Classifying Smart IoT Devices for Running Machine Learning
Algorithms

Aluizio Rocha Neto', Barbara Soares?,
Felipe Barbalho!, Luis Santos', Thais Batista’
Flavia C. Delicato®, Paulo F. Pires®

'Departamento de Informética e Matematica Aplicada (DIMAp) —
Universidade Federal do Rio Grande do Norte, (UFRN), Natal — RN — Brazil

?Departamento de Engenharia de Computacdo e Automagdo (DCA) —
Universidade Federal do Rio Grande do Norte, (UFRN), Natal — RN — Brazil

3Departamento de Ciéncias da Computagio — Universidade Federal do
Rio de Janeiro (UFRJ), Rio de Janeiro — RJ — Brazil

{aluiziorocha,barbaragabriellass}@gmail.com
{felipebarbalho.95, santosfluisl9, thaisbatista}@gmail.com

{fdelicato,paulo.f.pires}@gmail.com

Abstract. Tiny computers called System-on-a-Chip like Raspberry Pi have rev-
olutionized the development of applications for Smart Home and Smart City.
Some Machine Learning algorithms have been used to process a large amount
of data produced by these Internet of Things (IoT) devices. An important is-
sue in the context of processing loT data is the decision on where the machine
learning algorithm will run. To support this decision, it is necessary to classify
the IoT devices according to their capabilities to run these algorithms, in terms
of CPU performance, required memory, and energy demand. The aim of this
paper is to classify IoT devices according to their capabilities to run machine
learning algorithms, and reporting real experiments that validate the proposed
classification.

1. Introduction

The Internet of Things (IoT) paradigm [Atzori et al. 2010] has gained more and more
notoriety in recent years. It encompasses an infrastructure of hardware, software, and
services integrating objects from the physical world with the Internet. This scenario brings
the opportunity for creating advanced applications, such as smart home, smart building
and smart cities. These applications generally use several tiny and low-power sensors and
networked devices, usually called System-on-a-Chip - SoC [Aitken et al. 2011]. Arduino!
and Raspberry Pi? are two popular examples of these devices.

In the initial development of 10T, all data produced by any sensor should be trans-
ferred to servers normally hosted in Cloud Data Centers. This architecture places ever-
increasing demands on communication and computational infrastructure with inevitable

Thttps://www.arduino.cc/
Zhttps://raspberrypi.org

adverse effect on Quality-of-Service and Experience, given that over 25 billion devices
are estimated to be added to the Internet by 2020, excluding PCs, tablets, and smart-
phones®. To address this challenge, the paradigms of Fog [Dastjerdi and Buyya 2016]
and Edge Computing [Varghese et al. 2016] have emerged to allow the edge and end-user
devices to be more Cloud independent. The main idea in these models is to process the
data close to where it is generated, reducing the traffic and bandwidth consumption of
the network. For instance, images from cameras capturing the objects and movements of
what is happening in a variety of scenarios are very common as the main data for mod-
ern smart applications, such as information about vehicle traffic, crowded spaces or flood
level of the river crossing the city, for example. To prevent sending all images from all
cameras to a Cloud Data Center to process these datasets and to provide a fast response,
this image processing should run on the embedded 10T devices.

However, image processing can only be done if the [oT image device has Com-
puter Vision capabilities [Sebe et al. 2005], a method of Artificial Intelligence (AI)
for acquiring, processing, analyzing and understanding digital images to extract high-
dimensional data from the real world in order to produce numerical or symbolic infor-
mation, i.e., models. The AI algorithms used in these analysis are in constant evolution
to improve their accuracy. Machine Learning (ML) techniques have been used for au-
tomating the data model acquisition and updating processes, adapting task parameters and
representations, and using experience for generating, verifying and modifying hypotheses
about theses models [Sebe et al. 2005]. Traditionally all Machine Learning algorithms
run on powerful computers due to high demand for computation and memory require-
ments. In the context of IoT, the data is produced by devices located at the edge of the
Cloud that have limited hardware resources. In order to balance processing with network
traffic to the Cloud a question that arises is the decision of where the machine learning
algorithm will run. Some researches have shown that if the IoT device have the ability to
extract and send to the Cloud only the information learned, this reduces considerably the
network demand and improves the responsiveness of the systems.

