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Abstract. Daily, thousands of laptops pass through repair centers of electronic
device manufacturers. During visual inspections, technicians manually iden-
tify potential cosmetic or structural damage, documenting findings with photos
or videos. This process safeguards the repair center against claims related to
damage incurred in custody. However, the manual approach is time-consuming
and prone to human error. To address this, we propose a computer vision model
to automatically detect appearance defects in laptops. Experiments were con-
ducted using five deep neural networks: Mask R-CNN, SSD, Swin Transformer,
YOLOv5, and YOLOv10. Our best-performing model achieved a mean Average
Precision (mAP) of 70.2%, showcasing the viability of such application.

1. INTRODUCTION
Ensuring defect-free products is vital for maintaining quality standards in the electronics
industry. This not only applies to new products but is equally important during the war-
ranty service of semi-new items. In the laptop manufacturing sector, repair centers must
accurately document the condition of devices both when they arrive and before they are
returned to consumers. Detailed records of any pre-existing appearance damage, com-
pleted repairs, and the final state of the product are crucial for avoiding legal disputes.

Appearance damage in laptops includes visible and often severe physical flaws
that suggest rough handling. This damage may involve deep scratches, cracks, broken
or missing parts, screen issues like dead pixels or burn-in, bending, hinge damage, and
visible stains or discoloration. While typically not affecting the laptop’s immediate func-
tionality, appearance damage can compromise structural integrity and make the device
look heavily used or neglected.

Currently, the appearance inspection documentation process is handled man-
ually by technicians, who record laptops using video and photographs from multi-
ple angles. This practice is widespread in electronics manufacturers’ repair centers
[Alves et al. 2022] where visual inspection and manual cataloging are essential for war-
ranty management. However, this process is time-consuming, expensive, and prone to
human error, especially when it comes to detecting minor appearance damages. These
challenges have driven growing interest globally in leveraging image processing and com-
puter vision techniques to automate damage detection. Recent advancements in object de-
tection and deep learning, such as YOLO-based models and Transformers, have spurred



applications in manufacturing and quality control, as evidenced by studies addressing
appearance damage detection in laptops [Yang et al. 2023] and surface defects in other
electronic components [Wang et al. 2023].

Traditional damage detection methods involve image processing, contour detec-
tion, feature extraction, and classification. These techniques have been widely used in
industrial defect detection, as evidenced by studies such as [Lin and Landge 2021] and
[Yang et al. 2023], which apply these approaches to identify surface damage in laptop
cases. However, these methods often depend heavily on threshold values, which can limit
their robustness in real-world applications [Lin and Landge 2021].

Recent studies suggest that defects on laptop surfaces can be identified us-
ing various data-driven approaches, such as supervised learning [Verma et al. 2021],
Convolutional Neural Networks (CNN) [Lin and Landge 2021, Wang et al. 2023,
Yang et al. 2023], unsupervised learning, anomaly detection [Zhu et al. 2022], or com-
binations of these techniques [Zhang et al. 2023]. Established methods in the literature,
such as those discussed in [Yang et al. 2023] and [Wang et al. 2023], typically focus on
surface damage occurring during manufacturing. However, such methods often do not
address Customer Induced Damage (CID), damages occurring post-purchase, which are
highly relevant for laptop manufacturers’ warranty programs.

In this work, we evaluated object detection methods using models based on CNNs
and Transformers [Carion et al. 2020] to identify appearance defects on laptops. More
specifically, we focus on appearance defects that are CID. The dataset used in our ex-
periments comprises images captured during the packaging and unpacking processes of
laptops, documenting their condition as they enter and leave the repair center. We aim to
identify and locate appearance damage on the laptops to automate the device documen-
tation process. The images were collected in an electronics manufacturer’s repair center.
A fixed camera is positioned where technicians display the contents of receiving/return
boxes for laptops from the repair center to document the condition of the equipment dur-
ing this phase. Due to the variety of damages, the laptops may not be photographed in the
same positions and orientations, adding complexity to the problem.

Most work found in the literature [Yang et al. 2023, Wang et al. 2023,
Lin and Landge 2021] focuses on detecting appearance damage produced during man-
ufacturing, thus making use of images in standardized positions acquired in a controlled
environment. To the best of our knowledge, we are the first ones to address appearance
damage detection for CID during warranty inspections, which implies in a less restrained
scenario in terms of variability of images, due to non-standardized lighting, a wide vari-
ety of position, orientation, angle of view and damage type seen during manual inspection
conducted by technicians. Our results outline the viability of using a deep learning ap-
proach for semi-automated appearance damage inspection in laptops.

