SBC
2008

Anais do XXVIII Congresso da SBC
SEMISH - Seminario Integrado de Software e Hardware

12 a 18 de julho
Belém do Para, PA

Proposta e Avaliacao de uma Abordagem de Desenvolvimento

de Software Fidedigno por Construcao com o Método B*
B. Dantas, D. Déharbe, S. Galvao, A. Martins Moreira, V. Medeiros Junior

'Departamento de Informética e Matematica Aplicada
Programa de Pés-graduacdo em Sistemas e Computagao
Universidade Federal do Rio Grande do Norte
Campus Universitario, Lagoa Nova
59078-970 Natal, RN, Brazil

{bartira,david, stepgalvao, anamaria, junior}@consiste.dimap.ufrn.br

Abstract. This work describes a model-driven approach to design and develop
software from the functional specification level down to assembly. The propo-
sed approach builds upon the B method and provides a methodology to craft
assembly-level software components in a rigorous way. While the B method is
conventionally applied to produce algorithmic level software artifacts for safety-
critical systems, it was not originally designed to handle the final transformati-
ons to source code and then to assembly. The users of the B method need thus
to use code synthesis and compilation tools that do not offer the same rigorous-
ness. Subtle bugs in these final steps may indeed jeopardize the whole engi-
neering process. The approach proposed in the paper extends the B method to
covers these last steps and therefore contributes to the scientific grand challenge
of Computer Science proposed by Tony Hoare [6]: “The Verifying Compiler”.

Resumo. O artigo descreve uma abordagem orientada a modelos para o de-
senvolvimento de componentes de software abrangendo desde a especificagcdo
funcional até a produgcdo de codigo em nivel de montagem. A abordagem pro-
posta tem como base o método B e permite projetar e construir componentes
de software em assembly de forma rigorosa e comprovadamente correta. En-
quanto o método B é tradicionalmente aplicado pela indistria para desenvolver
componentes de software para sistemas criticos até um nivel algoritmico, ele
ndo foi originalmente concebido para tratar das ultimas transformacées até a
geracdo de codigo de montagem ou executdvel. A abordagem proposta nesse ar-
tigo estende o método B para cobrir essas ultimas transformagoes e dessa forma
contribui para uma das metas do Grande Desafio 5 que é o “desenvolvimento e
adaptagdo de tecnologias e instrumentos em geral de apoio a implementagdo e
a avaliacdo de software fidedigno por construcdo”.

1. Introducao

Um dos cinco Grandes Desafios da Computacao identificados pela comunidade cientifica
através da acdo promovida pela Sociedade Brasileira de Computacgao [1] € a construgao de
sistemas corretos e seguros, uma condi¢do sine qua non do “desenvolvimento tecnoldgico

550946/2007-1.

SBC 2008

*O trabalho apresentado recebeu apoio financeiro do CNPq, através dos projetos 485576/2007-4 e

195

i :I.' Anais do XXVIII Congresso da SBC 12 a 18 de julho
Q.I.I} SEMISH - Seminario Integrado de Software e Hardware Belém do Pard, PA

de qualidade”. Em particular, um dos tépicos de pesquisa levantados € o projeto de siste-
mas fidedignos por construg@o: a engenharia de software é um processo complexo, onde
sdo gerados artefatos em diferentes niveis de abstracdo e de complexidade e € de suma
importancia garantir a correspondéncia entre esses artefatos. Nesse contexto, destaca-se
também o desafio cientifico lan¢ado pelo pesquisador britanico Tony Hoare do compila-
dor verificador [6], o qual tem sido objeto de muita aten¢do e entusiasmo na comunidade
de engenharia de software em geral e de métodos formais em particular. Finalmente,
particularmente importante nesse contexto, € a combinacao do desafio da obtencdo de
software fidedigno por constru¢do e com o da evolucdo desse software que preserve o
rigor de seu desenvolvimento inicial.

Na drea de métodos formais, diversas pesquisas t€ém sido realizadas com o in-
tuito de atingir o objetivo do software fidedigno por constru¢do. Alguns exemplos
sdo a extracdo de programas a partir de provas matemadticas da satisfatibilidade da
especificacdo [10], a obtencao de cddigo de refinamentos sucessivos com corretude garan-
tida a priori (célculo de refinamentos com regras provadas corretas [4]), ou refinamentos
ad hoc definidos pelo projetista e verificados formalmente a posteriori. O método B [2],
que usamos como base para nossa proposta, se encaixa nessa ultima linha de acdao. B
e suas ferramentas possuem diversas caracteristicas adequadas ao tratamento dos desa-
fios propostos e algumas limita¢des que precisam ser superadas para que esses objetivos
sejam efetivamente atingidos. Esse artigo procura, a0 mesmo tempo em que apresenta
uma proposta de adaptacdo do método para a obtencdo de maior garantia de fidedigni-
dade, mostrar como diversos principios do método sdo importantes para a superagao dos
desafios considerados.

A confiabilidade do resultado de um processo de desenvolvimento de software de-
pende, no entanto da confiabilidade de cada etapa. O método B [2], inspirado em técnicas
de especificacdo como VDM [9] e Z [15], e na teoria do refinamento [3], proporciona
uma abordagem rigorosa que abrange o desenvolvimento desde a modelagem funcional
até o nivel algoritmico. Caso todas as verificagdes pertinentes ao método sejam efetuadas,
garante-se que o modelo algoritmico obtido € fidedigno ao modelo abstrato que ele refina.
Mas, os ultimos passos para uma implementag¢ao executdvel sdo: a sintese de cédigo em
uma linguagem de programacao e a compilacdo desse cddigo para a plataforma computa-
cional alvo. Essas duas dltimas transformagdes ndo podem ser verificadas com o mesmo
nivel de rigor que o proporcionado pelo método B: de um lado a sintese de cddigo efe-
tua uma traducao entre linguagens que nao possuem a mesma base semantica, e de outro
lado, os compiladores, implementados de forma ad hoc, efetuam transformacoes signifi-
cativas na estrutura do cédigo. Assim, os esfor¢os empreendidos na aplicacdo do método
B podem ser desperdi¢ados por um defeito em uma dessas etapas finais.