However, to run these learning algorithms it is necessary to classify the IoT de-
vices according to their capabilities to run them, in terms of CPU performance, required
memory, and energy demand. As far as we are concerned, the literature does not present
such a classification. The goal of this paper is twofold: (i) to classify the IoT devices
according to their capabilities to run machine learning algorithms. (ii) to report real ex-
periments that validate the proposed classification. As contribution, we hope to provide
useful information to guide the decision making of IoT application designers/developers.
The remainder of the paper is organized as follows. In section 2 we present a background
review of recent research works related to Machine Learning and Edge Computing. Sec-
tion 3 presents the proposed classification for the ”smart” [oT devices. Section 4 shows
some experiments we conducted using the [oT devices to evaluate the performance of MLL
algorithms in such devices. Finally, section 5 brings our final remarks.

2. Background review

Machine learning is a research field that formally focuses on the theory, performance and
properties of learning systems and algorithms. It is a highly interdisciplinary field build-

3http://www.gartner.com/newsroom/id/2636073

Table 1. Comparison of machine learning technologies [Qiu et al. 2016].

Learning types | Data processing tasks Distinction norm Learning algorithms
Computational classifiers | Support Vector Machine
Supervised Classification / Naive Bayes
learning Regression / Statistical classifiers Hidden Markov model
Estimation Bayseian networks
Connectionist classifiers Neural networks
. . . K-
Unsupervised Clustering / Parametric | -means
. - Gaussian mixture model
learning Prediction — -
. Dirichlet proc. mix. model
Nonparametric
X-means
Reinforcement . . Model-free Q—learnllng
learnin Decision-making R-learning
& TD learning

Model-based

Sarsa learning

ing upon ideas from many different kinds of fields such as artificial intelligence, optimiza-
tion theory, information theory, statistics, cognitive science and many other disciplines of
science [Qiu et al. 2016].

Generally, the field of machine learning is divided into three subdomains: super-
vised learning, unsupervised learning, and reinforcement learning. Briefly, supervised
learning requires training with labeled data which has inputs and desired outputs. Unsu-
pervised learning does not require labeled training data and the environment only provides
inputs without desired targets. Reinforcement learning enables learning from feedback
received through interactions with an external environment [Qiu et al. 2016]. Table 1
presents these three machine learning techniques from different perspectives.

Supervised and unsupervised learning mainly focus on data analysis while rein-
forcement learning is preferred for decision-make problems. Most traditional ML based
systems are designed with the assumption that all the collected data would be completely
loaded into memory to start processing. Nowadays, there is a great need to develop
efficient and intelligent learning methods to cope with future data processing demands
[Qiu et al. 2016].

Deep Learning (DL) is part of a broader family of machine learning methods based
on learning data representations, as opposed to task-specific algorithms. DL enables com-
putational models that are composed of multiple processing layers to learn representations
of data with multiple levels of abstraction. These methods have dramatically improved
the state-of-the-art in speech recognition, visual object recognition, object detection and
many other domains [LeCun et al. 2015].

Currently, deep learning algorithms are not widely used on IoT devices be-
cause they are often very resource consuming for the system (e.g., memory, com-
puting and power). In [Lane et al. 2015a], the authors present a measurement study
of running common deep learning models (AlexNet [Krizhevsky et al. 2012], SVHN
[Netzer et al. 2011], DeepKWS [Chen et al. 2014], and DeepEar [Lane et al. 2015b]) to
process audio and image sensor data on representative mobile and embedded platforms:

e Qualcomm Snapdragon 800 is widely used in smartphones and tablets (3 proces-
sors: a Krait 4-core 2.3 GHz CPU, an Adreno 330 GPU and a 680 MHz Hexagon

Table 2. Execution time (msec) for running DL algorithms in three hardware plat-
forms [Lane et al. 2015a].

Type Size Tegra Snapdragon Edison
(bytes) | CPU | GPU CPU DSP CPU
Deep KWS | DNN | 241K | 0.8 1.1 7.1 7.0 63.1
DeepEAR | DNN | 2.3M 6.7 32 71.2 379.2 109.0
SVHN CNN | 313K | 15.1 | 2.8 1,615.5 - 3,352.3
AlexNet CNN | 60.9M | 600.2 | 49.1 | 159,383.1 - 283,038.6

DSP, 1GB of RAM).

e Intel Edison, the smallest and least computational powerful of all tested hardware
(500MHz dual-core Atom “Silvermont” CPU assisted by a 100 MHz Quark pro-
cessor, 1 GB of RAM).

e Nvidia Tegra K1 developed for extreme GPU performance in 10T context (Kepler
192-core GPU, 2.3 GHz 4-core Cortex CPU, 2GB of RAM).

