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Abstract. Alzheimer’s disease is a progressive neurodegenerative disorder where
early detection is critical for improving treatment outcomes. This study investi-
gates the performance of ResNet 50 and DenseNet 169 architectures integrated
with Federated Learning (FL) techniques to classify the stages of Alzheimer’s
disease into three main groups: AD (Alzheimer’s Disease), MCI (Mild Cogni-
tive Impairment) and CN (Cognitively Normal). We evaluate three aggregation
strategies (FedAvg, FedAvgM and FedProx), across varying client configura-
tions (3-7), while introducing a hybrid FL-Split Learning (SL) approach to
optimize computational efficiency and privacy preservation. As a results of the
ResNet-FedProx combination achieved superior performance (91.2% accuracy)
in 7-client federated scenarios. In contrast, FedAvgM showed unexpected lim-
itations, with accuracy decreasing by 6.7 percentage points as the number of
customers increased. Future work should explore hybrid neural networks that
combine ResNet and DenseNet architectures and adapt them to other aggregation
models available in the literature to optimize performance.

1. Introduction

Alzheimer’s disease (AD) is an irreversible neurodegenerative disorder characterized by
progressive cognitive decline and is the leading cause of dementia, accounting for 70% of
cases worldwide [Farina et al. 2020, MihelCi¢ et al. 2017, Association 2018]. Projections
indicate that global dementia prevalence will triple by 2050 [Association 2018]. Over the
years, neuronal damage in critical brain regions leads to memory loss, language impairment
and other symptoms that progressively disrupt daily activities [Association 2018]. As no
cure exists, current treatments aim to slow disease progression.

Despite advances in clinical trials, AD diagnosis remains challenging due to high
demand for specialized neuroimaging services, potential interpretation errors and unclear
biomarker correlations [Association 2018]. Age-related brain degeneration further compli-
cates early detection [Naeem et al. 2022]. Consequently, computer-aided diagnostic tools
are critical to support clinicians.



However, developing high-precision models is hampered by the need for large
labeled datasets. Although imaging centers hold vast image repositories, most lack anno-
tations, requiring time-consuming manual labeling by radiologists [Rauniyar et al. 2022].
This bottleneck limits the deployment of Al-driven diagnostic frameworks.

Data centralization also raises logistical and ethical issues. Encryption-based
sharing is often impractical and unsustainable [Rauniyar et al. 2022]. Federated Learning
(FL) [McMahan et al. 2016] offers a decentralized alternative, allowing institutions to train
locally, share model updates for aggregation and preserve data privacy.

FL preserves privacy but still expects each hospital to train a full model, a tall
order for sites lacking high-end GPUs. Split Learning (SL) alleviates this by cutting the
network in two: clients compute the early layers on-site, while a central server finishes the
forward and backward passes, reducing the client’s FLOPs and memory footprint by an
order of magnitude. This paradigm offers two key advantages: (1) significantly reduced
computational load on client devices and (2) enhanced privacy since neither party accesses
the other’s complete model architecture [Thapa et al. 2022], making it particularly suitable
for distributed Alzheimer’s detection across hospitals with varying technical capabilities.

ResNet and DenseNet have become widely adopted backbones in computer vi-
sion due to their state-of-the-art performance, and their ability to stably train very
deep networks [He et al. 2016, Huang et al. 2017]. ResNet’s identity shortcut simpli-
fies optimization and reduces computational cost, but skipping residual blocks can limit
representational richness and cause “collapsed domain” issues in extremely deep ar-
chitectures [Zagoruyko and Komodakis 2016]. DenseNet’s dense connections reuse all
previous feature maps, enhancing feature propagation and reducing parameters com-
pared to ResNet, though at the expense of higher GPU memory and longer training
times [Huang et al. 2017]. These points have prompted discussions on the performance of
these networks in decentralized environments.