Uma solugdo possivel para esse problema € construir casos de teste a partir do mo-
delo funcional inicial construido no método B [8]. Esses testes podem entdo ser aplicados
a implementacdo resultante e assim ser verificada a sua compatibilidade com o modelo
inicial. Porém, em geral, essa abordagem nao oferece garantias de completude.

Uma nova abordagem, proposta em [5], usa técnicas existentes de forma inova-
dora para estender o alcance do método B até o nivel de linguagem de montagem. Dessa
forma, sdo eliminadas as duas etapas de sintese e compilacao identificadas como poten-
cialmente menos confidveis do ponto de vista da corre¢do do resultado. Nessa nova abor-

SBC 2008 196

i :I.' Anais do XXVIII Congresso da SBC 12 a 18 de julho
Q'I.I:‘ SEMISH - Seminario Integrado de Software e Hardware Belém do Pard, PA

dagem, sdo geradas obrigacdes de prova que, se verificadas, garantem que o programa
em nivel de montagem implementa o modelo funcional inicial. Assim, a producdo de
codigo executdvel apenas requer uma traducgdo trivial das instru¢cdes de montagem para
seus correspondentes binarios. Em [5], foi investigada a compilacdo formal das princi-
pais construcdes algoritmicas (atribuic@o, sequéncia, condicional e lago) para instrugdes
da mdquina de acesso randoémico [7], um modelo computacionalmente completo cujo
funcionamento se assimila ao dos microcontroladores e microprocessadores modernos.

Esse artigo prossegue nessa direcao, propondo agora investigar a aplicabilidade da
abordagem no contexto de uma plataforma computacional industrial, no caso, o micro-
controlador PIC16C432, um equipamento de baixo custo que tem sido usado para execu-
tar software embarcado em aplicacdes criticas. Por um lado, o conjunto de instru¢des do
PIC16C432 foi modelado em B. Por outro lado, realizou-se o desenvolvimento, utilizando
o método B, de um sistema reativo simples (um seméaforo) até o nivel de abstracao de lin-
guagem de programacgao imperativa. A partir desse artefato, foi construido um programa
de montagem PIC16C432 correspondente. Esse programa foi codificado em B, utilizando
o modelo de instru¢des construido, € a sua conformidade com o modelo funcional inicial
foi provada em ferramentas de suporte ao método B.

Estrutura do artigo. A secdo 2 fornece informacdes acerca do método B necessérias ao
entendimento da abordagem e do exemplo proposto. A secdo 3 prové uma visao geral da
abordagem proposta para constru¢do de software correto por construcao. Na secdo 4.1, é
apresentado a modelagem do conjunto de instru¢cdes do PIC16C432. A secdo 5 apresenta
o estudo de caso do seméforo, desde o modelo funcional incial até a implementagdo em
nivel de montagem. As conclusdes sdo apresentadas na secao 6.

2. O método B

O método B[2, 13] oferece uma abordagem orientada a modelos para o desenvolvimento
de componentes de software. Possui uma linguagem propria, chamada de Notacao de
Maquinas Abstratas (Abstract Machine Notation - AMN), que permite tanto expressar
um modelo funcional de alto nivel, quanto os refinamentos sucessivos desse modelo.
Esses refinamentos compdem os passos realizados até que se chegue a um modelo su-
ficientemente concreto, a partir do qual o cédigo fonte do componente pode ser gerado
automaticamente. A base matematica do método B (16gica de primeira ordem, aritmética
inteira e teoria dos conjuntos) proporciona uma grande similaridade com a notacao Z[15].
Entretanto, com a intencdo de ser facilmente compreendido e utilizado fora do mundo
académico, o método B possui uma estruturagdo rigorosa e estritamente relacionada as
construgdes das linguagens de programacgdo imperativa.

Existem, no mercado, diversas ferramentas de apoio ao desenvolvimento de
software implementando o método B. Essas ferramentas ddo suporte as tarefas de
especificacdo, animacao, verificacdo, sintese e gerenciamento de projetos.

2.1. Etapas do método B

Uma especificacdo B € estruturada em moddulos. Um modulo define um conjunto de
estados vélidos, um subconjunto desses estados que sdo os estados iniciais possiveis, €

SBC 2008

197

i :I.' Anais do XXVIII Congresso da SBC 12 a 18 de julho
Q'I.I:‘ SEMISH - Seminario Integrado de Software e Hardware Belém do Pard, PA

operacdes que podem ocasionar uma transicao entre estados. O processo de desenvolvi-
mento inicia com um moédulo que define o modelo funcional de alto nivel do sistema. Em
B, esse modelo inicial é chamado de “méquina” (MACHINE). Nessa fase de modelagem
pode-se utilizar técnicas semi-formais tais como UML que permitem a transi¢do do do-
cumento em linguagem natural para a notagdo formal do método B [14, 11]. O método
B impde que seja provado que, em uma maquina, todos os estados iniciais sdo validos, e
que as operagdes nao definem transi¢des de um estado vélido para um estado invalido.

Uma vez estabelecido o modelo funcional inicial, o método B propicia construgdes
para definir “refinamentos” (REFINEMENT). Em B, um refinamento é sempre associ-
ado a outro modelo (mais abstrato), e especifica uma decisdo de projeto, ora sobre a
representacdo concreta do estado, ora sobre a operacionalizacao de uma opera¢ao por um
algoritmo. O método B requer que, quando € realizado um refinamento, seja provada a
sua conformidade com o médulo refinado.

Existe um tipo especial de refinamento, chamado de “implementacao” (IMPLE-
MENTATION), que € usado quando o nivel de abstracdo é equivalente ao de uma lingua-
gem de programacao. Esse tipo de mddulo € classificado como modelo algoritmico nesse
artigo. Implementacdes podem ser escritas em um subconjunto da AMN chamado de
BO e que restringe a definicdo a construcdes algoritmicas sequenciais e deterministicas.
A partir de um médulo implementacio, existe a possibilidade de gerar codigo fonte em
linguagens de programacao como C ou ADA.