Table 2 shows the times in milliseconds the authors have obtained for running two
Deep Neural Networks (DNN) - Deep KWS and DeepEar, and two Convolutional Neural
Networks(CNN) - SVHN and AlexNet, on theses devices. They found that almost all DL
model and processor combinations can run on such platforms. Even large-scale models
like AlexNet (60.9MB size) are supported by the weakest of the processors they used
(an Intel Edison). This result suggests that DL models of similar architecture targeting
different inference tasks will also function to some degree. They conclude that the range
of inference tasks offered by this set of DL models is enormous, and comprise tasks
generally not seen on IoT hardware.

[Kamath et al. 2016] introduced EdgeSGD, a decentralized Stochastic gradient
descent algorithm suitable for machine learning and analytics on the edge of the network.
This method can be applied to a wide range of problems arising in decentralized machine
learning. In the paper, they used the proposed algorithm to learning/predicting seismic
anomalies via real-time imaging and evaluated the performance of the algorithm on an
edge computing testbed - a cluster composed of 16 BeagleBone Black* (CPU single-core
1GHz, 512MB of RAM). They also compared the proposed solution with other existing
distributed computation methods such as MapReduce, DGD and EXTRA, and examined
in particular the effects of node/link failure and communication cost. Such a comparative
analysis showed that edge processing with EdgeSGD is quite feasible.

In recent years, a significant amount of research has been done using the Rasp-
berry Pi as the edge node to process IoT data. [Anandhalli and Baligar 2017] proposes
a video processing algorithm that detects, tracks and counts vehicles on a road, apply-
ing a Kalman filter to track vehicles, and applying individual vehicle detection through
the HSV (Hue, Saturation, Value) color spectrum. The algorithm runs on a Raspberry
Pi 3 (1.2GHz quad-core ARMvS, 1GB of RAM) with an embedded camera and uses the
OpenCV? (Open Source Computer Vision Library) that contains a set of filters for image
processing. The work also compares the performance of running the same algorithm on a

“https://beagleboard.org/black
Shttps://opencv.org/

desktop PC (2.5 GHz dual-core, 4GB of RAM) and it took 72.7 ms to process one frame
whereas Raspberry Pi needed 81.589 ms, only 9 ms slower.

In [Sajjad et al. 2017] the authors developed a face recognition framework for
law-enforcement services in smart cities. This framework uses a small-sized portable
wireless camera mounted on a police officer’s uniform to capture a video stream, which
is passed to a Raspberry Pi 3 in the officer’s car for face detection and recognition. To ac-
complish the facial recognition, they use initially the Viola-Jones face detection algorithm
to find all the faces present in the live video stream sent by the camera. Then, the ORB
(Oriented FAST and Rotated BRIEF) method is executed to extract from the identified
faces all their features which are transmitted to a trained support vector machine classifier
in the cloud. Instead of sending the entire captured image, only the features extracted
from the face are sent, thus saving transmission power and bandwidth.

An issue that came up in reading these articles was what criteria were applied to
choose the 10T devices used in the experiments to process data at the edge of network.
What hardware specifications were important for running the ML algorithms. This paper
analyses these aspects, proposes a classification for choosing an IoT device to run ML
algorithms, and reports some experiments using IoT devices to learn with its own data.

3. Smart IoT Device Classification

The ability to process and understand the 10T data to obtain some higher level information
is fundamental for the Machine Learning techniques. From a basic statistic, like the
average temperature in a room, to a complex information, such as "how many people are
in the room right now?” all these informations require the data analysis for extracting
useful features and representations of the data. These kinds of data processing requires
different levels of hardware resources to be done. Thus, we proposed an loT device
classification so that we can match the algorithm resources demand with the hardware
class of the most popular IoT devices found on the market.