The work is organized as follows: Section 2 provides the essential theoretical
foundations for understanding the topic. Section 3 reviews related work, offering context
and support for this research. Section 4 details the methodology and steps undertaken in
this study. Section 5 presents the experiments conducted and the results obtained. Finally,
Section 6 discusses the conclusions drawn from this work.



2. THEORETICAL BACKGROUND

2.1. Computer Vision and Object Detection

The field of computer vision addresses numerous challenges in visual recognition, such as
classifying images, detecting objects, segmenting semantic regions, and recognizing faces
[Santiago et al. 2024]. Object detection focuses on identifying objects, such as animals,
vehicles, and humans, by delineating their positions within images using bounding boxes
[Xiao et al. 2020].

Recently, object detection has gained significant attention due to the advance-
ments in deep learning methods. A significant factor contributing to the advancements of
deep learning-based methods is the development of CNN. Unlike traditional approaches,
CNNs do not require the manual creation of feature extractors or filters and are capable
of achieving impressive results on large datasets [Santiago et al. 2024]. However, CNNs
require substantial amounts of data to function effectively and often struggle to achieve
satisfactory results when data availability is limited [Alzubaidi et al. 2021].

2.2. Deep learning for object detection

2.2.1. SSD

Single Shot MultiBox Detector (SSD) [Liu et al. 2016] is a method for object detection
in images using a single deep neural network. This method discretizes the output space of
bounding boxes by defining a set of default boxes with various aspect ratios and scales for
each feature map location. During prediction, the network assigns scores for the presence
of each object category within each default box and makes adjustments to improve the fit
of the object’s shape. Additionally, it combines predictions from multiple feature maps
at different resolutions to accommodate a range of object sizes effectively. Compared to
methods that depend on object proposals, SSD is simpler because it removes the need for
proposal generation and the following pixel or feature resampling stages, consolidating
all computations within a single network.

2.2.2. YOLO

YOLO [Redmon 2016] consists of a family of state-of-the-art detectors for real-time ob-
ject detection, known for their strong performance while maintaining good accuracy in
object detection. In YOLO, detection is accomplished through a single stage that extracts
image features using a CNN. A single CNN predicts multiple bounding boxes and the cor-
responding object class probabilities for each box at the same time. This approach enables
YOLO to deliver high accuracy in object detection tasks. YOLO became very popular in
real-time object detection due to its features, and several projects emerged as innovations
to improve performance and accuracy, giving rise to a series of models based on the orig-
inal YOLO. YOLOv10 [Wang et al. 2024] reveals that the dependence on non-maximum
suppression (NMS) for post-processing creates challenges for end-to-end deployment and
increases inference latency. YOLOv10 uses an NMS-free training approach and a holistic
design strategy focused on balancing efficiency and accuracy, becoming state-of-the-art
in real-time object detection.



2.2.3. Mask R-CNN

Mask R-CNN, developed by Facebook’s AI Research group, is a Deep Neural Net-
work framework designed for object detection and instance segmentation [He et al. 2017].
Building upon the Faster R-CNN architecture [Ren et al. 2016], it introduces a segmenta-
tion branch to predict object masks alongside detecting bounding boxes. The framework
first extracts feature maps using a backbone network, which are then passed through the
Region Proposal Network (RPN), a lightweight binary classifier that proposes regions
likely to contain objects. These regions are processed by the RoIAlign layer, which aligns
them with the corresponding feature map areas to generate bounding boxes. The resulting
outputs are fed into fully connected layers for classification and also utilized by CNNs to
predict segmentation masks.

2.2.4. Swin Transformer

The Swin Transformer [Liu et al. 2021] is a method developed by Microsoft Research
Asia that employs a new vision Transformer as a general-purpose backbone for computer
vision tasks. This approach adapts Transformers from the language domain to the vi-
sion domain, tackling challenges such as the significant scale variation of visual entities
and the high pixel resolution of images compared to the discrete nature of words in a
text. To address these challenges, the method employs a hierarchical Transformer with
shifted windows. This shifted windowing mechanism enhances efficiency by confining
the self-attention module’s computations to non-overlapping local windows, while also
facilitating cross-windows connections.

