
Proposta e Avaliação de uma Abordagem de Desenvolvimento
de Software Fidedigno por Construção com o Método B∗

B. Dantas, D. Déharbe, S. Galvão, A. Martins Moreira, V. Medeiros Júnior

1Departamento de Informática e Matemática Aplicada
Programa de Pós-graduação em Sistemas e Computação

Universidade Federal do Rio Grande do Norte
Campus Universitário, Lagoa Nova

59078-970 Natal, RN, Brazil

{bartira,david,stepgalvao,anamaria,junior}@consiste.dimap.ufrn.br

Abstract. This work describes a model-driven approach to design and develop
software from the functional specification level down to assembly. The propo-
sed approach builds upon the B method and provides a methodology to craft
assembly-level software components in a rigorous way. While the B method is
conventionally applied to produce algorithmic level software artifacts for safety-
critical systems, it was not originally designed to handle the final transformati-
ons to source code and then to assembly. The users of the B method need thus
to use code synthesis and compilation tools that do not offer the same rigorous-
ness. Subtle bugs in these final steps may indeed jeopardize the whole engi-
neering process. The approach proposed in the paper extends the B method to
covers these last steps and therefore contributes to the scientific grand challenge
of Computer Science proposed by Tony Hoare [6]: “The Verifying Compiler”.

Resumo. O artigo descreve uma abordagem orientada a modelos para o de-
senvolvimento de componentes de software abrangendo desde a especificação
funcional até a produção de código em nı́vel de montagem. A abordagem pro-
posta tem como base o método B e permite projetar e construir componentes
de software em assembly de forma rigorosa e comprovadamente correta. En-
quanto o método B é tradicionalmente aplicado pela indústria para desenvolver
componentes de software para sistemas crı́ticos até um nı́vel algorı́tmico, ele
não foi originalmente concebido para tratar das últimas transformações até a
geração de código de montagem ou executável. A abordagem proposta nesse ar-
tigo estende o método B para cobrir essas últimas transformações e dessa forma
contribui para uma das metas do Grande Desafio 5 que é o “desenvolvimento e
adaptação de tecnologias e instrumentos em geral de apoio à implementação e
à avaliação de software fidedigno por construção”.

1. Introdução
Um dos cinco Grandes Desafios da Computação identificados pela comunidade cientı́fica
através da ação promovida pela Sociedade Brasileira de Computação [1] é a construção de
sistemas corretos e seguros, uma condição sine qua non do “desenvolvimento tecnológico

∗O trabalho apresentado recebeu apoio financeiro do CNPq, através dos projetos 485576/2007-4 e
550946/2007-1.

SBC 2008 195



de qualidade”. Em particular, um dos tópicos de pesquisa levantados é o projeto de siste-
mas fidedignos por construção: a engenharia de software é um processo complexo, onde
são gerados artefatos em diferentes nı́veis de abstração e de complexidade e é de suma
importância garantir a correspondência entre esses artefatos. Nesse contexto, destaca-se
também o desafio cientı́fico lançado pelo pesquisador britânico Tony Hoare do compila-
dor verificador [6], o qual tem sido objeto de muita atenção e entusiasmo na comunidade
de engenharia de software em geral e de métodos formais em particular. Finalmente,
particularmente importante nesse contexto, é a combinação do desafio da obtenção de
software fidedigno por construção e com o da evolução desse software que preserve o
rigor de seu desenvolvimento inicial.

Na área de métodos formais, diversas pesquisas têm sido realizadas com o in-
tuito de atingir o objetivo do software fidedigno por construção. Alguns exemplos
são a extração de programas a partir de provas matemáticas da satisfatibilidade da
especificação [10], a obtenção de código de refinamentos sucessivos com corretude garan-
tida a priori (cálculo de refinamentos com regras provadas corretas [4]), ou refinamentos
ad hoc definidos pelo projetista e verificados formalmente a posteriori. O método B [2],
que usamos como base para nossa proposta, se encaixa nessa última linha de ação. B
e suas ferramentas possuem diversas caracterı́sticas adequadas ao tratamento dos desa-
fios propostos e algumas limitações que precisam ser superadas para que esses objetivos
sejam efetivamente atingidos. Esse artigo procura, ao mesmo tempo em que apresenta
uma proposta de adaptação do método para a obtenção de maior garantia de fidedigni-
dade, mostrar como diversos princı́pios do método são importantes para a superação dos
desafios considerados.

A confiabilidade do resultado de um processo de desenvolvimento de software de-
pende, no entanto da confiabilidade de cada etapa. O método B [2], inspirado em técnicas
de especificação como VDM [9] e Z [15], e na teoria do refinamento [3], proporciona
uma abordagem rigorosa que abrange o desenvolvimento desde a modelagem funcional
até o nı́vel algorı́tmico. Caso todas as verificações pertinentes ao método sejam efetuadas,
garante-se que o modelo algorı́tmico obtido é fidedigno ao modelo abstrato que ele refina.
Mas, os últimos passos para uma implementação executável são: a sı́ntese de código em
uma linguagem de programação e a compilação desse código para a plataforma computa-
cional alvo. Essas duas últimas transformações não podem ser verificadas com o mesmo
nı́vel de rigor que o proporcionado pelo método B: de um lado a sı́ntese de código efe-
tua uma tradução entre linguagens que não possuem a mesma base semântica, e de outro
lado, os compiladores, implementados de forma ad hoc, efetuam transformações signifi-
cativas na estrutura do código. Assim, os esforços empreendidos na aplicação do método
B podem ser desperdiçados por um defeito em uma dessas etapas finais.