In order to perform this type of data analysis, the device must have the ability to
fuse (combine) all the data and extract the useful information. For example, a suddenly
temperature of 16 degree when the average temperature is 24 degree can be interpreted as
a data noise and it must be discarded. According to [Nakamura et al. 2007], Information
Fusion deals with three levels of data abstraction: measurement, feature, and decision,
and it can be classified into four categories:

e Low-Level Fusion. Also referred to as signal (measurement) level fusion. Raw
data are provided as inputs, combined into new piece of data that is more accurate
(reduced noise) than the individual inputs.

e Medium-Level Fusion. Attributes or features of an entity (e.g., shape, texture,
position) are fused to obtain a feature map that may be used for other tasks (e.g.,
segmentation or detection of an object). This type of fusion is also known as
feature/attribute level fusion.

e High-Level Fusion. Also known as symbol or decision level fusion. It takes de-
cisions or symbolic representations as input and combines them to obtain a more
confident and/or a global decision.

e Multilevel Fusion. When the fusion process encompasses data of different ab-
straction levels — when both input and output of fusion can be of any level (e.g.,

Table 3. Classification of Smart loT devices according to their capacities.

Hardware Power Suitable Main
Class . . . o e
capacity consumption algorithms application
No storage, low Basic Data
1 <1IW . i
CPU and memory computation generation
storage < 4GB,)
2 | memory < 512MB <2W Basic Low-level
. statistic data fusion
CPU single-core
storage < 8GB Classification / .
3 memory < 2GB < 4W Regression / dlﬁ;d%es\il(eil
CPU quad-core Estimation
>
storage = 16GB Prediction / High-level
4 memory > 4GB < 8W Decision-makin data fusion
CPU and GPU £
. . Autonomous
5 High High Any system

a measurement is fused with a feature to provide a decision) — multilevel fusion
takes place.

Since any device connected to the Internet can generate and process data to some
degree, it is important to define a classification for such devices so that we can identify
which ML algorithms can be deployed to each equipment model. Usually, ML algorithms
have to process a huge amount of data, requiring powerful CPU and large memory. These
kind of resources are very limited in the majority of IoT devices. In addition, intense CPU
usage has a significant use of power which is also limited in [oT devices.

Table 3 shows the proposed Smart IoT Device Classification. The hardware ca-
pacity and power consumption data for each class are based on related researches and
our experiments using some IoT devices running intelligent solutions. This classification
considers only IoT devices for applications used in smart cities, buildings or home, i.e.
we are not considering hardwares used in mobile devices, such as phones or tablets.

The main purpose of class 1 devices is to collect data from their sensors where
the dataset is small, analogical and continuous, such as sensors measuring temperature,
humidity, presence, noise, gases, etc. This kind of device also have some actuators such
as LEDs, relay module and servo motors to do some actions in the ambient whenever it
is needed. Class 2 devices are a step further in the ability of collecting, processing, and
storing data. Unlike class 1 devices that have microcontrollers, they have true CPU, RAM
memory and an operating system to control the whole system. But, due to their limited
resources they can only process some basic statistics to produce the low-level data fusion.

Devices class 3 and 4 are the ones really used for running Machine Learning al-
gorithms on the edge. The main difference between them is that class 4 devices have
a powerful GPU for parallel processing, which is very important in the execution of al-
gorithms of training and using neural networks. Class 3 device can use a trained neural
network to make the medium-level fusion of the data and extracting the relevant features
of the context, like a detection of an object. Class 4 device can go further and taking

Table 4. Examples of 10T devices and their classifications.

Class Device CPU GPU Memory / Power
Storage Consump.
Arduino Microcontroller 32KB/
1 Mega ATmega 8-bit 16 MHz None None < 408mW
NodeMCU Microcontroller 80KB/
ESP-12 | ESP8266 32-bit 80 MHz None None < 561mW
Raspberry ARM1176 Broadcom 512MB/ 0.5W - 12W
2 Pi Zero single-core 1 GHz VideoCore IV | MicroSD card ’ ’
Beaglebone ARM Cortex-A8 PowerVR 512 MB/ L1W - 2.15W
Black single-core 1 GHz SGX530 4GB + card ’ '
Raspberry ARM Cortex-A53 Broadcom 1GB/ 1OW - 3.7W
3 Pi3 quad-core 1.2 GHz VideoCore IV | MicroSD card) ’
ODROID ARM Cortex-A15 ARM 2GB/ 2 IW - 13.2W
XU4 octa-core 2 GHz Mali-T628 MicroSD card | ™ '
ARM Cortex-A57
4 NVIDIA quad-core 2 GHz + NVIDIA Pascal 8GB/ 75W - 15W
Jetson TX2 NVIDIA Denver2 256 CUDA cores | 32GB + SATA)
dual-core 2GHz

decisions using a set of higher level data fusion. It can also retrain the neural network for
running into a class 3 device.