2.3. Evaluation metrics for object detection

IoU, also known as the Jaccard Index, is a key metric in computer vision for evaluating the
performance of object detection algorithms, particularly in image segmentation and object
localization. It measures the overlap between a predicted bounding box and an object’s
corresponding ground truth bounding box. Formally, IoU is defined for two convex shapes
A, B as IoU = |A∩B

A∪B |. This metric effectively addresses damage location issues and is
often employed to evaluate model performance. To evaluate the problem, IoU is applied
as a threshold, along with other metrics, such as precision and recall.

The Precision metric indicates the proportion of your accurate predictions. It can
be expressed as the Equation 1. Another standard metric for model evaluation is Recall,
which follows Equation 2. It evaluates the effectiveness of our predictions, highlighting
that False Negatives can significantly impact our performance. The IoU threshold enables
us to determine the True Positive (TP), False Positive (FP), True Negative (TN), and False
Negative (FN) for each category in our classification task. In the literature, default values
for the IoU threshold are commonly set at IoU@50 (50%) and IoU@75 (75%).

Precision =
TP

TP + FP
. (1)

Recall =
TP

TP + FN
. (2)



For every class in the dataset, the predictions of one model are ordered according
to confidence scores. A precision-recall curve is created by adjusting the threshold for
classifying a detection as positive. The area under this curve is then computed, resulting in
the Average Precision (AP) for each class. AP reflects the model’s effectiveness regarding
precision and recall for that particular class. The AP values for all classes are averaged to
calculate the mean Average Precision (mAP), a unified performance metric for the object
detection model across all categories. The mAP can be expressed as the Equation 3, where
N is the number of classes.

mAP =
1

N

N∑
i=1

APi. (3)

3. RELATED WORK

3.1. Summary of Related Works

The study conducted by [Lin and Landge 2021] highlights the challenges of defect detec-
tion in metal laptop cases, emphasizing that traditional image processing methods, such
as thresholding and contour extraction, depend heavily on threshold values. Variations in
image quality across metallic surfaces can significantly affect detection outcomes, com-
plicating the identification of defects. To tackle this issue, the authors employ advanced
object detectors like YOLOv3, Faster R-CNN, and SSD, with Faster R-CNN demonstrat-
ing superior precision and recall—achieving 80% recall and 80% precision. At the same
time, YOLOv3 offers the highest mAP at 83% with a 73% recall.

[Wang et al. 2023] introduce ATT-YOLO, a novel surface defect detection model
tailored for electronics manufacturing, leveraging the strengths of YOLO object detectors.
This innovative design features a multiscale backbone for enhanced feature extraction, en-
abling the model to effectively identify objects across varying scales. Additionally, ATT-
YOLO incorporates a self-attention module that refines the model’s focus on pertinent
features within input images, resulting in improved detection accuracy.

Building on the challenges associated with defect detection, surface damage
identification on laptops coated with aluminum alloy presents additional obstacles,
particularly concerning the size and depth of scratches. To address these issues,
[Yang et al. 2023] utilize a YOLOv5 object detection model to identify scratches on lap-
top surfaces effectively. Their innovative approach includes the introduction of the C3
module to enhance the YOLOv5 architecture, resulting in improved performance metrics
with an accuracy of 95% and a recall of 88%.

Work found in literature about defect detection in laptops cover manufacturing de-
fects, while CIDs are overlooked. Recent studies have demonstrated the detection of CIDs
in Printed Circuit Board (PCB) using deep learning methods and object detection tech-
niques [Alves et al. 2022, Cabral et al. 2023, Santiago et al. 2024]. Those studies point
out specific challenges that arise from damage detection outside from a controlled envi-
ronment of a production line, such as higher diversity of visual features, due different
angle, lighting conditions and background of images.



3.2. Discussion of Related Work

Table 1 situates our research within the context of existing literature. In summary, our
approach distinguishes itself from previous studies in the following key aspects:

1. Our detection process encompasses damages that extend beyond the surface of the
laptop case. This includes chassis damage, hinge damage, and keyboard damage.

2. In other studies, detection typically occurs on a production line, where laptops
are positioned in a fixed, standardized manner. In our approach, however, detec-
tion takes place during warranty inspections, where a technician manipulates the
laptop, capturing images from varying angles and positions. This unconstrained
scenario introduces additional complexity to the problem.