Uma solução possı́vel para esse problema é construir casos de teste a partir do mo-
delo funcional inicial construı́do no método B [8]. Esses testes podem então ser aplicados
à implementação resultante e assim ser verificada a sua compatibilidade com o modelo
inicial. Porém, em geral, essa abordagem não oferece garantias de completude.

Uma nova abordagem, proposta em [5], usa técnicas existentes de forma inova-
dora para estender o alcance do método B até o nı́vel de linguagem de montagem. Dessa
forma, são eliminadas as duas etapas de sı́ntese e compilação identificadas como poten-
cialmente menos confiáveis do ponto de vista da correção do resultado. Nessa nova abor-

SBC 2008 196



dagem, são geradas obrigações de prova que, se verificadas, garantem que o programa
em nı́vel de montagem implementa o modelo funcional inicial. Assim, a produção de
código executável apenas requer uma tradução trivial das instruções de montagem para
seus correspondentes binários. Em [5], foi investigada a compilação formal das princi-
pais construções algorı́tmicas (atribuição, sequência, condicional e laço) para instruções
da máquina de acesso randômico [7], um modelo computacionalmente completo cujo
funcionamento se assimila ao dos microcontroladores e microprocessadores modernos.

Esse artigo prossegue nessa direção, propondo agora investigar a aplicabilidade da
abordagem no contexto de uma plataforma computacional industrial, no caso, o micro-
controlador PIC16C432, um equipamento de baixo custo que tem sido usado para execu-
tar software embarcado em aplicações crı́ticas. Por um lado, o conjunto de instruções do
PIC16C432 foi modelado em B. Por outro lado, realizou-se o desenvolvimento, utilizando
o método B, de um sistema reativo simples (um semáforo) até o nı́vel de abstração de lin-
guagem de programação imperativa. A partir desse artefato, foi construı́do um programa
de montagem PIC16C432 correspondente. Esse programa foi codificado em B, utilizando
o modelo de instruções construı́do, e a sua conformidade com o modelo funcional inicial
foi provada em ferramentas de suporte ao método B.

Estrutura do artigo. A seção 2 fornece informações acerca do método B necessárias ao
entendimento da abordagem e do exemplo proposto. A seção 3 provê uma visão geral da
abordagem proposta para construção de software correto por construção. Na seção 4.1, é
apresentado a modelagem do conjunto de instruções do PIC16C432. A seção 5 apresenta
o estudo de caso do semáforo, desde o modelo funcional incial até a implementação em
nı́vel de montagem. As conclusões são apresentadas na seção 6.

2. O método B

O método B[2, 13] oferece uma abordagem orientada a modelos para o desenvolvimento
de componentes de software. Possui uma linguagem própria, chamada de Notação de
Maquinas Abstratas (Abstract Machine Notation - AMN), que permite tanto expressar
um modelo funcional de alto nı́vel, quanto os refinamentos sucessivos desse modelo.
Esses refinamentos compõem os passos realizados até que se chegue a um modelo su-
ficientemente concreto, a partir do qual o código fonte do componente pode ser gerado
automaticamente. A base matemática do método B (lógica de primeira ordem, aritmética
inteira e teoria dos conjuntos) proporciona uma grande similaridade com a notação Z[15].
Entretanto, com a intenção de ser facilmente compreendido e utilizado fora do mundo
acadêmico, o método B possui uma estruturação rigorosa e estritamente relacionada às
construções das linguagens de programação imperativa.

Existem, no mercado, diversas ferramentas de apoio ao desenvolvimento de
software implementando o método B. Essas ferramentas dão suporte às tarefas de
especificação, animação, verificação, sı́ntese e gerenciamento de projetos.

2.1. Etapas do método B

Uma especificação B é estruturada em módulos. Um módulo define um conjunto de
estados válidos, um subconjunto desses estados que são os estados iniciais possı́veis, e

SBC 2008 197



operações que podem ocasionar uma transição entre estados. O processo de desenvolvi-
mento inicia com um módulo que define o modelo funcional de alto nı́vel do sistema. Em
B, esse modelo inicial é chamado de “máquina” (MACHINE). Nessa fase de modelagem
pode-se utilizar técnicas semi-formais tais como UML que permitem a transição do do-
cumento em linguagem natural para a notação formal do método B [14, 11]. O método
B impõe que seja provado que, em uma máquina, todos os estados iniciais são válidos, e
que as operações não definem transições de um estado válido para um estado inválido.

Uma vez estabelecido o modelo funcional inicial, o método B propicia construções
para definir “refinamentos” (REFINEMENT). Em B, um refinamento é sempre associ-
ado a outro modelo (mais abstrato), e especifica uma decisão de projeto, ora sobre a
representação concreta do estado, ora sobre a operacionalização de uma operação por um
algoritmo. O método B requer que, quando é realizado um refinamento, seja provada a
sua conformidade com o módulo refinado.

Existe um tipo especial de refinamento, chamado de “implementação” (IMPLE-
MENTATION), que é usado quando o nı́vel de abstração é equivalente ao de uma lingua-
gem de programação. Esse tipo de módulo é classificado como modelo algorı́tmico nesse
artigo. Implementações podem ser escritas em um subconjunto da AMN chamado de
B0 e que restringe a definição a construções algorı́tmicas sequenciais e determinı́sticas.
A partir de um módulo implementação, existe a possibilidade de gerar código fonte em
linguagens de programação como C ou ADA.