This study evaluates ResNet50 and DenseNet169 for AD stage classifica-
tion in an FL framework with techniques of SL. We also analyze three main ag-
gregation methods under non-IID data distributions: Federated Averaging (FedAvg)
[McMahan et al. 2016], FedAvg with Server Momentum (FedAvgM) and Federated Prox-
imal (FedProx) [Li et al. 2020]. The paper is organized as follows: Section 2 presents a
systematic literature review on the research topic; Section 3 details the aggregation algo-
rithms; Section 4 describes the neural architectures; Section 5 discusses the implementation
and results, covering three key aspects (scalability of the number of clients, the impact
of batch size, and aggregation model performance); and finally, Section 6 concludes the
work.

2. Related Work

The application of FL in the diagnosis of AD has gained prominence in recent literature,
motivated by the need to preserve the privacy of sensitive medical data and improve
the performance of MRI image processing. Systematic studies, such as those guided by
[Kitchenham and Charters 2007], emphasize structured reviews to consolidate empirical
evidence. This systematic analysis of 23 publications (2020-2025) identified trends,
challenges, and gaps in FL applications for AD, focusing on three axes: neural network
architectures, aggregation methods, and experimental configurations.



Convolutional Neural Networks (CNNs) dominate the studies, with ResNet vari-
ants (e.g., ResNet + attention mechanisms) accounting for 65% of analyzed models.
[Lei et al. 2024] achieved 85.7% accuracy in AD vs Cognitively Normal (CN) using a
ResNet with attention to multi-center data. Alternatives like DenseNet integrated with evo-
lutionary algorithms [Ghosh and Krishnamoorthy 2023] improved accuracy to 94% on the
ADNI dataset. 3D-CNNSs, as proposed by [Huang et al. 2021], demonstrated robustness in
T1-weighted imaging, suitable for volumetric analysis. Despite CNN dominance, MLP-
based approaches were applied to non-imaging data (e.g., blood biomarkers), achieving
82% average accuracy [Elsersy et al. 2023].

FedAvg was adopted in 83% of studies, establishing itself as the standard for local
model aggregation. However, methods like FedProx and FedCM showed potential to
mitigate heterogeneity. [Basnin et al. 2025] compared FedAvg, FedProx, and FedSGD,
observing that FedProx increased accuracy to 68.9% in non-I1ID scenarios via a proxi-
mal term reducing client divergence. FedCM, applied by [Huang et al. 2021], combined
conditional updates to improve consistency in distributed data. Emerging approaches
like Swarm Learning [Song et al. 2025] and SplitFed [Narayanee et al. 2024] explored
decentralization and model splitting but lacked robust comparative evaluation.

Common parameters included batch sizes (32—64), short local cycles (< 4 epochs),
and the Adam optimizer (78% of studies). These choices aimed to balance training stability
and computational cost. For example, [Ouyang et al. 2024] used a batch size of 32 and
3 local epochs for multimodal training, while [Sahid et al. 2024] adopted a batch size of
64 to accelerate convergence on large datasets. The ADNI dataset was referenced in 70%
of works, followed by OASIS and synthetic sets. Metrics like accuracy (90% of studies)
and AUC (35%) predominated, with limited focus on communication efficiency or energy
Ccosts.

The review identified persistent challenges: (1) lack of standardized training guide-
lines; (2) scarcity of hybrid models (e.g., CNN-transformer combinations); (3) asyn-
chronous integration of multimodal data (e.g., imaging, digital biomarkers); and (4)
systematic comparison of aggregators. Studies like [Wei et al. 2023], applying FL to
speech data, suggest opportunities beyond medical imaging. Additionally, the lack of stan-
dardized benchmarks hinders reproducibility, underscoring the need for unified evaluation
frameworks.

3. Server-Side Aggregation Methods
3.1. Federated Averaging (FedAvg)

In FL, the objective is to solve the following optimization problem:

1
w(t+1) _ ? Z w](CtJrl)’ (l)

keSy

where w*!) represents the global model after iteration ¢ 4 1, where each iteration consists
of a communication round where the server distributes the global model to a subset of
clients, who update it locally and send their parameters back. Furthermore, w,(fﬂ) denotes
the updated model from the &™ client. The server aggregates these updates over a subset

S; of K selected clients at round ¢ to refine the global model.