Table 1. Related Work on Damage Detection.

Work Task Damage Coverage Evaluation Metrics
[Lin and Landge 2021] Detecting surface defects on metal laptop

cases using object detectors.
Deep scratches, light scratches,
dots.

Precision and Recall.

[Wang et al. 2023] Detecting surface defects during electron-
ics manufacturing.

Dirt, particles, edge, collision,
scratch, unknown.

mAP.

[Yang et al. 2023] Identifying scratches on laptop surfaces
with a focus on coating damage.

Scratches on coating. Accuracy and Recall.

Ours Captures images from varying angles and
positions, detecting cosmetic and struc-
tural damage in semi-new laptops post-
manufacturing.

Casing damage, broken hinge,
keyboard damage.

mAP and Recall.

4. MATERIALS AND METHODS

4.1. Dataset

Our dataset comprises a collection of images of laptops that have undergone repair at an
electronics manufacturer’s service center, specifically focusing on those with at least one
identified appearance damage. The images were sourced from a private company with
repair centers located globally. Each image is accompanied by annotations indicating the
locations of appearance defects as well as their respective classes. The dataset encom-
passes three distinct types of appearance damages, with a detailed description of each
provided in Table 2.

Table 2. Description of dataset classes.

Class Description

broken hinge Appearance damages affecting the laptop’s hinge including any deformities or func-
tional impairments.

casing damage Appearance damages on the laptop chassis include scratches, cracks, dents, and burn
marks.

keyboard damage Appearance damages to the keyboard include missing keys, sunken keys, loose keys,
and damaged key fittings.

All annotations were marked and classified by an expert. The annotation proce-
dure begins with the identification of the damage, followed by its delineation. Subse-
quently, the expert classifies the damage according to the established criteria. The dataset
comprises a total of 637 instances of damage across 350 images. The distribution of the
different damage classes is detailed in Table 3.



Table 3. Distribution of classes in the dataset.

Class Amount Class Distribution (%)

broken hinge 172 26.91
casing damage 378 59.15

keyboard damage 87 13.61

Total 637

4.2. Experimental Procedure
Section 2.2 introduced object detection methods utilizing Deep Learning Networks. Each
of these methods is assessed using the MS COCO [Lin et al. 2014] dataset, a comprehen-
sive dataset designed for identifying and classifying a diverse array of objects, including
people, vehicles, animals, and various other items. Our greatest challenge lies in ad-
dressing small damages, and we have determined that these models are well-suited for
our data. They can effectively identify and classify small objects in the general-purpose
COCO dataset with a high accuracy rate.

In Section 2.3, the metrics Precision, Recall, and mAP were introduced for evalu-
ating object detection models. These metrics were utilized to assess our models’ perfor-
mance during both the training and prediction phases.

The dataset was created and then split into five folds for cross-validation with K =
5. Each fold followed a standard K-fold approach, dividing the dataset into five equal
parts. In each iteration, four parts (280 images) were used for training, and the remaining
part (70 images) was used for testing. This approach ensured that every image appeared
in both training and testing sets across different iterations without a fixed holdout set.
To maintain a balanced representation of classes across splits, stratification was applied
during the dataset partitioning. We used data augmentation techniques such as cropping,
flipping, rotation, etc., to increase the diversity of our data during training.

Our experiments were conducted in the Google Colab Pro+ environment, utiliz-
ing Python 3.10, PyTorch 1.13 [Stevens et al. 2020], and a GPU NVIDIA A100 of 40 GB
for model training. For the Mask R-CNN, Swin, and SSD experiments, we employed
the MMDetection 2.28 [Chen et al. 2019] platform, while YOLO experiments were con-
ducted using the Ultralytics 8.3 [Jocher et al. 2023] platform. Both platforms utilize the
PyTorch library to train machine-learning models. The primary motivation for selecting
these platforms is their ease of use in training, managing, and configuring the various
deep neural network architectures available for experimentation.