As diversas etapas do método B são ilustradas graficamente na figura 1, com as
seguintes convenções: retângulos representam etapas; retângulos inclinados correspon-
dem ao processos humanos e computacionais; retângulos cinzas são etapas geradas pelo
método B; rótulos V enfatizam que a verificação formal é aplicada para a etapa corres-
pondente; a área cinza claro é o foco desse trabalho.

A garantia de fidedignidade provida pelo método é resultado das provas realiza-
das em cada etapa (consistência do modelo, conformidade dos refinamentos). As etapas
finais de geração de código em linguagem de programação e de compilação devem ser
verificadas com o uso de dados de teste gerados a partir do modelo funcional inicial. Essa
verificação não é completa, pois, como é de conhecimento geral, embora os testes possam
revelar a presença de erros, não podem garantir sua ausência. É portanto importante pro-
curar diminuir a dependência dessa fase de testes, onde entra nossa proposta de extensão
do método B ao nı́vel de linguagem de montagem.

Por outro lado, as ferramentas de apoio ao método B procuram contribuir para
o quesito evolutibilidade, através da preocupação com a gestão modular de projetos
e de suas provas, de maneira a que provas possam por exemplo ser re-aproveitadas
ou re-aplicadas quando da evolução da especificação. Assim, apenas as partes da
especificação que foram efetivamente alteradas necessitarão de um novo esforço de
verificação. No entanto, o esforço relacionado à evolução ainda é grande dada a ne-
cessidade de realização/adaptação manual dos refinamentos. Essa é certamente uma linha
de trabalho essencial para transformar o método em uma solução para o desafio do desen-
volvimento rigoroso fidedigno e evolutivo.

SBC 2008 198



Figura 1. Visão geral de um processo de engenharia de software baseado no
método B

2.2. A notação B

Na sua essência, um módulo B é composto por duas partes principais: a definição do
estado e das operações. Além desses elementos essenciais, ainda há cláusulas auxiliares
como parâmetros de módulo, constantes, asserções, etc. que propiciam maior reusabili-
dade e modularidade, embora não estendam estritamente o poder expressivo da notação.
Nós discutiremos aqui estritamente o cerne das cláusulas de um módulo B.

A definição dos estados dos componentes é realizada através das cláusulas VARI-
ABLES e INVARIANT. A primeira enumera os componentes de estados; já a segunda,
restringe as possibilidades de valores que eles podem assumir.

Para a especificação da inicialização, assim como para as operações, B oferece
um conjunto de construções denominadas substituições generalizadas. Algumas dessas
construções se assemelham a construções de linguagens de programação imperativa, e
outras são mais abstratas, permitindo, por exemplo, não determinismo. A semântica é
definida através do cálculo de substituições, um conjunto de regras que define como as
diferentes substituições reescrevem fórmulas da lógica de primeira ordem. Como notação,
temos que [S]E denota o resultado da aplicação da substituição S a uma expressão E. Por
exemplo, a operação que incrementa a variável v pode ser definida através da substituição
simples v := v + 1. Assim, [v := v + 1]v < 0 é v + 1 < 0.

A notação B fornece também construções mais elaboradas. A substituição
não determinı́stica ANY v WHEREC THENS END aplica a substituição S com
a variável v assumindo qualquer valor que satisfaça a condição C. A substituição v :∈ V ,
onde V é um conjunto, é equivalente a ANY xWHERE x ∈ V THEN v := xEND.
A substituição paralela [S ‖ S ′] aplica as duas substituições S e S ′ simultaneamente. A

SBC 2008 199



MACHINE traffic light
SETSCOLOR = {green, yellow , red}
VARIABLES color
INVARIANT color ∈ COLOR
INITIALISATION color :∈ COLOR
OPERATIONS

advance =
CASE color OF
EITHER green THEN color := yellow
OR yellow THEN color := red
OR red THEN color := green

Figura 2. Exemplo de modelo funcional em B

substituição com pré-condição PREC THENS END é usada para especificar uma
operação com a pré-condição de aplicação C. Por exemplo, a operação parcial que
incrementa v até o valor top pode ser especificada como PRE v < top THEN v :=
v + 1END.

2.3. Exemplo de modelo funcional

O exemplo da figura 2 mostra as cláusulas mais básicas para a construção de um modelo
funcional de um semáforo1. O nome do modelo é traffic light , sendo definido na cláusula
MACHINE. Um conjunto COLOR é definido, composto pelas três cores possı́veis do
semáforo. O estado é composto por uma única variável, chamada color, cujo valor deve
pertencer a COLOR e inicializada não deterministicamente com um dos elementos desse
conjunto. Em seguida, é especificada a operação advance, que opera uma transição do
semáforo.

2.4. Exemplo de refinamento

O modelo anterior pode ser refinado por um módulo que possui como estado um único
valor inteiro. A figura 3 mostra um refinamento B da máquina traffic light . O nome
do refinamento é traffic light data refinement e o modelo refinado é especificada na
cláusula REFINES. A cláusula CONSTANTS declara duas constantes funcionais cujas
definições são dadas na cláusula PROPERTIES. A cláusula VARIABLES declara o único
componente do estado do refinamento. A cláusula INVARIANT estabelece a relação entre
o estado do refinamento e o estado do módulo refinado: em qualquer momento, o valor de
count deve ser igual ao resultado da aplicação da função color refine à variável abstrata
color . O refinamento do estado inicial é especificado na cláusula INITIALISATION: é
realizada uma atribuição do valor 0 à variável count. O refinamento da operação é então
realizado na seção OPERATIONS. A seção 5 provê um exemplo adicional de refinamento,
que resulta em uma implementação, ou modelo algorı́tmico, do semáforo.