As diversas etapas do método B sdo ilustradas graficamente na figura 1, com as
seguintes convengdes: retangulos representam etapas; retangulos inclinados correspon-
dem ao processos humanos e computacionais; retangulos cinzas sdo etapas geradas pelo
método B; rotulos V enfatizam que a verificagdo formal € aplicada para a etapa corres-
pondente; a drea cinza claro € o foco desse trabalho.

A garantia de fidedignidade provida pelo método € resultado das provas realiza-
das em cada etapa (consisténcia do modelo, conformidade dos refinamentos). As etapas
finais de geracdo de cddigo em linguagem de programacdo e de compilagdo devem ser
verificadas com o uso de dados de teste gerados a partir do modelo funcional inicial. Essa
verificacdo nao é completa, pois, como € de conhecimento geral, embora os testes possam
revelar a presenca de erros, ndo podem garantir sua auséncia. E portanto importante pro-
curar diminuir a dependéncia dessa fase de testes, onde entra nossa proposta de extensao
do método B ao nivel de linguagem de montagem.

Por outro lado, as ferramentas de apoio ao método B procuram contribuir para
0 quesito evolutibilidade, através da preocupag¢do com a gestdo modular de projetos
e de suas provas, de maneira a que provas possam por exemplo ser re-aproveitadas
ou re-aplicadas quando da evolucdo da especificacdo. Assim, apenas as partes da
especificacdo que foram efetivamente alteradas necessitardo de um novo esfor¢o de
verificacdo. No entanto, o esforco relacionado a evolucdo ainda € grande dada a ne-
cessidade de realizagdao/adaptacdo manual dos refinamentos. Essa € certamente uma linha
de trabalho essencial para transformar o método em uma solucao para o desafio do desen-
volvimento rigoroso fidedigno e evolutivo.

SBC 2008

198

i :I" Anais do XXVIII Congresso da SBC 12 a 18 de julho
gﬁ.}: SEMISH - Seminario Integrado de Software e Hardware Belém do Pard, PA

’ Requisitos Informais ‘
[

odelage

| Modelo Funcional?

Modelo de Projeto
Modelo de Projeto

Modelo de Projeto

/éeragéo de testcy

:
Ternament® Modelo de Projeto

efinamento,

|Mode|o Algorl’tmic¢$

sintese

Cédigo em linguagem de ~ Codigo do teste em
programacao linguagem de programacgao

Cédigo assemblagem .
’ binario flinkedicaq/ Programa Teste

Figura 1. Visao geral de um processo de engenharia de software baseado no
método B

2.2. A notacao B

Na sua esséncia, um modulo B € composto por duas partes principais: a defini¢cdo do
estado e das operacdes. Além desses elementos essenciais, ainda héd cldusulas auxiliares
como parametros de mddulo, constantes, asser¢des, etc. que propiciam maior reusabili-
dade e modularidade, embora ndo estendam estritamente o poder expressivo da notacao.
N6s discutiremos aqui estritamente o cerne das cldusulas de um méodulo B.

A definicao dos estados dos componentes € realizada através das clausulas VARI-
ABLES e INVARIANT. A primeira enumera os componentes de estados; ja a segunda,
restringe as possibilidades de valores que eles podem assumir.

Para a especificacdo da inicializacdo, assim como para as operagdes, B oferece
um conjunto de constru¢des denominadas substituicoes generalizadas. Algumas dessas
construgdes se assemelham a construcdes de linguagens de programacdo imperativa, e
outras sao mais abstratas, permitindo, por exemplo, ndo determinismo. A semantica €
definida através do cdlculo de substitui¢ées, um conjunto de regras que define como as
diferentes substituicdes reescrevem formulas da 16gica de primeira ordem. Como notagao,
temos que [S]E denota o resultado da aplica¢io da substitui¢do S a uma expressdo F. Por
exemplo, a operacdo que incrementa a varidvel v pode ser definida através da substitui¢do
simples v := v + 1. Assim, [v:=v+1Jv <0év+1<0.

A notacdo B fornece também constru¢des mais elaboradas. A substituicdo
ndo deterministica ANY v WHERE C THEN S END aplica a substituicdo S com
a varidvel v assumindo qualquer valor que satisfaca a condi¢cdo C'. A substituicdo v :€ V,
onde V' € um conjunto, é equivalente a ANY x WHERE x € V THEN v := 2 END.
A substitui¢do paralela [S || S’] aplica as duas substitui¢des S e S’ simultaneamente. A

SBC 2008

199

i :I.' Anais do XXVIII Congresso da SBC 12 a 18 de julho

Q'I.I:‘ SEMISH - Seminario Integrado de Software e Hardware Belém do Pard, PA
MACHINE traffic_light advance =
SETS COLOR = {green, yellow, red} CASE color OF
VARIABLES color EITHER green THEN color := yellow
INVARIANT color € COLOR OR yellow THEN color := red
INITIALISATION color :€ COLOR OR red THEN color := green
OPERATIONS

Figura 2. Exemplo de modelo funcional em B

substituicdo com pré-condicdo PRE C THEN S END ¢€ usada para especificar uma
operacdo com a pré-condicdo de aplicacdo C'. Por exemplo, a operacdo parcial que
incrementa v até o valor top pode ser especificada como PREv < top THEN v :=
v+ 1END.

2.3. Exemplo de modelo funcional

O exemplo da figura 2 mostra as cldusulas mais bésicas para a constru¢do de um modelo
funcional de um seméforo'. O nome do modelo é traffic_light, sendo definido na clausula
MACHINE. Um conjunto COLOR ¢ definido, composto pelas trés cores possiveis do
seméaforo. O estado é composto por uma unica varidvel, chamada color, cujo valor deve
pertencer a COLOR e inicializada ndo deterministicamente com um dos elementos desse
conjunto. Em seguida, é especificada a operacdo advance, que opera uma transi¢ao do
semédforo.