In FedAvg, a subset of clients receives the global model update at each round.
Clients refine their models using local Stochastic Gradient Descent (SGD) and send
updates to the server, which aggregates them via averaging. The pseudocode for FedAvg is
provided in Algorithm 1.

Algorithm 1 Federated Averaging (FedAvg)
1: Imput: Rounds T, clients per round K, local epochs F, rate n

2: Init: 0
3: fort =1to T do
4: Randomly select K clients
5 for each client k in parallel do
6 Qk < Gt
7 fore =1to F do
8 0. < 6, — ﬁVLk(Gk)
9 end for
10: Send 6y, to server
11: end for
12: Opy1 Zi(:l 0 > NN is sum of ny, for selected clients
13: end for

14: Output: 07

3.2. Federated Averaging with Server Momentum (FedAvgM)

[Hsu et al. 2019] implemented a variation of the FedAvg algorithm that incorporates the
momentum technique, used to accelerate the convergence of machine learning models.
The use of momentum helps mitigate challenges associated with variability in data and the
computational capabilities of participating devices in federated learning.

FedAvgM enhances the model update process by incorporating a momentum term.
This optimization technique accelerates training and improves convergence by maintaining
a weighted accumulation of past gradients. By doing so, it stabilizes updates and mitigates
oscillations that may arise due to variations in data distribution or computational resources
across different devices in a federated learning setup. The core update equations in
FedAvgM are as follows:

Vi1 = pvg + Awy, (2)
Wi41 = Wi — 1) V41, (3)

where v; denotes the momentum at iteration ¢, computed as a weighted sum of previous
gradients, p € [0, 1) is the momentum coefficient, Aw; represents the aggregated model
update from local client contributions, 7 is the learning rate governing the update step size,
and w; denotes the model parameters at iteration ¢. Note that due to the heterogeneity
between clients, the aggregated update Aw, may be noisy, and the momentum term v,
serves to smooth these fluctuations. The pseudocode for FedAvgM is provided in Algorithm
2.



Algorithm 2 Federated Averaging with Momentum (FedAvgM)

1: Input: Rounds 7', clients K, epochs F, rate 77, momentum /3
2: Init: 90, Vo = 0
3: fort =1to T do

4. Randomly select K clients

5 for each client £ in parallel do

6: Hk — 915

7: fore =1to E do

8 O < 0 — UVLk(ek)

9 end for
10: Send 6, to server
11: end for
12: Ay Zszl T (O — 01) > NN is the sum of ny for the selected clients

13: UV 51),5_1 + (1 — B) At
14: 9t+1 — 91‘, —+ vt

15: end for

16: Output: 07

3.3. Federated Proximal (FedProx)

[Li et al. 2020] propose an extension of the FedAvg algorithm, designed to address system
and data heterogeneity in federated learning environments. The method introduces a
proximity term into the local loss function, aiming to mitigate the adverse effects of
variability among participating devices.

FedProx extends the standard federated learning framework by introducing a proxi-
mal term into each client’s local loss function. This additional term penalizes significant
deviations between the local model and the global model, thereby encouraging local
updates to remain close to the global model.

The modified local optimization problem for the ™ client at iteration ¢ is formulated

as:
min  Fi(w) + & w —w®]?, )

where F},(w) denotes the local loss function for the k™ client, w® represents the global
model parameters at iteration ¢, and ;. > 0 is a hyperparameter that governs the strength
of the proximal penalty. For each client, the proximal term £ ||w — w®||? penalizes large
deviations between the local model w and the current global model w®), ensuring that local
updates remain closely aligned with the global model. This regularization is particularly
useful for mitigating the adverse effects of heterogeneity between clients. The pseudocode
for FedProx is provided in Algorithm 3.



