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Abstract. Mobile devices are getting much more relevance during the users’
day, in a way that they are paying to increase device security and durability
though external cases or insurance plans. However, these approaches are use-
less if the individuals does not properly take care of their devices. This paper
describes an approach to monitor and classifies a surface where a smartphone
falls, making possible to categorize this crash into a range of dangerousness.
The authors collected empirical data from device falls to make possible the de-
velopment of an optimal classifier. Our results reached up to 88% recognition
rate of surfaces considering a specific features subset, letting us conclude that it
is possible to infer user care level through the analysis of how a device is being
treated.

1. Introduction

Currently, the number of active mobile devices worldwide has already surpassed the
amount of people[Independent 2014]. In some countries, there are already more than
three devices per person[Portal 2014]. Projections expect this number still increasing
about five times population growing rate annually. By the users’ point of view, many
personal mobile devices require more caution and care when handling them. With large
screens surrounded by plastic cases, these pieces of equipment commonly need extra pro-
tection given by accessories, such as reinforced external cases, glass films for the screens,
and so on. Even though, unsatisfied users appeal to other solutions to keep safe their
devices, such as protection and insurance plans.

Despite many options to keep devices protected, users’ care still the most impor-
tant point to maintain the hardware safe. Both insurance plans and physical accessories
do not provide a focus on user behavior, mainly if devices carelessness is a recurring con-
duct. No protection plan or the external case will guarantee device sanity without users
proper care. Indeed, especially in the enterprise context, care with lend equipment is crit-
ical, with companies providing devices to their employees and expecting that they will
return it safe and functional. Moreover, this same uncertainty scenario can be found when
considering parents and their sons. Then, it is easy to note that a deeper monitoring mech-
anism, which takes into account the final users’ behavior, will help devices owners to keep
their hardware safe. Besides that, insurance companies may have a higher guarantee that
users are not abusing their benefits.
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Some related proposals try to recognize user behavior considering mobile devices
inertial sensors, such as accelerometer and gyroscope. Data coming from these sensors
may allow special applications infer whether a device/user is falling to the ground or
not [Majumder et al. 2013][Mehner et al. 2013]. Although imperative, knowing when a
device/user is falling is not enough by itself without having surface dangerousness esti-
mation. Another set of solutions tries to infer the surface characteristics where a device is
placed [Darbar and Samanta 2015][Cho et al. 2012].

This work presents a novel classification method that allows inferring the danger-
ousness of a surface where a mobile device falls. Through the use of device accelerometer
sensors, the authors collected data from falls and classified the surfaces into four different
categories. Results presented at the end allow us to conclude that it is possible to detect a
reckless user behavior. This information can be managed for user self-monitoring or even
to inform devices real owners. Briefly, the key contributions of this paper are: an Android
platform application that continuously monitors accelerometer data triggering for a fall;
and a classification method to distinguish between four different surfaces. This classifi-
cation may allow other mobile applications aiming to characterize users care level when
handling their mobile devices.

This paper is divided into the following segments: Section 2 present the works
related to the one described here. Section 3 describes fundamental concepts that should
be taken into account to understand this paper. Section 4 depicts main actions taken during
the development phase. Section 5 outline the results reached by this work, while Section
6 presents the general conclusion and provides an overview of future works.

2. Related Works
Researches using data gathered from mobile device’s sensors can be found in the lit-
erature. Especially inertial sensors, such as accelerometers and gyroscopes, have been
contextualized with a lot of different solutions. The majority of related works focus on
the analysis of users and devices falls besides surface type recognition. Although no iden-
tical work was found in literature, this section will present bellow proposals that are, in
some way, related to the one described here.

A fall detection algorithm is depicted by [Mehner et al. 2013]. This solution is
based on a threshold that uses acceleration data to trigger for a fall. The work presents a
fall detection description, including the stages before and after a fall occurrence. However,
this work does not provide any information about falls severity regarding the surface
where object hits. Similarly, the work presented in [Majumder et al. 2013] describes the
“iPrevention” system. Built inside a smartphone, it is in charge to detect elderly patients
falls identifying high-risk ones. Despite the presented results, this system also does not
deal with surface analysis as a way to characterize the risk of a fall.