2.4. Exemplo de refinamento

O modelo anterior pode ser refinado por um mddulo que possui como estado um tnico
valor inteiro. A figura 3 mostra um refinamento B da maquina traffic_light. O nome
do refinamento € traffic_light _data_refinement e o modelo refinado € especificada na
clausula REFINES. A cldausula CONSTANTS declara duas constantes funcionais cujas
defini¢cdes sdo dadas na cldusula PROPERTIES. A cldusula VARIABLES declara o Gnico
componente do estado do refinamento. A clausula INVARIANT estabelece a relacdo entre
o estado do refinamento e o estado do médulo refinado: em qualquer momento, o valor de
count deve ser igual ao resultado da aplicacdo da funcdo color_refine a varidvel abstrata
color. O refinamento do estado inicial é especificado na cldusula INITTALISATION: ¢
realizada uma atribui¢do do valor 0 a varidvel count. O refinamento da operagado é entdao
realizado na secio OPERATIONS. A se¢do 5 prové um exemplo adicional de refinamento,
que resulta em uma implementac¢@o, ou modelo algoritmico, do seméforo.

2.5. Obrigacoes de prova

No método B, para garantir a correcdo do desenvolvimento, deve-se verificar que cada
modelo funcional € coerente, e que cada refinamento € consistente com o modelo que
refina. Para isso, devem ser gerados e verificados diferentes tipos de obrigacdes de prova,
detalhadas a seguir.

"Por limitacdo de espaco, os BEGINs e ENDs da sintaxe de B foram omitidos aqui.

SBC 2008

200

SBC
2008

Anais do XXVIII Congresso da SBC 12 218 de julho
SEMISH - Seminario Integrado de Software e Hardware Belém do Pard, PA

REFINEMENT traffic_light_data_refinement
REFINES traffic_light
CONSTANTS color_refine, color_step
PROPERTIES
color_refine € COLOR — NATURALA
color_refine = {green — 0, yellow — 1, red — 2} A
color_step € 0..2 — 0..2 A color_step = {0 +— 1,1 +— 2,2 — 0}
VARIABLES count
INVARIANT count € NATURAL A count € 0..2 A\ count = color_refine(color)
INITIALISATION count := 0
OPERATIONS advance = count := color_step(count)

Figura 3. Exemplo de refinamento em B

A coeréncia de um modelo funcional € estabelecida quando as agOes de

inicializacdo colocam a maquina em um estado valido e quando nenhuma operagao,
quando aplicada dentro do seu dominio, pode levar a maquina de um estado valido para
um estado invalido. Assim, a substituicdo da inicializacdo S estabelece o invariante, ou
seja [S]INV, e, para cada operagdo com pré-condicdo PRE e substituicdo S, deve se
verificar que a seguinte formula é vdlida: PRE AN INV = [S]INV.

Considerando o modelo da figura 2, um exemplo de obrigacdo de prova

(inicializacdo) é:

[color :€ COLOR)|color € COLOR
Vz e (x € COLOR = [color := z|color € COLOR)
Vz e (xr € COLOR = x € COLOR)

No caso de um refinamento, seja I/ NVy o invariante do refinamento, /NV); o

invariante do modelo refinado, a consisténcia de um refinamento com relagao ao modelo
que refina € garantida quando:

SBC 2008

e A inicializacdo do refinamento, denotada /N ITy, deve garantir que, todo es-
tado inicial concreto refina algum estado inicial abstrato. Se I NIT); denota a
inicializacdo do modelo refinado, essa propriedade € expressa da seguinte forma
no cdlculo de substitui¢cdes:

[INITR)~[INITy]~INVj.

e Para as operagdes, trés propriedades devem ser garantidas: (1) a operacdo do re-
finamento O Py deve ser aplicavel sempre que a operagdo abstrata O P, o for,
logo a sua pré-condi¢do PRER deve ser mais fraca que a pré-condicdo PRFE),
da operacgdo abstrata; (2) toda alteracao do estado concreto corresponde a alguma
transicao do modelo abstrato; (3) para entradas iguais, as saidas sdo compativeis.
O calculo de substituicdes prove a seguinte formalizacdo dessa propriedade:

INVy; AINVg A PREy = PREg A [OPg]=[OPy]~IN V.

201

i :I.' Anais do XXVIII Congresso da SBC 12 a 18 de julho
Q'I.I:‘ SEMISH - Seminario Integrado de Software e Hardware Belém do Pard, PA

Dois tipos de ferramentas sao empregadas para realizar a verificacdo dos médulos
B. O gerador das obrigacdes de prova de um médulo, que € totalmente automatico, aplica
as regras do cdlculo de substituicdes e eventuais simplicacdes. Os provadores que sao
semi-automaticos. Geralmente, boa parte das obrigacdes de prova € simples o sufici-
ente para ser provada sem interven¢do humana. Para as demais obriga¢des de prova, o
usudrio pode interagir com o verificador para selecionar as hipéteses relevantes, instan-
ciar formulas quantificadas, realizar simplificagdes, e outras operagdes que permitem, ora
provar a obriga¢do de prova, ora descobrir que a obrigacdo de prova nao € vélida e que ha
uma falha no médulo que deve entdo ser corrigido.

3. Visao geral da abordagem proposta

O elo fraco da producdo de componentes de software com o método B é a sintese de
software em uma linguagem de programacao e sua compilagdo em linguagem de monta-
gem da plataforma. Como a linguagem BO (ver secdo 2.1) € préxima as construcdes de
programacdo, a sintese de cddigo geralmente é considerada segura; entretanto, se a lin-
guagem alvo usa construg¢des ndo suportadas pela linguagem BO (por exemplo, orientacao
a objetos), essa transformac¢ao pode ndo ser tdo simples.

Este trabalho propde aplicar os conceitos do método B para gerar artefatos de
software em nivel de montagem. A abordagem € dividida em: (1) modelagem da plata-
forma alvo, e (2) refinamento do modelo algoritmico para uma implementagcdo baseada
no modelo da plataforma.

A plataforma alvo pode ser modelada com a notagdo de mdquina abstrata de B: o
estado da médquina representa o estado da plataforma (isto é, registradores e memoria), e
cada operacdo representa uma instruciio de montagem. E necessério fazer isso uma tdnica
vez para uma determinada plataforma. Detalhes adicionais sdo fornecidos na secao 4.