We selected and fine-tuned the hyperparameters for each of the methods based on
commonly used empirical values reported in the literature, as well as preliminary grid
searches on a validation set. For instance, learning rates were initially chosen from stan-
dard values (e.g., 0.001 or 0.01), then refined based on early convergence behavior and
validation loss trends. Batch sizes were selected considering both model stability and
GPU memory constraints. We trained each model until convergence, defined as no sig-
nificant improvement in validation loss. On average, training took approximately 6 hours
per model. These choices were made to balance performance and computational effi-
ciency while ensuring fair comparison across methods. Table 4 shows the selection of
hyperparameters for each of the experiments conducted in our study.



Table 4. Hyperparameters of Experimented Models.

Model Backbone Optimizer Learning Rate Batch Size Anchor Gen.
Mask R-CNN ResNet 101 Adam 0.0001 16 4, 8, 16, 32, 64
Mask R-CNN Swin-S AdamW 0.0001 16 4, 8, 16, 32, 64
SSD VGG16

[Simonyan and Zisserman 2014]
SGD (mo-
mentum=0.9)

0.001 64 8, 16, 32, 64, 128, 256, 512

YOLOv5-X CSP-Darknet53 SGD
(momen-
tum=0.937)

0.01 16 Scale 1: [10, 13, 16, 30, 33,
23]; Scale 2: [30, 61, 62, 45,
59, 119]; Scale 3: [116, 90,
156, 198, 373, 326]

YOLOv10-X CSPNet [Wang et al. 2020] SGD
(momen-
tum=0.937)

0.01 16 Not applicable

5. RESULTS AND DISCUSSION
The five object detection methods based on deep neural networks were trained and evalu-
ated using our dataset. Table 5 presents the results of the experiments conducted with the
five model architectures. Upon reviewing the results, it is clear that YOLOv10-X achieved
the best object detection performance in our experiments.

Analyzing the mAP at various IoU threshold values, we observe that the architec-
ture YOLOv10-X achieved the best results, with a mAP@0.5 of 70.28% and a mAP@0.5-
0.95 of 51.68%. The second-ranked model in terms of mAP was YOLOv5-X, which
recorded a mAP@0.5 of 69.44% and a mAP@0.5-0.95 of 47.42%. Swin-S achieved
a commendable performance at the mAP@0.5 threshold, with a mAP@0.5 of 60.82%,
placing it third overall in this category. However, its performance at the mAP@0.5-0.95
threshold was relatively low compared to the YOLO models. This decreased perfor-
mance could be attributed to the fact that mAP@0.5-0.95 is calculated across multiple
IoU thresholds, ranging from 0.5 to 0.95 in increments of 0.05, indicating that the model
may struggle to achieve sufficient overlap at higher IoU values.

Table 5. Results of the model experiments.

Model mAP@0.5-0.95 mAP@0.5 Precision Recall Inference (ms)

Mask R-CNN 0.198 0.409 0.314 0.374 44.3
SSD 0.278 0.572 0.551 0.383 14.2

Swin-S 0.343 0.608 0.361 0.527 68.1
YOLOv5-X 0.474 0.694 0.768 0.577 3.2

YOLOv10-X 0.516 0.702 0.797 0.579 3.3

Our best model achieves a precision of 79.7%, accompanied by a recall of 57.9%.
This indicates that when the model claims to have detected an object, it is generally cor-
rect, but it faces some difficulty in identifying all relevant objects. Such behavior can be
explained by the challenges present in our dataset. Despite the challenges found in our
dataset, the model achieves good results in detecting cosmetic damage in laptops.

In our analysis, the top-performing model detected all three types of appearance
damage proposed in this study, often demonstrating strong detection capabilities and
showing high confidence scores. Figure 1 presents examples of the inferences made by
our best model for each of the identified damage classes.

Our dataset poses several challenges for identifying patterns, including non-
standardized lighting, photographs taken from various angles, small damages, and a wide



(a) Broken hinge. (b) Casing damage. (c) Keyboard damage.

Figure 1. Cosmetic damage detections in laptops.

variety of damage types. These factors hinder the performance of our models. Upon an-
alyzing the predictions from YOLOv10-X, we identified three common types of errors in
its predictions within our dataset.

The first type of error occurs when a laptop is presented with its bottom casing
visible, particularly when the design is uncommon in our dataset. This specific design
includes cooling vents situated near the laptop’s hinges. In such instances, the model may
mistakenly interpret the air vents close to the hinges as a broken hinge, depending on the
design of those vents. Figure 2c shows an example of when the model makes this type of
error.