A class 5 is a multilevel-fusion device and can be considered as an autonomous
system, which can act automatically to prevent a situation in the scenario. The best ex-
ample of such a device is the computational system used into self-driven vehicles. These
systems are expected to operate flawlessly irrespective of weather conditions, visibility,
or road surface quality and have the capacity to deal with terabytes of datasets produced
by their sensors®.

Table 4 shows the instantiation of classification applied to some 10T devices found
in the market. The power consumption range was obtained from the manufacturer spec-
ifications and forums of users on the Internet. Most of the IoT devices use a MicroSD
card slot as a storage unit for their data, and the BeagleBone Black comes with an internal
4GB flash memory.

4. Probing the Smart IoT Device Classification

To validate our proposed classification, this section describes some of our experiments
that we have developed using IoT devices to make systems more smarter. The main
characteristic of these experiments is the application of edge computing paradigm, i.e.,
the processing of the sensors data in the device that produces these data, reducing network
delays and bandwidth.

4.1. Smart Pole Project

The first solution is related to out Smart Campus project where we have developed a
Smart Pole powered by solar panel that acts as a sensing and connectivity infrastructure
for smart cities. This solar city pole is carried with Wi-Fi radios, IP camera, and an

®https://devblogs.nvidia.com/training-self-driving-vehicles-challenge-scale/

IoT device and some of the services it can offer to the citizens are: Internet Wi-Fi Hot-
spot, sensing of environmental pollution, spot for an automated parking space availability
system, autonomous and intelligent lighting spot, and place for digital panels with useful
information updated in real time.

The main issue of any solar powered system is the battery setup and how the
embedded equipment will use the energy produced by the solar panel and stored into
battery for the usage at night or raining days. We have been using the solar charger
controller EPsolar VS2024BN to manage the energy in the pole. Its main function is to
limit the rate at which electric current is added to or drawn from battery and it cuts off
electric current from battery if its voltage reaches an under boundary. The connectivity
and energy for Wi-Fi radios and IP camera is provided by a Power over Ethernet (PoE®)
Switch. Figure 1 shows a picture of the pole and the schema of the energy and network
topologies.

4
" P-t-P radio

/ ' 0V - 18,9V
Switch PoE
)

Charger
controller

» . ==
a v !' : UNIPOWER
/) s

Wi-Fi radio IP Camera BeagleBone Battery

Figure 1. The Smart Pole and its energy and network topologies.

The IoT device Beaglebone Black used in the pole is the sensing platform and
the data collector and analyzer for the energy produced and consumed in the system. As
a class 2 device, it does the low-level fusion of sensors data and can compute several
statistics about the pole operation and datasets. Every 5 minutes the Beaglebone asks the
charger controller via an RS-485 interface all data about the energy management in the
system. All data are stored on the device in a SQLite’ database and after one year this
database has approximately 100 thousand records that occupies only 12MBytes of the
BeagleBone’s 4GB internal storage flash memory. By mining this dataset the BeagleBone
can predict a critical situation when the battery charge is getting too low and the charger
controller will cut off all the energy that powers the equipments. Before this situation
happens, the BeagleBone can act by sending SNMP'? set commands to the switch to

Thttp://www.epsolarpv.com/en/index.php/Product/pro_content/id/166/am_id/136
8https://en.wikipedia.org/wiki/Power_over_Ethernet

https://www.sqlite.org/

19Simple Network Management Protocol (http://www.snmp.com/protocol/)

Table 5. Running a complex SQL query in different software and hardware plat-

forms
SQL query response
time (msec)
MySQL @ Cloud server 2,280
SQLite @ Cloud server 291
SQLite @ Beaglebone 3,113
SQLite @ Raspberry Pi 2 3,143

disable the port(s) connected the IP camera and/or the Wi-Fi radio to save energy until the
solar panel can produce power again.

To compare the performance of the BeagleBone running SQL queries that use
statistical functions (COUNT, MAX, MIN, and SUM) we have exported this database to
a MySQL server (Intel Xeon quad-core 2.6GHz and 4GB of RAM) in the Cloud to get
its response time as reference. Table 5 shows the results for running the SQL query that
gets all the power cuts and subsequent period of inactivity due to low power in the battery.
This query has 3 nested subqueries and applies the MAX function to a "timestamp’ type
column of the table. Surprisingly the response time of MySQL running on the Cloud
server was close to the time of SQLite running on BeagleBone and Raspberry Pi 2. This
suggests that any ML algorithm that needs statistics to learn using large datasets can be
done in the edge using a Smart [oT device class 2.