O modelo algoritmico tem que ser refinado para o modelo a nivel de montagem.
Esse ultimo modelo € definido sobre o modelo de plataforma alvo discutido anterior-
mente. Uma estratégia geral desse refinamento € mapear as variaveis de estado do modelo
algoritmico para diferentes enderecos de memoria da plataforma, e traduzir as operacdes
a nivel algoritmico para combinac¢des de operacdes definidas no modelo de plataforma
correspondente as instrugdes de linguagem de montagem. O refinamento resultante leva
a geragdo e verificacdo das obrigacdes de prova correspondentes. NGs entdo obtemos um
artefato de software no nivel de montagem que é comprovadamente compativel com o
modelo fucional inicial.

Essa abordagem fornece uma extensdao do método B como mostrado a esquerda da
Figura 4. Contudo, o método B cléssico tem algumas limitacdes que nao nos permite apli-
car essa entdo chamada “estratégia” ideal, a saber: primeiro, construgdes de repeticdo em
B podem ser usadas somente em um moddulo de implementacgao; e, segundo, um médulo
de implementacdo ndo pode ser refinado. Portanto o método B ndo fornece subsidios
para construir o refinamento de um algoritmo que utiliza construgdes de repeticio. Uma
solucdo seria remover essa limitacdo do método B, mas iria requerer a atualizacdo de
ferramentas de terceiros.

Felizmente, € possivel elaborar outra solu¢cdo para contornar essa limitacao sem
modificar o método B. Essa solucdo é mostrada a direita da Figura 4: ao invés de es-
tabelecer uma relagdo de refinamento entre os modelos de montagem e o algoritmico,

SBC 2008 202

i :I.' Anais do XXVIII Congresso da SBC 12 a 18 de julho
Q'I.I:‘ SEMISH - Seminario Integrado de Software e Hardware Belém do Pard, PA

| Modelo de Projeto?

Modelo de Projeto

|Modelo AIgoritmicc?

Modelo de compilagéo formal
Assemblagem
Modelo de

* SRR

Cédigo de Cédigo de
Assemblagem Bindrio

Assemblagem Binario

frefinamento/

Modelo Algoritmico

Figura 4. Aplicando o método B até o nivel de montagem: ideal (esquerda) e
atual (direita).

consideraremos um refinamento do modelo de projeto imediatamente anterior ao modelo
algoritmico no processo de refinamento. A construcao da implementagdo da montagem
a partir da implementacgdo algoritmica podera ser formalizada por um conjunto de regras
que podem ser implementadas para construir um compilador formal baseado em B, mas
a verificacio pode ser feita normalmente em um refinamento B, com respeito ao modelo
de projeto. A se¢do 5 prové um exemplo simples, demostrando a correspondéncia logica
entre as implementacdes algoritmica e de montagem.

4. Modelagem de uma plataforma computacional

Nesse trabalho, a plataforma computacional modelada é a do PIC16C432, um microcon-
trolador com um barramento de 8 bits, 35 instrucdes e 8 niveis de pilha em hardware. Esse
artefato, bastante simples, tem um custo muito baixo, pode ser utilizado para executar
software embarcado em diversos tipos de aplicacOes e tem uma boa difusdo no mercado
de microcontroladores para sistemas embarcados.

A modelagem da plataforma PIC € estruturada em diferentes médulos 2:

e O médulo PIC contém a especificacdo do estado do microcontrolador e do seu
conjunto de instrugdes. Informacgdes detalhadas sao apresentadas na secio 4.1.

e O mddulo ALU prové as defini¢cdes das diferentes funcdes logicas e aritméticas
que sao usadas na especificacao das instrucdes da PIC.

e O mddulo TYPES fornece as defini¢cdes dos diferentes tipos de dados que sdo
usados na plataforma PIC: os valores possiveis de uma palavra de dados, de um
endereco de memodria, etc.

4.1. O modelo funcional do microcontrolador PIC16C432

O modelo PIC ¢ apresentado com a sua modelagem em B intercalada com comentérios in-
formais. Os modulos contendo as defini¢des auxiliares usadas na especifica¢do do estado
e das operacdes sdo importados através da cldusula SEES:

MACHINE PIC
SEES ALU, TYPES

20 leitor interessado nos detalhes da especificacio completa ou em outros estudos de caso é convidado
a visitar o repositério dos autores no endereco http://b2asm.googlecode. com.

SBC 2008

203

i :I" Anais do XXVIII Congresso da SBC 12 a 18 de julho
gﬁ.}: SEMISH - Seminario Integrado de Software e Hardware Belém do Pard, PA

A semantica do conjunto de instru¢des da plataforma pode ser definida com base
na alteracdo do valor dos seguintes componentes, que formam o estado do modelo da
PIC: o registro de trabalho w, o bit de teste de nulidade z, o bit de vai-um ¢, o contador
de programa pc, o ponteiro de pilha sp, a pilha de execucdo stack e a memdria de dados
mems:

VARIABLES w, z, ¢, pc, sp, stack, mem
INVARIANT
w e WORD AN z€ BOOL N ¢ € BOOLA
mem € REGISTER — WORD A pc € INSTRUCTION A
stack € N+ INSTRUCTION A sp € N A dom(stack) = 0..(sp — 1)

Nessa definicdo, WORD, REGISTER e INSTRUCTION representam respec-
tivamente as palavras de dados, os enderecos da memoria de dados e os enderecos da
memoria de instrugdes. Suas defini¢des encontram-se no médulo TYPES.

Cada instru¢dao de montagem € modelada na forma de uma operacao no modelo
B. Sao classificadas em: cépia de dados, operacdes logicas e aritméticas, operacdes sobre
bits e de alteracdao do fluxo de execucdo. Essa apresentacdo se limita a um subconjunto
representativo das instrugdes. A operacao MOV WF modela a instru¢ao que copia a pala-
vra armazenada no registrador de trabalho para um dado endereco na memoria de dados.
A operacdo MOVLW (omitida aqui) modela a cépia de um valor dado para o registrador
de trabalho w. Ambas incrementam o contador de programa.