2.5. Obrigações de prova

No método B, para garantir a correção do desenvolvimento, deve-se verificar que cada
modelo funcional é coerente, e que cada refinamento é consistente com o modelo que
refina. Para isso, devem ser gerados e verificados diferentes tipos de obrigações de prova,
detalhadas a seguir.

1Por limitação de espaço, os BEGINs e ENDs da sintaxe de B foram omitidos aqui.

SBC 2008 200



REFINEMENT traffic light data refinement
REFINES traffic light
CONSTANTS color refine, color step
PROPERTIES

color refine ∈ COLOR −→ NATURAL∧
color refine = {green 7→ 0, yellow 7→ 1, red 7→ 2}∧
color step ∈ 0..2 −→ 0..2 ∧ color step = {0 7→ 1, 1 7→ 2, 2 7→ 0}

VARIABLES count
INVARIANT count ∈ NATURAL ∧ count ∈ 0..2 ∧ count = color refine(color)
INITIALISATION count := 0
OPERATIONS advance = count := color step(count)

Figura 3. Exemplo de refinamento em B

A coerência de um modelo funcional é estabelecida quando as ações de
inicialização colocam a máquina em um estado válido e quando nenhuma operação,
quando aplicada dentro do seu domı́nio, pode levar a máquina de um estado válido para
um estado inválido. Assim, a substituição da inicialização S estabelece o invariante, ou
seja [S]INV , e, para cada operação com pré-condição PRE e substituição S, deve se
verificar que a seguinte fórmula é válida: PRE ∧ INV ⇒ [S]INV .

Considerando o modelo da figura 2, um exemplo de obrigação de prova
(inicialização) é:

[color :∈ COLOR]color ∈ COLOR
≡ ∀x • (x ∈ COLOR ⇒ [color := x]color ∈ COLOR)
≡ ∀x • (x ∈ COLOR ⇒ x ∈ COLOR)

No caso de um refinamento, seja INVR o invariante do refinamento, INVM o
invariante do modelo refinado, a consistência de um refinamento com relação ao modelo
que refina é garantida quando:

• A inicialização do refinamento, denotada INITR, deve garantir que, todo es-
tado inicial concreto refina algum estado inicial abstrato. Se INITM denota a
inicialização do modelo refinado, essa propriedade é expressa da seguinte forma
no cálculo de substituições:

[INITR]¬[INITM ]¬INVR.

• Para as operações, três propriedades devem ser garantidas: (1) a operação do re-
finamento OPR deve ser aplicável sempre que a operação abstrata OPM o for,
logo a sua pré-condição PRER deve ser mais fraca que a pré-condição PREM

da operação abstrata; (2) toda alteração do estado concreto corresponde a alguma
transição do modelo abstrato; (3) para entradas iguais, as saı́das são compatı́veis.
O cálculo de substituições provê a seguinte formalização dessa propriedade:

INVM ∧ INVR ∧ PREM ⇒ PRER ∧ [OPR]¬[OPM ]¬INVR.

SBC 2008 201



Dois tipos de ferramentas são empregadas para realizar a verificação dos módulos
B. O gerador das obrigações de prova de um módulo, que é totalmente automático, aplica
as regras do cálculo de substituições e eventuais simplicações. Os provadores que são
semi-automáticos. Geralmente, boa parte das obrigações de prova é simples o sufici-
ente para ser provada sem intervenção humana. Para as demais obrigações de prova, o
usuário pode interagir com o verificador para selecionar as hipóteses relevantes, instan-
ciar fórmulas quantificadas, realizar simplificações, e outras operações que permitem, ora
provar a obrigação de prova, ora descobrir que a obrigação de prova não é válida e que há
uma falha no módulo que deve então ser corrigido.

3. Visão geral da abordagem proposta
O elo fraco da produção de componentes de software com o método B é a sı́ntese de
software em uma linguagem de programação e sua compilação em linguagem de monta-
gem da plataforma. Como a linguagem B0 (ver seção 2.1) é próxima as construções de
programação, a sı́ntese de código geralmente é considerada segura; entretanto, se a lin-
guagem alvo usa construções não suportadas pela linguagem B0 (por exemplo, orientação
a objetos), essa transformação pode não ser tão simples.

Este trabalho propõe aplicar os conceitos do método B para gerar artefatos de
software em nı́vel de montagem. A abordagem é dividida em: (1) modelagem da plata-
forma alvo, e (2) refinamento do modelo algorı́tmico para uma implementação baseada
no modelo da plataforma.

A plataforma alvo pode ser modelada com a notação de máquina abstrata de B: o
estado da máquina representa o estado da plataforma (isto é, registradores e memória), e
cada operação representa uma instrução de montagem. É necessário fazer isso uma única
vez para uma determinada plataforma. Detalhes adicionais são fornecidos na seção 4.

O modelo algorı́tmico tem que ser refinado para o modelo a nı́vel de montagem.
Esse último modelo é definido sobre o modelo de plataforma alvo discutido anterior-
mente. Uma estratégia geral desse refinamento é mapear as variáveis de estado do modelo
algorı́tmico para diferentes endereços de memória da plataforma, e traduzir as operações
a nı́vel algorı́tmico para combinações de operações definidas no modelo de plataforma
correspondente às instruções de linguagem de montagem. O refinamento resultante leva
à geração e verificação das obrigações de prova correspondentes. Nós então obtemos um
artefato de software no nı́vel de montagem que é comprovadamente compatı́vel com o
modelo fucional inicial.