4.2. Smart Place Project

The second solution is also related to our Smart Campus project and it is a system named
Smart Place which uses sensors, camera, and Raspberry Pi as the IoT device manager
to intelligently control the air conditioners (AC) in smart buildings. This system was
developed aiming to contribute to energy saving by automatically managing the usage of
AC at the Federal University of Rio Grande do Norte.

The Smart Place system detects the presence of people in the room and automati-
cally turns on the air conditioner and then turns off if nobody has been detected in the last
15 minutes. It also checks the room reservation data for the next minutes before turning
the air conditioner off, so that no AC will have its status switched (on-off-on) in a short
period of time, which would increase the consumption of energy instead of contributing
to any savings.

Initially, only a motion sensor was used to detect the presence of people in the
room. But due to its distance limitation, specially in environments that are larger like a
classroom, an embedded Raspberry Pi’s camera was integrated to improve the efficiency
of the system. Figure 2 shows an diagram of the Smart Place system in a room and
a schema of the device, sensors, and actuator (infrared LED) used. The Raspberry Pi
commands the AC sending infrared signals to its IR receiver, like an AC remote control.
All data collected from the sensors and camera (temperature, humidity and presence) is
stored in a SQLite database and processed in the Raspberry Pi to make the decision of
turning on or off the AC. For monitoring the whole system in all rooms the data is also
sent to a Cloud server.

- Raspberry Pi

Pi Camera Infrared LED

- ! PIR Sensor DHT11 Sensor i -
: i < AV

{\ £is o -

“"ipﬁ SN _

Figure 2. The Smart Place system.

Table 6. Running CNN MobileNet in different computers

DL algorithm response
time (msec)
Notebook 130
Raspberry Pi 3 1,609
Raspberry Pi 2 2,398
Raspberry Pi Zero 16,383

With the image of the room captured with the Raspberry Pi’s camera, classifica-
tion, counting, and localization of people in such place was possible. In order to do theses
processes, we have been using object detection through Deep Learning techniques avail-
able in the OpenCV library. After testing several methods for object detection, Single
Shot Detectors (SSDs) [Liu et al. 2016] was the method that better suit our system, being
even faster and more precise than the YOLO method [Redmon et al. 2016], and by com-
bining it with the CNN model MobileNet [Howard et al. 2017], we got an efficient and
fast deep learning method for object detection which can be used in any resource con-
strained device, like the Raspberry Pi. Table 6 shows our experiments using a notebook
with webcam (MacBook Air Intel dual-core i5 1.3GHz, 4GB of RAM) and three versions
of Raspberry Pi to run the CNN MobileNet model in order to detect and count the people
in the room.

The response time of the Raspberry Pi 3 and 2 (class 3 devices) is quite interest-
ing. Both have quad-core processors and 1GB of RAM and the difference of Pi 3 time
for the notebook time was about 1.5 seconds slower. For this reason and prospecting the
potential of such devices in the development of smart applications, the academic com-
munity has been researching more computationally efficient neural networks and with
a smaller memory/processing requirement. One of such initiative is the SqueezeNet
[Tandola et al. 2016].

5. Final Remarks

The Internet of Things technology is being increasingly used mainly with the advent of
smart solutions (smart city, smart building, home automation, etc.). Due to the rapid evo-
lution of System-on-a-Chip, there is a big marathon for developing intelligent systems
where small devices process their own data and take decisions to improve user experi-
ences. This novel paradigm, known as Edge or Fog Computing, will allow the Internet
to grow even more, improve the user experience and reduce the dependency on Cloud
infrastructures.

Analyzing the machine learning techniques and how the ML algorithms run on
resource constrained devices, this paper proposed a Smart IoT Device Classification. This
classification helps developers choosing the 0T device that better matches the hardware
resources with the data processing and learning requirements for their smart systems.
Some experiments of using the IoT devices discussed in this paper were also presented,
showing the potential this tiny devices have in smart solutions.

We believe that machine learning algorithms will also evolve along with IoT de-
vices because there is a whole new market for intelligent systems using the Internet as the
main infrastructure. This market is pushing forward the development of new hardware,
software, and network protocols to address all the challenges present in such systems.