MOVWE(f) =
PRE f € REGISTER THEN
mem(f) :=w || pc := INSTRUCTION _NEXT (pc)

O conjunto de instrugdes possui operacOes aritméticas e logicas de soma,
subtracdo, conjuncdo, disjuncdo e disjuncdo exclusiva, todas sdo bindrias e com
especificacdes similares. Cada operacdo possui duas versdes. A primeira modela a
instrucdo com um tUnico argumento, uma palavra de dados %, que combina k£ com o re-
gistro de trabalho w, e guarda o valor em w. A segunda modela a instru¢do com dois
argumentos f e d: f € um endereco da memoria de dados, cujo contetido é combinado
com o registro de trabalho w. O argumento d é um bit que indica se o resultado deve ser
guardado no registro de trabalho ou no endereco f. A modelagem da segunda forma da
instrucao de adi¢ao € mostrada a seguir.

ADDWF(f,d) =
PRE f € REGISTER Nd € BIT THEN

ANY result, carry, zero WHERE
result € WORD A carry € BOOL A zero € BOOLA
result, carry, zero = add(mem(f),w)

THEN
IF d = 0THEN w := result
ELSE mem/(f) := result
END ||
c:= carry || z := zero

END ||

pc := INSTRUCTION _NEXT (pc)

Em ambas versoes, os bits z e ¢ sdo atribuidos para indicar respectivamente se o
resultado da combinacao foi nulo e se houve estouro (vai-um) . No modelo, a combinag¢ao

SBC 2008 204

i :I" Anais do XXVIII Congresso da SBC 12 a 18 de julho
gﬁ.}: SEMISH - Seminario Integrado de Software e Hardware Belém do Pard, PA

¢ realizada através de uma fungdo and, cuja defini¢do é dada no médulo AL U (detalhes
sdo fornecidos na se¢do 4.2).

H4 ainda operacdes que modelam as instru¢des que alteram o fluxo de execugao.
A operacdo GOTO modela a instrucdo de salto incondicional e é simplesmente defi-
nida da seguinte forma: As operagdes CALL e RETURN modelam respectivametne as
instrucdes de chamada e de retorno de uma rotina. As operagdes B correspondentes es-
pecificam como o estado da pilha e do contador de programa sio alterados por essas
instrucoes. Ha ainda instrugdes de teste para efetuar desvios condicionais. A operacao
BTFSC modela tal instru¢do com dois parametros: um endereco de memodria f, e uma
posicdo b. Se o b-ésimo bit da palavra no endereco f for zero, ndo executa a instru¢ao
seguinte e sim a posterior. Essa definicdo utiliza a fungdo auxiliar bitget, especificada no
modulo ALU, apresentado a seguir.

GOTO(k) =
PREEk € INSTRUCTION THEN pc .=k
CALL(k) =
PREk € INSTRUCTION THEN
stack(sp) := INSTRUCTION _NEXT (pc) || sp:==sp+ 1| pc:=k
RETURN =
PRE sp > 0 THEN
pc = stack(sp — 1) || stack :=0..(sp — 2) < stack || sp :==sp — 1
BTFSC(f,b) =
PRE f € REGISTER ANb € WORD_POSITION THEN
IF bitget(mem(f),b) = 0 THEN
pc := INSTRUCTION _NEXT(INSTRUCTION _NEXT (pc))
ELSE
pc := INSTRUCTION _NEXT (pc)

4.2. O modulo ALU

O médulo ALU define diversas fungdes matematicas que sdo implementadas no micro-
controlador PIC16C432. Utiliza o médulo T'YPES que contém as definicdes dos tipos
dos parametros e resultados dessas fungdes. Assim, o moédulo ALU possui as constan-

tes add e bitget, que possuem tipo e valor funcionais; elas sdo definidas na cldusula
PROPERTIES do médulo:

add € (WORD x WORD) — (WORD x BOOL x BOOL)A
le,wQ, se
(w1 € WORD ANwy € WORD ANs € NATURALA s = wy + wa =
((s <255 = add(wy,ws) = (s, FALSE, bool(s = 0)))
A(256 > s = add(w1,ws) = (s — 256, TRUE, bool(s = 256)))))A

bitget € WORD x WORD_POSITION —> BITA
Vw,ie (w € WORD Ai € WORD_POSITION = bitget(w,i) = WORD_TO_BV (w)(i))

5. Estudo de caso

Nesta sec¢do, o modelo e o refinamento do seméforo, utilizados nas sec¢des 2.3 e 2.4 sdo
objetos de novos refinamentos. Esses refinamentos resultam em uma implementagdo B
tradicional, ou seja um modelo algoritmico, e a uma implementa¢do em nivel de monta-
gem da plataforma PIC16C432, utilizando o modelo formal apresentado na secao 4.1.

SBC 2008 205

i :I.' Anais do XXVIII Congresso da SBC 12 a 18 de julho
Q'I.I:‘ SEMISH - Seminario Integrado de Software e Hardware Belém do Pard, PA

Primeiro, é apresentada uma implementacdo do semaforo utilizando os conceitos
tradicionais do método B. A varidvel de refinamento count € implementada com uma
instancia, chamada state, do médulo nat que modela o armazenamento de um valor do
tipo natural.

IMPLEMENTATION traffic_light_alg
REFINES traffic_light_data_refinement
IMPORTS state.nat
INVARIANT state.value € 0..2 A state.value = count
INITIALISATION state.set(0)
OPERATIONS
advance =
IF state.value = 0 THEN state.set(1)
ELSIF state.value = 1 THEN state.set(2)
ELSE state.set(0) END

A implementa¢do em nivel de montagem € mais longa e € apresentada em par-
tes. O estado é composto por uma instancia do modelo PI/C, de nome m. O invariante
estabelece a correspondéncia entre o estado do médulo refinado (figura 3) com o dessa
instancia: o valor de count é guardado no enderego 0 da memoria de dados. Uma vez de-
finido o mapeamento das varidveis do nivel algoritmico para a memoria do microcontrola-
dor, o invariante da implementag¢ao em linguagem de montagem ¢ igual a substituicao das
variaveis pelos seus locais de memoria correspondentes, no invariante da implementacao
algoritmica. Assim, a varidvel state.value é substituida por m.mem/(0).