Algorithm 3 Federated Proximal Algorithm (FedProx)
1: Imput: Rounds T, clients per round K, local epochs F, rate 7, prox. coef. u

2: Inmit: 0

3: fort =1to T do

4: Randomly select K clients

5 for each client % in parallel do

6 Hk < Gt

7 fore =1to F do

8 0, < 0, — n(VLk(Gk.) + p(0 — 9,5))
9 end for
10: Send 6y, to server
11: end for
12: Opp1 25:1 ROy > > IV is the sum of n;, for the selected clients
13: end for

14: Output: 07

4. Client-Side Neural Networks
4.1. Residual Network (ResNet)

ResNet introduced residual learning via shortcut (identity) connections, ensuring that
deeper models match or exceed the performance of shallower ones [He et al. 2016]. Rather
than learning H (x) directly, ResNet learns a residual F'(z) so that

H(z) = F(x) + .

The identity shortcut x preserves input information, easing optimization and preventing
degradation in very deep networks.

A residual block is defined as
y=F(x, W)+ z,

where F'(z, W) is the learned residual function with weights W. If F(x, W) — 0, the
block behaves like an identity mapping, stabilizing training. This design has enabled the
successful construction of extremely deep networks that generalize well in tasks such as
object detection and segmentation.

4.2. Densely Connected Convolutional Networks (DenseNet)

Unlike traditional CNNs, DenseNets connect each layer directly to all subsequent layers
with matching feature-map sizes [Huang et al. 2017]. The output of layer [ is

Xy, = Hl([x()’xh cee 7'1;1—1])7

where [xg,...,2; 1] concatenates all prior feature maps and H; denotes Batch-
Norm-ReLU—-Conv.

This dense connectivity boosts gradient flow, cuts redundancy, and improves gener-
alization with fewer parameters. Dense blocks of L layers produce @ connections,

interleaved with transition layers (1x1 convolution + 2x2 average pooling), and use a
growth rate & to control new feature contributions.



5. Implementation and Evaluation

5.1. Data

The database selected for this research was the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) [Alzheimer’s Disease Neuroimaging Initiative 2024], which contains a col-
lection of T1-weighted magnetic resonance images acquired in the sagittal plane. For
supervised training, 548 images were extracted, comprising all available images from
the year 2024 under the established configurations for analysis. These were classified
into three main groups: AD (Alzheimer’s Disease) with 99 images, MCI (Mild Cognitive
Impairment) with 267 images, and CN (Cognitively Normal) with 182 images, represented
in the figure 1. The data include patients of both sexes, comprising 307 women and 241
men, with a mean age of 75.5 years.

The initial image format was NIfTI (.nii), commonly used in neuroimaging studies.
However, to perform supervised training and reduce computational cost, these images
were converted to JPG (2D) format using the Python package med2image version 1.1.2
[Hariharan 2024], a Python 3 utility designed to convert medical image documents into
more visually adaptable files such as PNG or JPG.

(a) Alzheimer’s (b) Mild Cognitive (c) Cognitively
Disease Impairment Normal

Figure 1. MRI images of different stages of Alzheimer’s.

In Figure 1(a), there is pronounced atrophy of the hippocampus and medial tempo-
ral cortex, markedly widened cortical sulci, and posterior ventricular enlargement, findings
that align with Alzheimer’s disease; Figure 1(b) demonstrates moderate atrophy of the
hippocampus and parahippocampal gyrus, mildly accentuated sulci, and subtle ventricular
dilation, features suggestive of mild cognitive impairment; whereas Figure 1(c) exhibits
preserved gyral and sulcal anatomy, well-demarcated hippocampal contours, and ventricu-
lar dimensions within expected age-related limits, consistent with a cognitively normal
profile.

5.2. Experiments and Results

All experiments were conducted on the Google Colab cloud platform using a Python 3.10
environment paired with a Tesla T4 GPU, ensuring consistent reproducibility across all
tests, including the training and evaluation of neural networks and aggregation methods; the
Tesla T4 GPU was selected for its CUDA-compatible architecture (7.5 compute capability),
enabling efficient parallel processing for tasks such as gradient optimization and batch
inference, and to maintain uniformity, the same hardware and software configuration (e.g.,



PyTorch 2.0, CUDA 11.8) was applied to all models and aggregators, with batch sizes of
32 and 64.