Another class of related works focuses on surface recognition using data
from mobile devices sensors. Proposals described in [Darbar and Samanta 2015] and
[Hwang and Wohn 2013] focus on the physical users’ context, presenting different sys-
tems to identify locations where their mobile devices are placed, such as pant’s pocket,
backpack and wooden table. On both works, there is no analysis connecting the de-
vice context and surface with falls detection. Moreover, [Cho et al. 2012] shows the
“VibePhone” solution, that focuses on the same concepts as the previous works. An
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SVM (Support Vector Machine) is used to classify vibration data obtained from an ac-
celerometer that varies according to the surface where a smartphone is placed. By its
turn, [Windau and Shen 2010] describes a system for surface identification based on the
time spent until inertia. A robot arm “knocks” the surface and analyzes accelerome-
ter data to characterize its parameters, such as hardness, elasticity and stiffness. In
[Sinapov et al. 2011], a similar approach is considered using a robot hand to rubber dif-
ferent surfaces, analyzing generated vibrations through the use of SVM and k-nearest
neighbors (k-NN) classifiers. However, these two previous proposals are not feasible to
be applied on a mobile device once they require external equipment.

Finally, work presented by [Weiss et al. 2006] uses a vehicle context to describe
the surface recognition problem. A car prototype (cart) containing sensors was used to
collect data after runs on seven different scenarios. The proposed idea is similar to the one
considered in this paper. However, collected data is different once a fall is not considered.

3. Background

To properly understand the work described in this paper, some basic concepts must be
introduced. Three key concepts used here are presented bellow.

3.1. Accelerometer Sensor

Accelerometer sensor is in charge of measuring acceleration values applied over it through
three main vectors (X,Y,Z), that describe the acceleration magnitude related to each di-
rection. Any linear combination of these three vectors is also possible to be obtained.
This sensor was used in this work to gather the acceleration values over time during a fall,
and after that, when the mobile device hits the ground. Considering this, the accelerome-
ter sensor can be used to measure gravity acceleration based on the values of three axes.
Figure 1 depicts an accelerometer vectors inside a generic smartphone.

Figure 1. Accelerometer vectors applied to a generic device.

3.2. Surfaces Dangerousness

The surface roughness can imply a higher or a lower risk to the mobile device integrity,
not only the screen, but also inner hardware. In this work, the roughness classification
was the focus in a way that it can be used in the calculation of how much damage the
device may suffer.

3.3. Classification Methods

Bellow is presented a short description about the variety of classification methods used in
this work:
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• Logit Boost: Initially proposed by [Friedman et al. 1998]. This class performs
classification using a regression scheme as the base learner. Can handle multi-
class problems;
• Bagging: Initially proposed by[Breiman 1996], this method does bagging to a

classifier to reduce variance. Can do classification and regression depending on
the base learner;
• Random Forest: Initially proposed by [Breiman 2001], the Random Forest

method (or “Random Decision Forests”) operate by constructing a multitude of
decision trees at training time. It outputs a class that is used as a kind of mean
prediction (regression) of the individual trees. Random decision forests correct
for decision trees’ habit of overfitting to their training set; and
• Support Vector Machine (SVM): Initially proposed by [Boser et al. 1992], the

Support Vector Machine (SVM) is a supervised learning classification algorithm
that focuses on a training set to separate new elements into existing groups. In its
commonest version, SVM classifies the items into two different sets. However,
there are algorithm versions considering a multi-label approach, classifying data
into several groups. It is valid to note that development phase takes into account
an existent SVM implementation: LibSVM[Chang and Lin 2011], which supports
multiset/multilabel approach (second block of “Data Pre-Processing” phase on
Figure 2).

4. Development Considerations

The development of solution presented by this paper was separated into four steps: En-
vironment preparation, data acquisition, data pre-processing and training process, and
classification. Except for environment preparation step, Figure 2 presents an overview
about every development stage, detailed on the remaining of this section.

Figure 2. Steps taken by development process to classify surfaces of a fall.

4.1. Environment Preparation

Several tests were conducted aiming to develop and validate an application that identifies
a surface where a mobile device falls. Four different surfaces were considered: sand,
grass, towel extended on the ground and a pillow. These surfaces were taken into account
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because they represent the high and low-end points regarding dangerousness for a falling
device: Here, to allow tests repetition without permanent damage to the smartphone, a
towel extended on the ground was considered as the most critical surface, while a pillow
was the less dangerous one.