References

Aitken, R., Flautner, K., and Goodacre, J. (2011). High-performance multiprocessor sys-
tem on chip: Trends in chip architecture for the mass market. In Hiibner, M. and
Becker, J., editors, Multiprocessor System-on-Chip - Hardware Design and Tool Inte-
gration, pages 223-239. Springer.

Anandhalli, M. and Baligar, V. P. (2017). A novel approach in real-time vehicle detection
and tracking using raspberry pi. Alexandria Engineering Journal.

Atzori, L., Iera, A., and Morabito, G. (2010). The internet of things: A survey. Computer
Networks, 54(15):2787-2805.

Chen, G., Parada, C., and Heigold, G. (2014). Small-footprint keyword spotting using
deep neural networks. In ICASSP, pages 4087-4091. IEEE.

Dastjerdi, A. V. and Buyya, R. (2016). Fog computing: Helping the internet of things
realize its potential. IEEE Computer, 49(8):112-116.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,
M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for
mobile vision applications. Computer Vision and Pattern Recognition (¢s.CV).

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer, K.
(2016). Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <05mb
model size.

Kamath, G., Agnihotri, P., Valero, M., Sarker, K., and Song, W.-Z. (2016). Pushing
analytics to the edge. In GLOBECOM, pages 1-6. IEEE.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Bartlett, P. L., Pereira, F. C. N., Burges, C. J. C.,

Bottou, L., and Weinberger, K. Q., editors, Advances in Neural Information Process-
ing Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United
States, pages 1106-1114.

Lane, N. D., Bhattacharya, S., Georgiev, P., Forlivesi, C., and Kawsar, F. (2015a). An early
resource characterization of deep learning on wearables, smartphones and internet-of-
things devices. In Xu, C., Zhang, P., and Sigg, S., editors, Proceedings of the 2015
International Workshop on Internet of Things towards Applications, loT-App 2015,
Seoul, South Korea, November 1, 2015, pages 7-12. ACM.

Lane, N. D., Georgiev, P., and Qendro, L. (2015b). Deepear: robust smartphone audio
sensing in unconstrained acoustic environments using deep learning. In Mase, K.,
Langheinrich, M., Gatica-Perez, D., Gellersen, H., Choudhury, T., and Yatani, K.,
editors, Proceedings of the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing, UbiComp 2015, Osaka, Japan, September 7-11, 2015,
pages 283-294. ACM.

LeCun, Y., Bengio, Y., and Hinton, G. E. (2015). Deep learning. Nature, 521(7553):436—
444,

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Scott Reed4, C.-Y. F.,, and Berg, A. C.
(2016). Ssd: Single shot multibox detector. Computer Vision — ECCV 2016, 9905:21—
37.

Nakamura, E. F., Loureiro, A. A. F,, and Frery, A. C. (2007). Information fusion for
wireless sensor networks: Methods, models, and classifications. ACM Comput. Surv.,
39(3).

Netzer, Y., Wang, T., Coates, A., Bissacco, R., Wu, B., and Ng, A. Y. (2011). Reading
digits in natural images with unsupervised feature learning.

Qiu, J., Wu, Q., Ding, G., Xu, Y., and Feng, S. (2016). A survey of machine learning for
big data processing. EURASIP J. Adv. Sig. Proc., 2016:67.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once:
Unified, real-time object detection. The IEEE Conference on Computer Vision and
Fattern Recognition (CVPR), pages 779-788.

Sajjad, M., Nasir, M., Muhammad, K., Khan, S., Jan, Z., Sangaiah, A. K., Elhoseny,
M., and Baik, S. W. (2017). Raspberry pi assisted face recognition framework for
enhanced law-enforcement services in smart cities. Future Generation Computer Sys-
tems, November 2017.

Sebe, N., Cohen, 1., Garg, A., and Huang, T. S. (2005). Machine Learning in Computer
Vision, volume 29 of Computational Imaging and Vision. Springer.

Varghese, B., Wang, N., Barbhuiya, S., Kilpatrick, P., and Nikolopoulos, D. S. (2016).
Challenges and opportunities in edge computing. In 2016 IEEE International Confer-
ence on Smart Cloud, SmartCloud 2016, New York, NY, USA, November 18-20, 2016,
pages 20-26.