The FL implementation leverages PyTorch as its core deep learning framework
to build and train neural networks with GPU acceleration and automatic differentiation,
while Torchvision provides essential capabilities for image loading, preprocessing, and
augmentation, and Torchmetrics streamlines the computation of performance metrics such
as accuracy, precision, recall, and AUC; Scikit-learn and imbalanced-learn support dataset
splitting, class weight computation, and imbalance correction, with NumPy ensuring
efficient numerical operations and reproducibility, and Pandas along with PIL (via Pillow)
facilitating data manipulation and image processing.

Table 1. Experimental configurations for federated learning tests

Neural Aggregators Clients Epochs Batch Size
Networks
DenseNet-169/  FedAvg/ 3,5, 7 80 32, 64
ResNet-50 FedAvgM /

FedProx

Based on Table 1 we performed a total of 36 tests. They were conducted by
simulating federated learning scenarios in 12 configurations and 3 aggregators (FedAvg,
FedAvgM and FedProx). The scenarios varied according to the architecture of the neural
network, the size of the batch and the number of clients.

The emulation of the FL environment was implemented through an approach that
simulates a distributed setting with three/five/seven clients and a centralized server. The
data were split in a non-IID manner among the clients, ensuring that each received a
balanced portion of the training and test sets, with indices allocated.

The neural network model was divided into two parts: the client (initial layers, re-
sponsible for extracting local features) and the server (deeper layers and final classification),
with communication restricted to the feature gradients, thereby preserving the privacy of
the raw data. Local training was carried out in mini-batches of sizes 32 and 64, using Adam
optimization (Ir = 0.0001) and weight decay (1e-4), while the server aggregated the local
weights using FedAvgM (FedAvg with momentum 5 = 0.9) / FedProx (regularization with
i = 0.1) / FedAvg (simple average), smoothing updates and accelerating convergence.

In each round, all clients (frac = 1) participated in the training by sending gradients
after one local epoch (local_ep = 1), and the server evaluated the global model. To avoid
overfitting, early stopping (with a patience of 10 epochs) and gradient clipping (max_norm
= 1.0) were implemented.

A manual random oversampling strategy is adopted: the number of samples in
each class of the training set is first counted to identify the size of the majority class; then,
for each minority class, existing sample indices are randomly selected with replacement
until the class size matches that of the majority; these additional indices are concatenated
with the original ones to produce a balanced subset; finally, this subset is wrapped in a
subset and loaded via a dataloader with shuffling enabled, thereby ensuring an even class
distribution during model training.



5.2.1. Scalability of the Number of Clients

ResNet 50 demonstrated robust performance across varying client counts, particularly
excelling in larger federations. For instance, with 7 clients, ResNet achieved 87.1%
accuracy and 97.2% AUC using FedAvg (batch=32), outperforming DenseNet (84.5%
accuracy, 95.8% AUC). With FedProx and batch=64, ResNet reached 91.2% accuracy and
98.6% AUC, the highest performance observed. This aligns with theoretical insights from
He et al. (2016), who highlighted that residual connections mitigate vanishing gradients,
enabling stable training in heterogeneous data environments.

In contrast, DenseNet showed limitations in scalability, particularly in larger feder-
ations. With 7 clients and FedAvgM (batch=32), DenseNet’s accuracy dropped to 77.3%,
compared to ResNet’s 79.1%. Its best performance was observed with 3 clients (FedAvg,
batch=64: 85.4% accuracy), still trailing ResNet (88.0%). As noted by Huang et al. (2017),
DenseNet’s dense connections, while efficient in feature reuse, increase parameter traffic,
hindering scalability in distributed settings.