4.2. Data Acquisition
This work has used an Android test application, which was developed by the authors, in-
stalled on smartphone devices to gather accelerometer sensor data. This application works
sampling data at a normal rate (controlled by Android “SENSOR DELAY NORMAL”
constant) until a fall is detected. Once it happens, the system starts to collect information
in a higher frequency (controlled by Android “SENSOR DELAY FASTEST” constant).
The whole process can be described according to the following steps:

1. Trigger for a fall: Constantly analyzes a time window of samples and searches
for an acceleration value that indicates a device fall;

2. Collect accelerometer raw data: Record data from accelerometer sensor right
after it hits the ground and while the sensor do not stabilize; and

3. Data separation: Separate collected data into two different sets (training and
validation). Data from one set are not used by the other one.

For every group, 400 runs were done (100 falls for each surface), in a total of 800
runs. Moreover, data acquisition was made taken into account the following parameters:

• Height of fall: 85cm from the highest point to the top of the surface. Calculated
as the average height of a common pant’s pocket;
• Mobile devices positioned on top and at the edge of a platform with previously

described height; and
• Two different mobile devices – smartphones – used: Samsung Galaxy Note 2 and

LG E977.

4.3. Data Pre-Processing
As previously described in Subsection 3.1, accelerometer sensor gets the values associ-
ated with three different vectors (X, Y and Z). These vectors are in charge to measure
acceleration imposed at each of the axes using m/s2 unit. Still, data collected by the
previous step was obtained in the raw format, i.e., no pre-processing was applied. Still, to
ease the training and classification process, these three axes acceleration were converted
to a single value (A) that describes full acceleration applied to the device (first block of
“Data Pre-Processing” phase on Figure 2). “A” value calculation, which is the absolute
value of X, Y and Z variables, from accelerometer axes, can be given through the follow-
ing equation: A =

√
X2 + Y 2 + Z2.

Figure 3 shows the behavior of each acceleration vector during a smartphone fall.
It is possible to observe that “X, Y and Z” values were encoded inside the “A” line. Ad-
ditionally, it is easy to note three generic phases during a fall: free fall; bouncing and
stabilization. In fact, these three parts are used here by the classifiers as key points to
characterize the surface where the devices hit. In the end, “A” value becomes constant
and remains around gravity acceleration after smartphone stabilization.

Moreover, after conversion of “X, Y and Z” into “A”, data was organized in the
format accepted by each classifier.
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Figure 3. Behavior of each acceleration vector during a fall.

4.4. Training Process and Classification

Last development step is related to training and classification processes. To properly
classify the input data, it must be organized concerning inner knowledge it can indirectly
provide. Pre-processed information cannot be directly used by classifiers once it has a sig-
nificant amount of data, requiring more time to train and classify. Instead, features should
be extracted from the dataset to reduce their size and increase their representativeness.

As depicted by Figure 3, which presents the behavior of a fall in a pillow surface,
it is possible to find three different phases: free fall, bouncing and stabilization. These
three steps help to identify a type of surface where a device hits (the more the device
bounces, the more smooth is the surface). This behavior allowed the authors to raise a set
of 57 different features. Every one of these features was inferred considering the whole
dataset and also specific information. The majority of them were calculated from simple
statistical dispersion measures: mean, median, standard deviation, and so on, applied to
the data obtained from the device fall, such as: the number of bounces, the highest bounce
amplitude and the time until stabilization. Such characteristics played a major role helping
classifiers to differentiate from a surface to another one. Most relevant features gathered
from the dataset were:

• Time Until Stabilization: As the number of bumps varies according to the surface
where device hits, time until stabilization will also change from surface-to-surface.
Then, it was calculated and used as a feature for data classification;
• Data Dispersion of Samples Until Stabilization: A set of statistical dispersion

values were calculated (mean, standard variation, variance, median, min value and
max value) and used as features. Use of these values helps to describe the behavior
of free fall and bounce phases data;
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• Data Dispersion of Fast Fourier Transform (FFT) and Signal Magnitude:
FFT was used to analyze the signal frequency domain. After that, the FFT spec-
trum magnitude was calculated and its statistical dispersion values used as another
feature set. Figure 4 presents a graph describing a frequency domain of one of de-
vice falls;
• Smoothness Rate: Although it was already considered, this feature also treats

maximum signal amplitude. The smoothness rate index is given by this value
divided by the time (in number of samples) until device stabilization; and
• Amplitude Histogram: Here the amplitude spectrum was divided into several

slots. As presented by Figure 5, each slot represents the number of samples found
at each amplitude. It is valid to note that, the majority of samples are concentrated
around the value of 9.8m/s2. This happens because most time the “A” value is
susceptible only to the gravity acceleration.

