of being taken. This occurs because, if picked
at the beginning of the first cycle, they receive more pheromone than the other paths.
Therefore, at the end of the cycle, they would be the paths most likely to be taken during
the next cycle. Note that their probability increases continually from the end of cycle 1
to the end of cycle 19, when it remains the same for the next cycle (in fact, it stays at the
same level of about 55% from that point on). The probability of the longest paths falls
quickly during the first 5 cycles and then remains around 12% for all the others.

Using properties P5 and P6, we analysed the probabilities of maximum and min-
imum preference of routes. The results are presented in the graph in Figure 4, which
shows that the probability of saturation of the routes belonging to the shortest paths (line
with circles) increases after each cycle up to cycle 16, where it reaches a probability over
79%. On the other hand, the probability of the routes belonging to the longest paths
having the minimum preference (line with squares) decreases after the first cycles, since
all the preferences are initialised as minimum and then the pheromone concentration is
updated. However, this probability stops dropping after cycle 3 and slowly starts to in-
crease, reaching a value above 52% at cycle 20 and tending to grow even more. These
results show that indeed routes of the shortest paths become gradually more likely after
each cycle whereas routes composing the longest paths become less likely, which moves
the probability of taking one of these routes towards the minimum.

Figure 4. Properties P5 (line with circles) and P6 (line with squares), with evapo-
ration rate 0.3 and 20 cycles.

3.5. Discussion
Our experiments showed that the model successfully fulfills the requirements of the sys-
tem, considering the specification provided. Even though we used different formulas from
the original algorithm, we obtained numerical accurate evidence that the majority of ants
(or travellers) tend to take the shortest paths. All our results were obtained via model
checking, which guarantees accuracy and confidence. Simulation was only applied to
identify how many cycles were necessary to achieve a nearly constant probability for the
shortest paths. In this case, simulation was very useful as it was much faster than veri-
fication and we only needed an approximate idea of the behaviour of the system during
several cycles. However, its use is not a requirement of our technique.

421

Though we worked with only four cities, it was enough to show that model chec-
king could be applied to the problem and that our abstractions worked as expected. Note
that, although the model could be easily extended to a higher number of cities, our inten-
tion was simply to evaluate our model-checking process rather than providing a generic
solution for the TSP-ACO.

The results of our experiment could be used as a basis for modelling other self-
organisation mechanisms, such as other bio-inspired approaches [Mano et al. 2006]. Fur-
thermore, the ant colony system has been used in other interesting problems (e.g., sensor
networks [Hong et al. 2008]), which means that our modelling ideas could be applied to
the verification of other systems involving this mechanism. Nevertheless, we still need
to test the applicability of our modelling ideas in other scenarios. Our current results
only show that we could successfully model a complex problem and add to it a self-
organisation mechanism to allow emergent behaviours.

4. Related Work
There is not much work on verification of SOES, in particular due to the limitations of
model checking regarding the complete state-space exploration. Nonetheless, we can cite
a few ideas that have some relation to our work.

In [Gardelli 2008], the authors propose to use formal methods for designing self-
organising systems, as well as to use model checking with the PRISM tool to verify
emergent properties. Though they apply a very similar idea, their approach is specifically
tailored for the multi-agent systems domain, whereas our technique is intended to be
generic enough to be applied in any context. The generalisation of their approach is not
sufficiently discussed by the authors.

In [Casadei and Viroli 2009], the authors propose a hybrid approach for the ve-
rification of emergent properties of self-organising systems. This approach makes use
of simulation to approximate the model checking. They use the PRISM tool to perform
stochastic simulation and probabilistic model checking of the collective sort problem for
distributed tuple spaces. In their approach, given a model and a property to be verified,
a large number of simulation runs is executed and the results are evaluated against the
property. The final result is the average of all previous results. They apply verification up
to the memory limit and then use simulation to provide an approximation of the behaviour
of the system considering longer behaviours. During our first experiment, we essentially
applied the inverse approach, using simulation to determine at which point the property
would reach the expected value and then executing a verification up to that point to im-
prove accuracy. Therefore, they trade accuracy for an extended view of the behaviour
of the system, whereas we used approximation as an educated guess and then checked
formally that the result was indeed real.

Other approaches use only simulation to verify emergent behaviours of systems.
In [De Wolf et al. 2006], an equation-free approach is proposed, which combines nume-
rical analysis algorithms and simulation of individual models. The equation-based model
is replaced by small simulations, considering some input parameters. The analysis al-
gorithms guide the simulation process by adjusting the parameters of the system. In
[Soares et al. 2008], the authors extend this equation-free approach to verify simulation
results for online planners and self-configuration.

422

5. Conclusions

We presented a verification approach for SOESs. We described a case study conside-
ring the TSP with the ACO. This bio-inspired mechanism attributed a self-organising
characteristic to the system as it adjusted the probabilities of paths automatically and au-
tonomously. Results of experiments showed that our model, when checked against some
quantitative properties, in fact presented the expected behaviour. Though our scenario
was quite simple, it was enough to demonstrate that we produced an appropriate model-
ling of the emergence and self-organising features of the system. From these results it
seems that in fact verification can be used for SOESs and provide relevant information for
understanding the system behaviour and analysing whether it complies with a specifica-
tion.