Essa abordagem fornece uma extensão do método B como mostrado à esquerda da
Figura 4. Contudo, o método B clássico tem algumas limitações que não nos permite apli-
car essa então chamada “estratégia” ideal, a saber: primeiro, construções de repetição em
B podem ser usadas somente em um módulo de implementação; e, segundo, um módulo
de implementação não pode ser refinado. Portanto o método B não fornece subsı́dios
para construir o refinamento de um algoritmo que utiliza construções de repetição. Uma
solução seria remover essa limitação do método B, mas iria requerer a atualização de
ferramentas de terceiros.

Felizmente, é possı́vel elaborar outra solução para contornar essa limitação sem
modificar o método B. Essa solução é mostrada à direita da Figura 4: ao invés de es-
tabelecer uma relação de refinamento entre os modelos de montagem e o algorı́tmico,

SBC 2008 202



Figura 4. Aplicando o método B até o nı́vel de montagem: ideal (esquerda) e
atual (direita).

consideraremos um refinamento do modelo de projeto imediatamente anterior ao modelo
algorı́tmico no processo de refinamento. A construção da implementação da montagem
a partir da implementação algorı́tmica poderá ser formalizada por um conjunto de regras
que podem ser implementadas para construir um compilador formal baseado em B, mas
a verificação pode ser feita normalmente em um refinamento B, com respeito ao modelo
de projeto. A seção 5 provê um exemplo simples, demostrando a correspondência lógica
entre as implementações algorı́tmica e de montagem.

4. Modelagem de uma plataforma computacional

Nesse trabalho, a plataforma computacional modelada é a do PIC16C432, um microcon-
trolador com um barramento de 8 bits, 35 instruções e 8 nı́veis de pilha em hardware. Esse
artefato, bastante simples, tem um custo muito baixo, pode ser utilizado para executar
software embarcado em diversos tipos de aplicações e tem uma boa difusão no mercado
de microcontroladores para sistemas embarcados.

A modelagem da plataforma PIC é estruturada em diferentes módulos 2:

• O módulo PIC contém a especificação do estado do microcontrolador e do seu
conjunto de instruções. Informações detalhadas são apresentadas na seção 4.1.

• O módulo ALU provê as definições das diferentes funções lógicas e aritméticas
que são usadas na especificação das instruções da PIC.

• O módulo TYPES fornece as definições dos diferentes tipos de dados que são
usados na plataforma PIC: os valores possı́veis de uma palavra de dados, de um
endereço de memória, etc.

4.1. O modelo funcional do microcontrolador PIC16C432

O modelo PIC é apresentado com a sua modelagem em B intercalada com comentários in-
formais. Os módulos contendo as definições auxiliares usadas na especificação do estado
e das operações são importados através da cláusula SEES:

MACHINEPIC
SEESALU ,TYPES

2O leitor interessado nos detalhes da especificação completa ou em outros estudos de caso é convidado
a visitar o repositório dos autores no endereço http://b2asm.googlecode.com.

SBC 2008 203



A semântica do conjunto de instruções da plataforma pode ser definida com base
na alteração do valor dos seguintes componentes, que formam o estado do modelo da
PIC: o registro de trabalho w, o bit de teste de nulidade z, o bit de vai-um c, o contador
de programa pc, o ponteiro de pilha sp, a pilha de execução stack e a memória de dados
mem:
VARIABLESw, z, c, pc, sp, stack ,mem
INVARIANT

w ∈ WORD ∧ z ∈ BOOL ∧ c ∈ BOOL∧
mem ∈ REGISTER → WORD ∧ pc ∈ INSTRUCTION ∧
stack ∈ N→+ INSTRUCTION ∧ sp ∈ N ∧ dom(stack) = 0..(sp − 1)

Nessa definição, WORD , REGISTER e INSTRUCTION representam respec-
tivamente as palavras de dados, os endereços da memória de dados e os endereços da
memória de instruções. Suas definições encontram-se no módulo TYPES .

Cada instrução de montagem é modelada na forma de uma operação no modelo
B. São classificadas em: cópia de dados, operações lógicas e aritméticas, operações sobre
bits e de alteração do fluxo de execução. Essa apresentação se limita a um subconjunto
representativo das instruções. A operação MOVWF modela a instrução que copia a pala-
vra armazenada no registrador de trabalho para um dado endereço na memória de dados.
A operação MOVLW (omitida aqui) modela a cópia de um valor dado para o registrador
de trabalho w. Ambas incrementam o contador de programa.
MOVWF (f) =

PRE f ∈ REGISTER THEN
mem(f) := w ‖ pc := INSTRUCTION NEXT (pc)

O conjunto de instruções possui operações aritméticas e lógicas de soma,
subtração, conjunção, disjunção e disjunção exclusiva, todas são binárias e com
especificações similares. Cada operação possui duas versões. A primeira modela a
instrução com um único argumento, uma palavra de dados k, que combina k com o re-
gistro de trabalho w, e guarda o valor em w. A segunda modela a instrução com dois
argumentos f e d: f é um endereço da memória de dados, cujo conteúdo é combinado
com o registro de trabalho w. O argumento d é um bit que indica se o resultado deve ser
guardado no registro de trabalho ou no endereço f . A modelagem da segunda forma da
instrução de adição é mostrada a seguir.