IMPLEMENTATION traffic_light _asm_pic
REFINES traffic_light _data_refinement

IMPORTS m.PIC

INVARIANT m.mem(0) € 0..2 A m.mem(0) = count

A inicializacdo €é implementada com a seguinte sequéncia de instrucdes, as quais
respectivamente atribuem o valor 0 ao registro de trabalho w e copiam o valor do registro
de trabalho para o endereco 0 da memoria de dados. A prova de consisténcia desse trecho
de cédigo com o modelo de projeto refinado é totalmente automatica.

INITTALISATION
m.MOVLW (0); m.MOVWF(0)

A implementacdo da operagdo advance € realizada com uma chamada a um bloco
contendo 10 instru¢des de montagem, apresentado a seguir (a semantica de cada instrugao
foi apresentada na secdo 4.1). Essas instru¢des sdo obtidas utilizando técnicas classicas
de compilacdo. Observe que, como o fluxo de execucdo ndo € linear e inclui saltos, a
implementa¢do B ndo pode ser simplesmente o sequenciamento dessas instrugdes [5]. A
solucdo proposta na abordagem apresentada consiste em (1) compor essas instrucdes em
uma instru¢ao condicional que seleciona a instrugdo a ser executada em funcao do valor do
contador de programa, e (2) executar essa instru¢ao condicional enquanto o contador de
programa estiver dentro da faixa correspondente. O programa € gerado assumindo que é
carregado no endereco 0 da memoria de instrugdes. Usando a notacdo B, essa organizagcao
pode ser realizada combinando um lago WHILE e um condicional CASE?:

3As instancias das instru¢des da PIC sdo sublinhadas para destaque.

SBC 2008 206

i :I" Anais do XXVIII Congresso da SBC 12 a 18 de julho

PAO[0}s] SEMISH - Seminario Integrado de Software e Hardware Belém do Pard, PA
advance = OR5THEN m.GOTO(9)
m.CALL(0); OR 6 THEN m.MOVLW (2)
WHILE m.pc < 10DO OR7THEN m.GOTO(9)
CASE m.pc OF OR 8THEN m.MOVLW (0)
EITHER O THEN m.BTFSC(0,1) OR9THENWWF(O)
OR1THEN m.GOTO(8) INVARIANT...
OR2THEN m.BTFSC(0,0) VARIANT...
OR 3 THEN m.GOTO(6) m.RETURN

OR 4 THEN m.MOVLW (1)

Em B, um laco tem duas anotacdes: o invariante, que serve a estabelecer a sua
p6s-condi¢do, e o variante que visa mostrar a término da execugdo. O invariante do laco
estabelece os valores possiveis do contador de programa e do apontador de pilha. Também
especifica uma condi¢do invariante do programa em cada ponto possivel de execugdo, ou
seja para cada valor possivel do contador de programa. Para o ponto inicial e final de
execucdo, o préprio invariante do médulo deve ser estabelecido. Para os demais pontos
de execucdo, e na auséncia de lacos, o invariante pode ser calculado combinando os in-
variantes calculados para os pontos de execucao anteriores no programa e a semantica de
cada tipo de instru¢cdo. Quando ha um lago no modelo algoritmico, pode e deve-se usar o
invariante do préprio lago.

INVARIANT
0< m.pc A m.pc <10 A m.sp > 0A
m.mem(0) € 0..2A
(m.pc =0 = m.mem

m.pc =1 = m.mem
m.pc = 2 = m.mem
m.pc = 3 = m.mem

(

((.count) A\

((

((
m.pc =4 = m.mem(0) = 0 A m.mem/(0

((

((

((

(

m
m.count) A
m.count)

= m.count)A
m.count A m.w = 1)A
m.count) A
m.count A m.w = 2)A\

O) =2 A m.mem(0) = m.count)\

m.pc = 6 = m.mem
m.pc =7 = m.mem
m.pc = 8 = m.mem

m.pc =9 = (m.mem(0) € 0..2 A m.mem(0) = m.count A m.w = color_step(m.count)))A

(
(
(
(
(m.pc =5 = m.mem
(
(
(
(
(

m.pc = 10 = (m.mem(0) € 0..2 A m.mem(0) = color_step(m.count)))

O variante do lago é uma expressao inteira que deve ser estritamente positiva, e
ser tal que seu valor diminui quando o corpo do lago € executado. Essas duas condicoes
sdo suficientes para garantir o término da execu¢do. No caso do exemplo adotado, como
o fluxo de execucao € uni-direcional, a expressdo do variante laco pode ser simplesmente
a diferenca entre o valor atual do contador de programa e o endereco da ultima posic¢ao.
No caso geral, deve-se usar técnicas de andlise estatica de cddigo, como a andlise de pior
tempo de execucgdo [12], para construir essa expressao.

VARIANT(10 — m.pc)

A prova de consisténcia dessa operacao foi realizada utilizando um assistente de prova. A
grande maioria das obrigacoes de prova geradas foram verificadas automaticamente, sem
assisténcia do usudrio. Para as demais, a intera¢ao foi geralmente minima, requerendo

SBC 2008

207

i :I.' Anais do XXVIII Congresso da SBC 12 a 18 de julho
Q.I.I} SEMISH - Seminario Integrado de Software e Hardware Belém do Pard, PA

apenas a instancia de um quantificador e a selecdao das hipéteses relevantes. Uma reen-
genharia do assistente de prova certamente permitiria descartar automaticamente essas
obrigacdes de prova. Apenas uma obrigacdo de prova necessitou uma maior interacao,
devido a necessidade de provar uma propriedade aritmética bastante simples, mas fora do
alcance do provador usado.

6. Conclusao

Esse artigo relata um estudo visando estabelecer uma abordagem inovadora para resolver
o problema da geracao de software correto por construcao e, assim, contribuir a resolug¢ao
de um dos grandes desafios da computacdo em pesquisa no Brasil e no mundo. Essa
proposta baseia-se no método B, o qual fornece o embasamento tedrico e o suporte fer-
ramental necessarios. O escopo do refinamento no método B foi estendido do tradicio-
nal nivel algoritmico até o nivel de linguagem de montagem, o qual possui um nivel de
abstracdo equivalente ao de cédigo executdvel. Para realizar esse estudo, foi definido o
modelo formal, na notagdo do método B, de uma plataforma computacional existente. Foi
realizado o mapeamento de um modelo algoritmico de um sistema reativo simples para a
linguagem de montagem dessa plataforma. No contexto tedrico e pritico do método B,
procedeu-se a prova da conformidade do modelo de montagem com o modelo funcional
inicial, propiciando assim uma demonstracdo da viabilidade da abordagem pelo menos
para exemplos simples.