Figure 4. Smartphone fall fre-
quency domain analysis using Fast
Fourier Transform (FFT).

Figure 5. Smartphone fall his-
togram amplitude analysis.

In the end, every fall data was parsed to extract previously listed features. Never-
theless, the same approach was applied to “Training” and “Validation” sets of samples.

After “Features Extraction” step, training and classification phases proceeded to
classifier configuration and input parameters grid search. Both steps are associated, once
input parameters choice depends on which classifier configuration was chosen. For every
configuration a grid search has been executed, initially with a wide search space and then,
with a specific search trying to refine parameters input values.

This phase final step was the application of selected constraints on each classifier
training and validation sets. Here, this cycle was also refined through the repetition of
input parameters selection, grid search execution, training and validation until the best
result was obtained.

5. Empirical Results
The previous section presented the steps taken by this work, from raw data collection
to surface classification. This section will outline main results found by this research,
considering that 200 data instances were collected (100 for training group and 100 for
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validation group) from four different surfaces: sand, grass, towel extended on the ground
and pillow.

One of the main challenges faced by this work was smartphone behavior dur-
ing a fall. In related works, such as [Darbar and Samanta 2015][Cho et al. 2012] and
[Weiss et al. 2006], the accelerometer sensor was statically positioned on top of consid-
ered surfaces. Here, a not so controlled environment was found. Accelerometer sensor
inside the device has been continuously moving according to the fall trajectory. This
behavior is particularly difficult to classify, once it may vary, or not, according to the po-
sition that smartphone touches the surface when falling. For instance, if the smartphone
touches the ground with one of its edges, the trajectory thereafter may be totally different
from a fall when the device touches the surface with its screen.

In addition to the features extracted from data (subsection 4.4), the classifiers were
also trained and validated using raw data, i.e., with no type of features extracted. How-
ever, the results obtained using this approach were not as good as that one using extracted
features. All the results presented here consider the multi-label classification approach,
where an instance of a device fall was classified evaluating it against four possible sur-
faces. Moreover, extracted features have been used with the same weight. Bellow, it is
described the main results as well as a comparison between different training approaches
and classifiers configurations.

5.1. Logit Boost
Best result using Logit Boost classifier was found considering the following input param-
eters: Likelihood threshold: -1.798; and Number of iterations: 10. Table 1 presents
the number of positive and negative recognition rate considering only “validation” set of
instances.

Table 1. Classification results using Logit Boost.
Sand Grass Towel Pillow

Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg.
Positive 70,0% 30,0% 82,0% 18,0% 66,0% 34,0% 68,0% 32,0%
Negative 9,7% 90,3% 17,0% 83,0% 7,7% 92,3% 3,7% 96,3%
Accuracy 0,853 0,828 0,858 0,893
Precision 0,707 0,617 0,742 0,861
Recall 0,700 0,820 0,660 0,680
F-score 0,704 0,704 0,698 0,759

5.2. Bagging
Best result using Bagging classifier was found considering the following input parame-
ters: Number of decimal places: 2; and Number of iterations: 10. Table 2 presents
the number of positive and negative recognition rate considering only “validation” set of
instances.

5.3. Random Forest
Best result using “Random Forest” classifier was found considering the following input
parameters: Number of execution slots: 1; and Number of iterations: 100. Table 3
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Table 2. Classification results using Bagging.
Sand Grass Towel Pillow

Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg.
Positive 73,0% 27,0% 80,0% 20,0% 62,0% 38,0% 73,0% 27,0%
Negative 11,7% 88,3% 12,3% 87,7% 8,0% 92,0% 5,3% 94,7%
Accuracy 0,845 0,858 0,845 0,893
Precision 0,676 0,684 0,721 0,820
Recall 0,730 0,800 0,620 0,730
F-score 0,702 0,737 0,667 0,772

presents the number of positive and negative recognition rate considering only “valida-
tion” set of instances.