ADDWF (f, d) =
PRE f ∈ REGISTER ∧ d ∈ BIT THEN

ANY result , carry , zero WHERE
result ∈ WORD ∧ carry ∈ BOOL ∧ zero ∈ BOOL∧
result , carry , zero = add(mem(f), w)

THEN
IF d = 0THENw := result
ELSEmem(f) := result
END ‖
c := carry ‖ z := zero

END ‖
pc := INSTRUCTION NEXT (pc)

Em ambas versões, os bits z e c são atribuı́dos para indicar respectivamente se o
resultado da combinação foi nulo e se houve estouro (vai-um) . No modelo, a combinação

SBC 2008 204



é realizada através de uma função and , cuja definição é dada no módulo ALU (detalhes
são fornecidos na seção 4.2).

Há ainda operações que modelam as instruções que alteram o fluxo de execução.
A operação GOTO modela a instrução de salto incondicional e é simplesmente defi-
nida da seguinte forma: As operações CALL e RETURN modelam respectivametne as
instruções de chamada e de retorno de uma rotina. As operações B correspondentes es-
pecificam como o estado da pilha e do contador de programa são alterados por essas
instruções. Há ainda instruções de teste para efetuar desvios condicionais. A operação
BTFSC modela tal instrução com dois parâmetros: um endereço de memória f , e uma
posição b. Se o b-ésimo bit da palavra no endereço f for zero, não executa a instrução
seguinte e sim a posterior. Essa definição utiliza a função auxiliar bitget , especificada no
módulo ALU , apresentado a seguir.

GOTO(k) =
PRE k ∈ INSTRUCTION THEN pc := k

CALL(k) =
PRE k ∈ INSTRUCTION THEN

stack(sp) := INSTRUCTION NEXT (pc) ‖ sp := sp + 1 ‖ pc := k
RETURN =

PRE sp > 0THEN
pc := stack(sp − 1) ‖ stack := 0..(sp − 2) C stack ‖ sp := sp − 1

BTFSC (f, b) =
PRE f ∈ REGISTER ∧ b ∈ WORD POSITION THEN

IF bitget(mem(f), b) = 0THEN
pc := INSTRUCTION NEXT (INSTRUCTION NEXT (pc))

ELSE
pc := INSTRUCTION NEXT (pc)

4.2. O módulo ALU
O módulo ALU define diversas funções matemáticas que são implementadas no micro-
controlador PIC16C432. Utiliza o módulo TYPES que contém as definições dos tipos
dos parâmetros e resultados dessas funções. Assim, o módulo ALU possui as constan-
tes add e bitget , que possuem tipo e valor funcionais; elas são definidas na cláusula
PROPERTIES do módulo:
add ∈ (WORD ×WORD) −→ (WORD × BOOL× BOOL)∧
∀w1, w2, s•

(w1 ∈ WORD ∧ w2 ∈ WORD ∧ s ∈ NATURAL ∧ s = w1 + w2 ⇒
((s ≤ 255 ⇒ add(w1, w2) = (s,FALSE , bool(s = 0)))
∧(256 ≥ s ⇒ add(w1, w2) = (s− 256,TRUE , bool(s = 256)))))∧

bitget ∈ WORD ×WORD POSITION −→ BIT∧
∀w, i • (w ∈ WORD ∧ i ∈ WORD POSITION ⇒ bitget(w, i) = WORD TO BV (w)(i))

5. Estudo de caso
Nesta seção, o modelo e o refinamento do semáforo, utilizados nas seções 2.3 e 2.4 são
objetos de novos refinamentos. Esses refinamentos resultam em uma implementação B
tradicional, ou seja um modelo algorı́tmico, e a uma implementação em nı́vel de monta-
gem da plataforma PIC16C432, utilizando o modelo formal apresentado na seção 4.1.

SBC 2008 205



Primeiro, é apresentada uma implementação do semáforo utilizando os conceitos
tradicionais do método B. A variável de refinamento count é implementada com uma
instância, chamada state, do módulo nat que modela o armazenamento de um valor do
tipo natural.

IMPLEMENTATION traffic light alg
REFINES traffic light data refinement
IMPORTS state.nat
INVARIANT state.value ∈ 0..2 ∧ state.value = count
INITIALISATION state.set(0)
OPERATIONS
advance =

IF state.value = 0THEN state.set(1)
ELSIF state.value = 1THEN state.set(2)
ELSE state.set(0)END

A implementação em nı́vel de montagem é mais longa e é apresentada em par-
tes. O estado é composto por uma instância do modelo PIC , de nome m. O invariante
estabelece a correspondência entre o estado do módulo refinado (figura 3) com o dessa
instância: o valor de count é guardado no endereço 0 da memória de dados. Uma vez de-
finido o mapeamento das variáveis do nı́vel algorı́tmico para a memória do microcontrola-
dor, o invariante da implementação em linguagem de montagem é igual à substituição das
variáveis pelos seus locais de memória correspondentes, no invariante da implementação
algorı́tmica. Assim, a variável state.value é substituı́da por m.mem(0).

IMPLEMENTATION traffic light asm pic
REFINES traffic light data refinement
IMPORTSm.PIC
INVARIANTm.mem(0) ∈ 0..2 ∧m.mem(0) = count

A inicialização é implementada com a seguinte sequência de instruções, as quais
respectivamente atribuem o valor 0 ao registro de trabalho w e copiam o valor do registro
de trabalho para o endereço 0 da memória de dados. A prova de consistência desse trecho
de código com o modelo de projeto refinado é totalmente automática.