O impacto esperado para o projeto iniciado € prover, para uma determinada plata-
forma alvo (ou conjunto de plataformas), regras de compilacdo de modelos algoritmicos
B para modelos em nivel de linguagem de montagem dessa(s) plataforma(s). O resultado
dessa compilacdo podera ser verificado a posteriori, usando o arcabouco provido pelo
método B. Uma meta, a maior prazo, € de, através de uma formalizacdo do célculo de
refinamentos de B, provar a correcdo de tais conjuntos de regras de tradugdo e assim ter
um mecanismo de produgdo de cédigo executavel correto a priori.

Em relacao aos desafios propostos em [1], a abordagem proposta se encaixa pri-
oritariamente no item “Desenvolvimento e adaptacdo de tecnologias e instrumentos de
apoio a implementacdo [...] de software fidedigno por constru¢do”, e, por se basear no
método B (um método formal de desenvolvimento de software), no item “Desenvolvi-
mento e avaliacdo de modelos e ferramentas de modelagem de sistemas de software com
base tedrica sélida”. Finalmente, apesar de ndo ser o foco dessa pesquisa no seu estagio
atual, espera-se também contribuir para o item “Desenvolvimento de ferramentas de apoio
ao processo de implementagdo e de evolucao de software”.

Em grandes linhas, um resultado desse trabalho € uma primeira avaliacdo do
método B como ferramenta para o atendimento dos desafios acima. Pontualmente,
observou-se que algumas restricdes existentes nas versdes atuais do método e de suas
ferramentas prejudicam sua utilizacdo para o refinamento de algoritmos em cdodigo de
montagem. Essas restrigdes podem ser contornadas, como mostra esse artigo. Seria, por
outro lado, interessante avaliar se elas poderiam ser eliminadas do método sem prejuizo
para o rigor do desenvolvimento ou para o poder de automatizagao das ferramentas de
suporte.

Por outro lado, outros requisitos mais significativos foram levantados que devem
ser atendidos para a superacao desses desafios. A maior parte deles € ao menos parcial-

SBC 2008

208

i :I.' Anais do XXVIII Congresso da SBC 12 a 18 de julho
Q'I.I:‘ SEMISH - Seminario Integrado de Software e Hardware Belém do Pard, PA

mente satisfeita por B, mas ainda h4 muito a ser desenvolvido para que um método como
B possa ser efetivamente aplicado de maneira mais geral e com menos esforco. Alguns
desses requisitos sao: deve ser possivel e vidvel verificar formalmente a consisténcia entre
os diferentes artefatos produzidos ao longo do processo de desenvolvimento de software;
deve ser estimulada a evolucdo do software a nivel de especificacdo ou de modelos abstra-
tos, de maneira a garantir-se a manuten¢do da consisténcia entre os diferentes artefatos;
deve ser possivel derivar com um minimo de esfor¢o, e, tanto quanto possivel, automati-
camente, novos artefatos e novas verificacdes; deve haver um bom controle de versoes e
uma modularidade que permitam a redu¢do da duplicacdo de esfor¢os durante o desenvol-
vimento e durante a evolucao do software. Concretamente, isso implica na necessidade de
avangos significativos nas tecnologias de verificagdo formal e de geragdo de refinamentos
e de codigo, pesquisas que certamente continuardao a serem desenvolvidas pelos grupos
nas areas de métodos formais, linguagens de programacdo e engenharia de software.

Referéncias

[1] Grandes Desafios da Pesquisa em Computacdo no Brasil: 2006-2016.
http://www.sbc.org.br, 2006. Sociedade Brasileira de Computacao.

[2] R. Abrial. The B-Book: Assigning programs to meanings. Cambridge Univ. Press, 1996.

[3] A. Cavalcanti, A. Sampaio, and J. Woodcock. Procedures and recursion in the refinement
calculus. Journal of the Brazilian Computer Society, 5(1):5-19, 1998.

[4] A. Cavalcanti, A. Sampaio, and J. Woodcock. A refinement strategy for circus. Formal
Aspects of Computing, 15(2-3):147-181, 2003.

[5] B. Dantas, D. Déharbe, S. Galvao, V. Medeiros Jr, and A. Moreira. Verified compilation
based on the B method: an initial appraisal (extended version). Technical Report
UFRN-DIMAp-2008-101-RT, UFRN-DIMAp, 2008.

[6] C. A. R. Hoare. The verifying compiler, a grand challenge for computing research. In
VMCAI, pages 78-78, 2005.

[7] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Com-
putation. Addison Wesley, 1979.

[8] E. Jaffuel and B. Legeard. LEIRIOS test generator: Automated test generation from B
models. In The 7th International B Conference, pages 277-280, 2007.

[9] C. B. Jones. Systematic Software Development Using VDM. Prentice Hall Int., 1990.
[10] P. Letouzey. A new extraction for Coq. In TYPES 2002, volume 2646 of LNCS, 2003.

[11] D. Ossami, J.-P. Jacquot, and J. Souquieres. Consistency in UML and B multi-view
specifications. In IFM, pages 386—405, 2005.

[12] C.Y Park. Predicting program execution times by analyzing static and dynamic program
paths. Real-Time Systems, 5(1):31-61, 1993.

[13] S. Schneider. The B-Method: An Introduction. Cornerstones of Computing Series. Pal-
grave, 2001.

[14] C. Snook and M. Butler. UML-B: Formal modelling and design aided by UML. ACM
Transactions on Software Engineering and Methodology, 15(1):92-122, 2006.

[15] J. Spivey. The Z Notation: a Reference Manual. Prentice-Hall International Series in
Computer Science. Prentice Hall, 2nd edition, 1992.

SBC 2008 209