Table 3. Classification results using Random Forest.
Sand Grass Towel Pillow

Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg.
Positive 69,0% 31,0% 88,0% 12,0% 72,0% 28,0% 60,0% 40,0%
Negative 7,3% 92,7% 18,0% 82,0% 7,6% 92,4% 4,0% 96,0%
Accuracy 0,868 0,835 0,873 0,870
Precision 0,758 0,619 0,758 0,834
Recall 0,690 0,880 0,720 0,600
F-score 0,723 0,727 0,738 0,698

5.4. SVM with Radial Basis Function Kernel (RBF)

Best result using SVM RBF kernel was found considering the following input parameters:
SVM type (s): C-SVC; Cost (c): 52.0; and Gamma (γ): 0.00000765. Table 4 describes
the number of positive and negative recognition rate considering only “validation” set of
instances.

Table 4. Classification results using SVM RBF kernel.
Sand Grass Towel Pillow

Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg.
Positive 76,0% 24,0% 79,0% 21,0% 62,0% 38,0% 59,0% 41,0%
Negative 13,7% 86,3% 15,7% 84,3% 4,3% 95,7% 7,7% 92,3%
Accuracy 0,837 0,830 0,872 0,840
Precision 0,649 0,627 0,827 0,719
Recall 0,760 0,790 0,620 0,590
F-score 0,700 0,699 0,708 0,648

5.5. SVM with Linear Kernel

Best result using SVM linear kernel was found considering the following input parame-
ters: SVM type (s): C-SVC; and Cost (c): 0.055. Table 5 presents the number of positive
and negative recognition rate considering only “validation” set of instances.
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Table 5. Classification results using SVM linear kernel.
Sand Grass Towel Pillow

Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg.
Positive 79,0% 21,0% 86,0% 14,0% 72,0% 28,0% 79,0% 21,0%
Negative 8,7% 91,3% 10,0% 90,0% 6,3% 93,7% 3,0% 97,0%
Accuracy 0,882 0,890 0,882 0,925
Precision 0,752 0,741 0,791 0,898
Recall 0,790 0,860 0,720 0,790
F-score 0,771 0,796 0,754 0,840

Figure 6. Comparison between all the classifiers separated by surface types.

Figure 6 presents a comparison between surface recognition rate of each class. It
is easy to note that SVM with linear kernel had better results on average. Still, it also had
an excellent performance on grass surface when compared to most results. Moreover, a
general behavior can be seen when analyzing each surface separately. On grass, all the
classifiers had an acceptable classification rate (true positives), a fact that might indicate
that grass surface data might be easily differentiated from other surfaces. Conversely, the
“towel extended on the ground” reached the lowest true positive rates, indicating that this
surface is usually misclassified. The same behavior can be observed even on classifiers
that had good rates on other surfaces, pointing out that the “towel on the ground” signal
was classified as belonging to another surface.

When analyzing performance measures, it is possible to verify that results pre-
sented in Tables 1, 2, 3, 4 and 5 are endorsing measured true positive and false negative
ratios. Given values of precision, accuracy and recall are high even when comparing SVM
linear kernel with other classifiers. Furthermore, values found for F-score guarantees a
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good precision/recall relation, indicating an acceptable data reliability level.

6. Conclusion and Future Works
Users are increasingly seeking for a way to protect their hardware. External cases and in-
surance plans are considered as ways to boost device protection. Despite their efficiency,
these approaches do not provide a method to quantify the user care level with their hard-
ware. For instance, a company may want to know if a lend smartphone is being handled
with care by its employees.

Furthermore, several researches using mobile devices have been conducted to-
day. Most of these studies are focused on energy efficiency or mobility aspects, with a
segment emphasizing the users and their context, taking device sensors information as
input. Inside this last class of researches, it is possible to find works that try to infer the
surfaces where devices are placed, such as “VibePhone”[Cho et al. 2012] and “Surface-
Sense” [Darbar and Samanta 2015].

The work presented here outlines an approach for classifying a smartphone fall
as a way to monitor users care/careless level with their devices. As described by results,
in some scenarios, we reached up to 88% recognition rate considering four different sur-
faces. Despite this value could initially be seen as low, it is necessary to take into account
the whole environment where the user is inserted. Here, the main objective was to identify
and categorize a repetitive user behavior that over time could result in a device damage or
even a crash. Finally, in the case of this attitude becomes repetitive, a notification might
be sent to the hardware owner, warning about user conduct.

As a way to increase system robustness, future works may enclose tests and vali-
dation of a broad range of devices, including new brands and screen sizes. Additionally,
more surfaces can also be taken into account, trying to estimate user behavior dangerous-
ness better.
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