The second most common type of error involves FP in the regions of the cas-
ing between the keyboard and the laptop display. This error arises because, in certain
instances of damage, this area may appear damaged or misaligned with the rest of the
casing. However, due to the significant variability in our dataset and the lack of a distinc-
tive image pattern—particularly for casing damages—the model may misinterpret design
differences in this area as casing damage (when more centralized to the body of the lap-
top) or hinge damage (when located near the edges). This is shown in the Figures 2a and
2b.

(a) FP of casing dam-
age.

(b) FP of broken hinge
(position).

(c) FP of broken hinge
(air vents).

Figure 2. Most common errors.

The final common type of error occurs when the model fails to detect actual dam-
age in laptops, resulting in an FN. This error is particularly critical, as it may lead to
undetected damage in laptops with voided warranties. Consequently, these devices could
be incorrectly deemed eligible for warranty coverage, potentially causing financial losses
for the manufacturer.



Overall, YOLOv10-X demonstrated excellent performance according to COCO
metrics, achieving the best results across all evaluated metrics. The mAP@0.5 score is
particularly suitable for addressing our challenge of automating the cataloging of lap-
tops received and returned by repair centers. The experiments further indicate that both
YOLO models perform effectively within the environmental setup employed during this
study, thereby establishing YOLOv10-X as our preferred model. Additionally, the meth-
ods we proposed for detecting appearance defects on laptops can effectively automate
damage detection, despite the challenges posed by our dataset, which includes significant
variability in image standardization and a diverse range of damages. The detected dam-
ages may also be classified as CID and are typically not covered under the warranty for
laptop repairs in repair centers.

Despite achieving good initial results, our best model still exhibits three com-
mon types of errors that negatively impact its overall performance. These errors may be
associated with limitations in our dataset, which should be mitigated in the future by in-
corporating new data and implementing more advanced pipelines for data augmentation.

6. CONCLUSION

The proposed work presents experiments utilizing computer vision methods based on
deep neural networks to detect appearance damage in laptops. The study aims to eval-
uate the feasibility of automating the detection of such damage for potential application
in the repair centers of an electronics manufacturer. Appearance defects in laptops are
an important area of study, as repair centers need to document the condition of devices
both upon receipt and when returned to consumers. Furthermore, appearance damage
can be linked to Customer Induced Damage (CID), which refers to harm caused by con-
sumers or unauthorized third parties. This type of damage can result in internal damage
to the printed circuit boards (PCBs) and components of the devices, ultimately leading to
malfunctions. We evaluated several methods, including Mask R-CNN, SSD, Swin Trans-
former, YOLOv5, and YOLOv10, for detecting appearance defects in laptops, specifically
targeting visible damage to the casing, keyboard, and hinges. The dataset employed in our
experiments is highly challenging, characterized by a wide range of damage types, diverse
image perspectives, and lighting-related issues. Three innovative aspects of the developed
methodology can be highlighted: the application of Deep Neural Networks for detecting
appearance defects on the casing, keyboard, and hinges of laptops; the utilization of a
challenging dataset that presents issues related to lighting, laptop positioning, and a vari-
ety of small damages; and the extension of the CID classification problem to encompass
appearance defects in laptops.

We selected the models for these experiments based on their reliable detection ca-
pability in computer vision tasks, as they have achieved state-of-the-art results. Analyzing
our results, we can confirm that YOLOv10-X achieves the best results for the proposed
application YOLOv5-X has the second-best performance regarding mAP, precision, and
recall metrics. The Swin and SSD models fall in the middle of the results table, with
Swin-S achieving the third-highest mAP@0.5 score across all experiments, second only
to YOLO models. However, its mAP@0.5-0.95 is relatively lower than that of YOLOv10-
X and YOLOv5-X, which leads to this metric. The Mask R-CNN model shows the poorest
performance among all experiments, ranking last in all evaluation metrics.



We emphasize the significance of our study, which demonstrates that object detec-
tion methods can effectively identify appearance defects in laptops. This capability may
assist technicians in cataloging the condition of devices upon their arrival at and departure
from the repair center, thereby streamlining and enhancing the efficiency of the cataloging
process. For future work, we aim to modify the YOLOv10 architecture to better align the
network with our specific dataset, thereby improving model performance during training.
Additionally, we plan to acquire more data using techniques such as active learning and
Data-Centric AI methods to increase the diversity of our data for future model training.
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