The restrictions we imposed to the scenario were necessary to control the state
space and reduce the time for checking properties (in general, it took less than 3 minutes
to check a property). We had to apply many simplifications on the original ACO so that it
was possible to obtain verification results in a reasonable time. For instance, our choice to
apply different formulas from those of the original ACO simplified the calculations, which
meant that verification was simpler and faster, but produced similar results. Having results
close to those of the original algorithm shows that the essential ideas remained the same,
thus resulting in the same behaviour (i.e., most of the ants took the shortest paths). This
demonstrate that our abstractions correctly encoded the expected behaviour.

We still have to study how to deal with different situations of self-organisation not
supported by our current abstractions, such as the possibility of dynamic modifications on
paths. A relevant characteristic of an SOES is that components may enter and leave the
system dynamically and it has to adapt to these changes. For example, we could consider
a sensor network where individual sensors may run out of energy and, thus, leave the
network. At this point the system would have to reorganise itself to cover the area left by
this dead sensor so as not to compromise the efficacy of the entire network. Any model
of this scenario must include abstractions to describe this dynamic behaviour, which were
not considered in this work.

Based on our results, we intend to apply the same mechanism to other known
problems where it can be useful (sensor networks, for instance) and also use the same
ideas to model other mechanisms. The objective is to investigate the possibility of defining
a standard set of abstractions that could be applied to any problem involving an SOES.
These abstractions would be part of a verification process to be included in a complete
methodology for developing this type of system.

References

Applegate, D., Bixby, R. E., Chvátal, V., and Cook, W. (2006). The Traveling Salesman
Problem: A Computational Study. Princeton University Press.

Ben-Ari, M., Manna, Z., and Pnueli, A. (1983). The temporal logic of branching time.
Acta Informatica, 20(3):207–226.

Casadei, M. and Viroli, M. (2009). Using probabilistic model checking and simulation
for designing self-organizing systems. In SAC, pages 2103–2104.

423

Clarke, E. M., Grumberg, O., and Peled, D. A. (1999). Model Checking. The MIT Press,
Cambridge, Massachusetts, USA.

Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2001). Introduction to Algorithms.
The MIT Press.

De Wolf, T. and Holvoet, T. (2005a). Emergence versus self-organisation: Different
concepts but promising when combined. In Engineering Self-Organising Systems:
Methodologies and Applications, volume 3464 of LNCS, pages 1–15. Springer-Verlag.

De Wolf, T. and Holvoet, T. (2005b). Towards a methodolgy for engineering self-
organising emergent systems. In SOAS 2005, volume 135 of Frontiers in Artificial
Intelligence and Applications, pages 18–34, Glasgow, Scotland. IOS Press.

De Wolf, T., Holvoet, T., and Samaey, G. (2006). Development of self-organising
emergent applications with simulation-based numerical analysis. In Engineering Self-
Organising Systems, volume 3910 of LNCS, pages 138–152. Springer.

Dorigo, M. and Gambardella, L. (1997). Ant colony system: A cooperative learning
approach to the traveling salesman problem. IEEE Trans. on Evol. Comp., 1(1):53–66.

Duarte, L. M., Kramer, J., and Uchitel, S. (2008). Towards faithful model extraction based
on contexts. In Proceedings of FASE 2008, volume 4961 of Lecture Notes in Computer
Science, pages 101–115, Budapest, Hungary. Springer.

Gardelli, L. (2008). Engineering Self-Organising Systems with the Multiagent Paradigm.
Phd thesis, Alma Mater Studiorum-Università di Bologna, DEIS-Dipartimento di Elet-
tronica, Informatica e Sistemistica.

Gould, R. (1991). Updating the hamiltonian problem - a survey. Journal of Graph Theory,
15:121–157.

Hansson, H. and Jonsson, B. (1994). A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6(5):512–535.

Hong, J., Lu, S., and Chen, D. (2008). Towards bio-inspired self-organization in sensor
networks: Applying the ant colony algorithm. In 22nd AINA, pages 1054–1061.

Kwiatkowska, M., Norman, G., and Parker, D. (2002). PRISM: Probabilistic symbolic
model checker. In TOOLS’02, volume 2324 of LNCS, pages 200–204. Springer.

Mano, J.-P., Bourjot, C., Lopardo, G., and Glize, P. (2006). Bio-inspired mechanisms for
artificial self-organised systems. Informatica, 30:55–62.

Soares, B., Gatti, M., and Lucena, C. (2008). Towards verifying and optimizing self-
organizing systems through an autonomic convergence method. In Proc. of 4th Work-
shop on Soft. Eng. for Agent-oriented Systems, pages 73–84, Campinas, Brazil.

Vardi, M. (1985). Automatic verification of probabilistic concurrent finite state programs.
In Proc. of the 26th Annual Symp. on Found. of Comp. Sci., pages 327–338.

Wagner, F. R., Duarte, L. M., Heimfarth, T., and Foss, L. e. a. (2009). Uma metodolo-
gia de engenharia de software para o desenvolvimento de sistemas emergentes auto-
organizáveis. In II Seminário da SBC sobre Grandes Desafios da Computação no
Brasil.

424