5.2.2. Impact of Batch Size

The results indicate that batch=32 provided stability for both networks, with ResNet ben-
efiting more significantly. For example, with 7 clients and FedAvg, ResNet’s accuracy
increased by +3.6% (87.1% — 90.7%) when using batch=32 instead of 64. Its AUC ap-
proached 99% (FedProx, batch=32: 98.6%), indicating excellent generalization. DenseNet
also improved but to a lesser extent (+2.7% accuracy: 84.5% — 87.2%). These results
align with Smith et al. (2018), who demonstrated that larger batches reduce gradient noise,
particularly beneficial for deep networks like ResNet.

On the other hand, batch=64 led to higher variability, especially for DenseNet. For
instance, with FedAvgM, DenseNet’s accuracy dropped to 74.1% (7 clients, batch=64),
while ResNet maintained stability (87.1% with FedAvg). This underscores ResNet’s
robustness in handling smaller batches, a critical advantage in FL. where computational
resources may be limited.

5.2.3. Aggregation Algorithms

The results highlight that FedProx outperformed FedAvg and FedAvgM, particularly for
ResNet. With 7 clients and batch=32, ResNet achieved 91.2% accuracy and 98.6% AUC
using FedProx, compared to 90.7% accuracy with FedAvg. This aligns with Li et al.
(2020), who introduced FedProx to mitigate client drift by adding a proximal term to the
loss function, a feature particularly beneficial for complex networks like ResNet.

In contrast, FedAvgM underperformed across all scenarios. For example,
DenseNet’s precision dropped to 74.1% (7 clients, batch=32) with FedAvgM, compared
to 82.5% with FedAvg and ResNet also saw a decline (78.4% precision vs. 89.8% with
FedProx). This suggests that FedAvgM, likely a momentum-based variant of FedAvg, may
introduce instability in model aggregation, particularly for less robust architectures like
DenseNet.



6. Conclusion

Our experiments demonstrated that ResNet 50 achieves superior stability and peak accuracy
(e.g., 91.2%) with the FedProx aggregator, 7 clients, and a batch size of 32, while DenseNet
169 attains optimal performance (e.g., 78.9%) under FedProx with fewer clients (3) and a
larger batch size (64). Both architectures exhibited significant performance degradation
with FedAvgM (e.g., <70% accuracy), emphasizing the non-trivial impact of aggregation
method selection on FL outcomes. Notably, while DenseNet excels in centralized tasks
like medical imaging, its federated implementation showed heightened volatility (£15%
accuracy variation across clients) compared to ResNet’s consistency (+8%), likely due to
its dense connectivity patterns and sensitivity to fragmented gradient updates in non-1ID
data environments. Table 2 presents the derived from experimental results configurations
for heterogeneous data scenarios.

These findings challenge the conventional preference for DenseNet in complex
vision tasks and highlight ResNet’s architectural advantages for FL applications. The
residual skip connections in ResNet appear to mitigate gradient degradation in distributed,
heterogeneous data scenarios. Furthermore, the inverse relationship between client par-
ticipation and model efficacy (7 clients optimal for ResNet vs. 3 for DenseNet) suggests
that architectural complexity necessitates tailored federation strategies, where parameter-
heavy models like DenseNet may require stricter control over client numbers to prevent
overfitting.

Subsequent studies should expand the sample size for multicenter validation, in-
vestigate hybrid architectures (e.g., DenseNet+ResNet) integrating hierarchical feature
synthesis, and adapt new aggregators (such as FedNova or FedYogi) for performance
optimization on non-IID medical data.

Table 2. Best configuration choices for specific scenarios

Scenario Recommended Configuration Rationale
Few Clients (<3) ResNet 50 / DenseNet 169, FedProx stabilizes local updates in
FedProx, Batch=32 small cohorts; hybrid backbones

balance parameter efficiency
[Li et al. 2020,
Huang et al. 2017].

Many Clients (5>x<7) ResNet 50, FedAvg, Batch=32 Residual connections prevent
gradient degradation at scale;
FedAvg minimizes
communication overhead
[He et al. 2016,
McMahan et al. 2016].

Non-IID Data ResNet 50, FedProx, Batch=32 Proximal term in FedProx
mitigates client drift; ResNet
shows robustness to heterogeneous
distributions
[Li et al. 2020, He et al. 2016].
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