INITIALISATION
m.MOVLW (0); m.MOVWF (0)

A implementação da operação advance é realizada com uma chamada a um bloco
contendo 10 instruções de montagem, apresentado a seguir (a semântica de cada instrução
foi apresentada na seção 4.1). Essas instruções são obtidas utilizando técnicas clássicas
de compilação. Observe que, como o fluxo de execução não é linear e inclui saltos, a
implementação B não pode ser simplesmente o sequenciamento dessas instruções [5]. A
solução proposta na abordagem apresentada consiste em (1) compor essas instruções em
uma instrução condicional que seleciona a instrução a ser executada em função do valor do
contador de programa, e (2) executar essa instrução condicional enquanto o contador de
programa estiver dentro da faixa correspondente. O programa é gerado assumindo que é
carregado no endereço 0 da memória de instruções. Usando a notação B, essa organização
pode ser realizada combinando um laço WHILE e um condicional CASE3:

3As instâncias das instruções da PIC são sublinhadas para destaque.

SBC 2008 206



advance =
m.CALL(0);
WHILEm.pc < 10DO

CASEm.pc OF
EITHER 0THENm.BTFSC (0, 1)
OR 1THENm.GOTO(8)
OR 2THENm.BTFSC (0, 0)
OR 3THENm.GOTO(6)
OR 4THENm.MOVLW (1)

OR 5THENm.GOTO(9)
OR 6THENm.MOVLW (2)
OR 7THENm.GOTO(9)
OR 8THENm.MOVLW (0)
OR 9THENm.MOVWF (0)

INVARIANT . . .
VARIANT . . .
m.RETURN

Em B, um laço tem duas anotações: o invariante, que serve a estabelecer a sua
pós-condição, e o variante que visa mostrar a término da execução. O invariante do laço
estabelece os valores possı́veis do contador de programa e do apontador de pilha. Também
especifica uma condição invariante do programa em cada ponto possı́vel de execução, ou
seja para cada valor possı́vel do contador de programa. Para o ponto inicial e final de
execução, o próprio invariante do módulo deve ser estabelecido. Para os demais pontos
de execução, e na ausência de laços, o invariante pode ser calculado combinando os in-
variantes calculados para os pontos de execução anteriores no programa e a semântica de
cada tipo de instrução. Quando há um laço no modelo algorı́tmico, pode e deve-se usar o
invariante do próprio laço.

INVARIANT
0 ≤ m.pc ∧m.pc ≤ 10 ∧m.sp > 0∧
m.mem(0) ∈ 0..2∧
(m.pc = 0 ⇒ m.mem(0) ∈ 0..2 ∧m.mem(0) = m.count)∧
(m.pc = 1 ⇒ m.mem(0) = 2 ∧m.mem(0) = m.count)∧
(m.pc = 2 ⇒ m.mem(0) 6= 2 ∧m.mem(0) = m.count)∧
(m.pc = 3 ⇒ m.mem(0) = 1 ∧m.mem(0) = m.count)∧
(m.pc = 4 ⇒ m.mem(0) = 0 ∧m.mem(0) = m.count)∧
(m.pc = 5 ⇒ m.mem(0) = 0 ∧m.mem(0) = m.count ∧m.w = 1)∧
(m.pc = 6 ⇒ m.mem(0) = 1 ∧m.mem(0) = m.count)∧
(m.pc = 7 ⇒ m.mem(0) = 1 ∧m.mem(0) = m.count ∧m.w = 2)∧
(m.pc = 8 ⇒ m.mem(0) = 2 ∧m.mem(0) = m.count)∧
(m.pc = 9 ⇒ (m.mem(0) ∈ 0..2 ∧m.mem(0) = m.count ∧m.w = color step(m.count)))∧
(m.pc = 10 ⇒ (m.mem(0) ∈ 0..2 ∧m.mem(0) = color step(m.count)))

O variante do laço é uma expressão inteira que deve ser estritamente positiva, e
ser tal que seu valor diminui quando o corpo do laço é executado. Essas duas condições
são suficientes para garantir o término da execução. No caso do exemplo adotado, como
o fluxo de execução é uni-direcional, a expressão do variante laço pode ser simplesmente
a diferença entre o valor atual do contador de programa e o endereço da última posição.
No caso geral, deve-se usar técnicas de análise estática de código, como a análise de pior
tempo de execução [12], para construir essa expressão.

VARIANT(10−m.pc)

A prova de consistência dessa operação foi realizada utilizando um assistente de prova. A
grande maioria das obrigações de prova geradas foram verificadas automaticamente, sem
assistência do usuário. Para as demais, a interação foi geralmente mı́nima, requerendo

SBC 2008 207



apenas a instância de um quantificador e a seleção das hipóteses relevantes. Uma reen-
genharia do assistente de prova certamente permitiria descartar automaticamente essas
obrigações de prova. Apenas uma obrigação de prova necessitou uma maior interação,
devido à necessidade de provar uma propriedade aritmética bastante simples, mas fora do
alcance do provador usado.

6. Conclusão
Esse artigo relata um estudo visando estabelecer uma abordagem inovadora para resolver
o problema da geração de software correto por construção e, assim, contribuir à resolução
de um dos grandes desafios da computação em pesquisa no Brasil e no mundo. Essa
proposta baseia-se no método B, o qual fornece o embasamento teórico e o suporte fer-
ramental necessários. O escopo do refinamento no método B foi estendido do tradicio-
nal nı́vel algorı́tmico até o nı́vel de linguagem de montagem, o qual possui um nı́vel de
abstração equivalente ao de código executável. Para realizar esse estudo, foi definido o
modelo formal, na notação do método B, de uma plataforma computacional existente. Foi
realizado o mapeamento de um modelo algorı́tmico de um sistema reativo simples para a
linguagem de montagem dessa plataforma. No contexto teórico e prático do método B,
procedeu-se à prova da conformidade do modelo de montagem com o modelo funcional
inicial, propiciando assim uma demonstração da viabilidade da abordagem pelo menos
para exemplos simples.

O impacto esperado para o projeto iniciado é prover, para uma determinada plata-
forma alvo (ou conjunto de plataformas), regras de compilação de modelos algorı́tmicos
B para modelos em nı́vel de linguagem de montagem dessa(s) plataforma(s). O resultado
dessa compilação poderá ser verificado a posteriori, usando o arcabouço provido pelo
método B. Uma meta, a maior prazo, é de, através de uma formalização do cálculo de
refinamentos de B, provar a correção de tais conjuntos de regras de tradução e assim ter
um mecanismo de produção de código executável correto a priori.

Em relação aos desafios propostos em [1], a abordagem proposta se encaixa pri-
oritariamente no item “Desenvolvimento e adaptação de tecnologias e instrumentos de
apoio à implementação [...] de software fidedigno por construção”, e, por se basear no
método B (um método formal de desenvolvimento de software), no item “Desenvolvi-
mento e avaliação de modelos e ferramentas de modelagem de sistemas de software com
base teórica sólida”. Finalmente, apesar de não ser o foco dessa pesquisa no seu estágio
atual, espera-se também contribuir para o item “Desenvolvimento de ferramentas de apoio
ao processo de implementação e de evolução de software”.

Em grandes linhas, um resultado desse trabalho é uma primeira avaliação do
método B como ferramenta para o atendimento dos desafios acima. Pontualmente,
observou-se que algumas restrições existentes nas versões atuais do método e de suas
ferramentas prejudicam sua utilização para o refinamento de algoritmos em código de
montagem. Essas restrições podem ser contornadas, como mostra esse artigo. Seria, por
outro lado, interessante avaliar se elas poderiam ser eliminadas do método sem prejuı́zo
para o rigor do desenvolvimento ou para o poder de automatização das ferramentas de
suporte.

Por outro lado, outros requisitos mais significativos foram levantados que devem
ser atendidos para a superação desses desafios. A maior parte deles é ao menos parcial-

SBC 2008 208



mente satisfeita por B, mas ainda há muito a ser desenvolvido para que um método como
B possa ser efetivamente aplicado de maneira mais geral e com menos esforço. Alguns
desses requisitos são: deve ser possı́vel e viável verificar formalmente a consistência entre
os diferentes artefatos produzidos ao longo do processo de desenvolvimento de software;
deve ser estimulada a evolução do software a nı́vel de especificação ou de modelos abstra-
tos, de maneira a garantir-se a manutenção da consistência entre os diferentes artefatos;
deve ser possı́vel derivar com um mı́nimo de esforço, e, tanto quanto possı́vel, automati-
camente, novos artefatos e novas verificações; deve haver um bom controle de versões e
uma modularidade que permitam a redução da duplicação de esforços durante o desenvol-
vimento e durante a evolução do software. Concretamente, isso implica na necessidade de
avanços significativos nas tecnologias de verificação formal e de geração de refinamentos
e de código, pesquisas que certamente continuarão a serem desenvolvidas pelos grupos
nas áreas de métodos formais, linguagens de programação e engenharia de software.

Referências
[1] Grandes Desafios da Pesquisa em Computação no Brasil: 2006–2016.

http://www.sbc.org.br, 2006. Sociedade Brasileira de Computação.

[2] R. Abrial. The B-Book: Assigning programs to meanings. Cambridge Univ. Press, 1996.

[3] A. Cavalcanti, A. Sampaio, and J. Woodcock. Procedures and recursion in the refinement
calculus. Journal of the Brazilian Computer Society, 5(1):5–19, 1998.

[4] A. Cavalcanti, A. Sampaio, and J. Woodcock. A refinement strategy for circus. Formal
Aspects of Computing, 15(2–3):147–181, 2003.

[5] B. Dantas, D. Déharbe, S. Galvão, V. Medeiros Jr, and A. Moreira. Verified compilation
based on the B method: an initial appraisal (extended version). Technical Report
UFRN-DIMAp-2008-101-RT, UFRN-DIMAp, 2008.

[6] C. A. R. Hoare. The verifying compiler, a grand challenge for computing research. In
VMCAI, pages 78–78, 2005.

[7] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Com-
putation. Addison Wesley, 1979.

[8] E. Jaffuel and B. Legeard. LEIRIOS test generator: Automated test generation from B
models. In The 7th International B Conference, pages 277–280, 2007.

[9] C. B. Jones. Systematic Software Development Using VDM. Prentice Hall Int., 1990.

[10] P. Letouzey. A new extraction for Coq. In TYPES 2002, volume 2646 of LNCS, 2003.

[11] D. Ossami, J.-P. Jacquot, and J. Souquières. Consistency in UML and B multi-view
specifications. In IFM, pages 386–405, 2005.

[12] C.Y Park. Predicting program execution times by analyzing static and dynamic program
paths. Real-Time Systems, 5(1):31–61, 1993.

[13] S. Schneider. The B-Method: An Introduction. Cornerstones of Computing Series. Pal-
grave, 2001.

[14] C. Snook and M. Butler. UML-B: Formal modelling and design aided by UML. ACM
Transactions on Software Engineering and Methodology, 15(1):92–122, 2006.

[15] J. Spivey. The Z Notation: a Reference Manual. Prentice-Hall International Series in
Computer Science. Prentice Hall, 2nd edition, 1992.

SBC 2008 209


