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Abstract. Deforestation poses significant ecological and societal challenges,
while advances in satellite imagery and deep learning have enhanced monitor-
ing precision and scalability. This study evaluates ten deep learning models for
deforestation segmentation, including U-Net, ResNet, FCN, and YOLO variants,
assessing accuracy and computational efficiency, focusing on the Amazon and
Atlantic Forest biomes. The results highlight that U-Net and ResNet50 achieve
the highest accuracy, while YOLOv8 and YOLOv11 offer an optimal balance
between speed and performance. The findings contribute to the model selection
for real-time deforestation detection, supporting conservation and environmen-
tal decision-making in underexplored areas like the Atlantic Forest.

1. Introduction

Deforestation and its environmental and societal consequences is a long-standing issue,
yet its accelerated growth has reached alarming levels. In the Brazilian Amazon Biome,
deforestation increased by 56.6% between 2019 and 2021 compared to the period 2016
to 2018 [Cabral et al. 2024]. Similarly, the Atlantic Forest, one of the most threatened
biodiversity hotspots in the world, has already lost a significant portion of its original
forest cover [Maurenza et al. 2024]. Beyond biodiversity loss, deforestation impacts air
quality and disrupts rainfall cycles, not only in affected regions, but also in distant areas,
with far-reaching consequences across various sectors of society [Rodrigues et al. 2024].

Deforestation requires that authorities implement effective measures to prevent
and mitigate the causes of forest loss, which are often linked to human activities. Remote
Sensing (RS) has been widely utilized as an effective large-scale tool for facilitating the
comprehensive monitoring of forested regions. When integrated with AI-driven solutions,
such as Deep Learning (DL) networks, RS technology has significant potential for the
automatic detection of deforestation in remote regions, enabling continuous monitoring
and the generation of alerts to support timely and informed decision-making.



Building on this potential, in this study, we conduct a comprehensive evalu-
ation of deep learning architectures for deforestation detection, systematically com-
paring ten state-of-the-art and emerging models. Our analysis covers both well-
established DL segmentation networks, such as U-Net [Ronneberger et al. 2015],
FCN [Long et al. 2015] and ResNet [He et al. 2016], and modern detection architec-
tures, including YOLOv8 [Jocher et al. 2023], YOLOv9 [Wang and Liao 2024], and
YOLOv11 [Jocher and Qiu 2024]. Unlike previous works that often rely on models
trained for general-purpose land cover classification, our study specifically focuses on
deforestation segmentation, optimizing models for this critical environmental challenge
while enhancing their reliability and applicability in real-world monitoring. Furthermore,
while various segmentation models have been applied to the Amazon and other biomes
outside Brazil, deforestation in the Atlantic Forest has received limited attention in prior
research. Indeed, by querying the Scopus database with the terms Atlantic Forest, de-
forestation, and segmentation, only five journal articles were retrieved, none of which
specifically focused on this biome. Moreover, no previous study has conducted a compar-
ative analysis of DL segmentation models for deforestation in this context.

Beyond evaluating the accuracy of the DL networks, we also assess computa-
tional efficiency, an essential factor for large-scale monitoring applications. By analyzing
the trade-offs between assertiveness and processing cost, we provide new insights into the
practical deployment of these models, particularly in scenarios with limited computational
resources. Additionally, by bridging the gap between traditional and modern segmenta-
tion architectures, this work contributes to a more refined understanding of model selec-
tion for deforestation mapping, offering a benchmark for future studies and practitioners
with a particular focus on two Brazilian biomes: the Atlantic Forest and the Amazon.

This paper is organized as follows. Section 2 reviews related work, while Sec-
tion 3 describes the methodology, including the datasets, deep learning methods, and
experimental setup. Section 4 presents and discusses the results obtained on each dataset.
Finally, Section 5 provides the conclusions and outlines directions for future research.

2. Related Work

The advancement of RS technology has enabled the systematic application of DL tech-
niques to address various complex issues, including the general detection of deforestation.
In [Md Jelas et al. 2024], an overview of 22 studies in this domain was provided. Among
the analyzed works, the authors highlight the use of remote sensing imagery from satel-
lites as a significant advantage, and conclude that there is still substantial potential for
further exploration in this field. In the general literature, various comparative studies have
explored the performance of well-known models, as evidenced by the following papers.

Bem et al. [de Bem et al. 2020] assess three DL models, SharpMask, U-Net, and
ResUnet, against Machine Learning (ML) approaches, Random Forest and Multilayer
Perceptron, to detect and segment changes in the Amazon biome. The results indicate that
the DL models outperformed their ML counterparts, with ResUnet being the most accu-
rate within the studied domain. Adarme et al. [Ortega Adarme et al. 2020] also compare
DL-based methods to identify regions affected by deforestation in the Amazon and Cer-
rado biomes. In their study, four methods were investigated: Early Fusion (EF), Siamese
Network (SN), Convolutional Support Vector Machine (CSVM), and the classic SVM,



used as a baseline. The study area was divided into four tiles for training and testing the
models. In the best-performing tile, the method that achieved the highest F1-score for the
Amazon biome was EF, with an average overlapping area of 63.3%.

Torres et al. [Torres et al. 2021] analyze the U-Net, ResUnet, SegNet, FC-
DenseNet, MobileNetV2 and Xception networks. Among these, ResUnet proved to be the
most cost-effective, balancing computational efficiency and segmentation performance. It
achieved F1-scores of 70.7% and 70.2% for the Landsat-8 and Sentinel-2 image datasets,
respectively. Similarly, Careli et al. [Careli et al. 2024] compares the performance of two
deep learning segmentation frameworks, YOLOv8 and the Mask R-CNN, by testing dif-
ferent setups for both. The evaluation was conducted on a dataset compiled from publicly
available samples via web scraping, along with a second set of AI-generated images.

Kovačovič et al. [Kovačovič et al. 2025] examine the performance of three DL
models for the detection and segmentation of various elements in satellite images,
including forests, fields, roads, buildings, and lakes, with high precision. By con-
structing their own dataset, they evaluated the YOLOv5, YOLOv8, and Mask R-
CNN networks, concluding that the small variant of YOLOv8 was the most effective.
The YOLOv8 network was also evaluated in the study proposed by Silpalatha and
Jayadeva [Silpalatha and Jayadeva 2025], who developed a model based on this architec-
ture and compared its performance with several DL frameworks, such as DeepLabV3+, U-
Net++, Attention U-Net, and R-CNN. Their evaluation was conducted using the WHDLD
(World High-Resolution Land Development) dataset, which comprises high-resolution
satellite images from different geographical regions.

The literature review highlights the effectiveness of deep networks in addressing
the challenge of segmenting deforested areas, showcasing a wide range of models applied
in different scenarios. However, the performance of newer YOLO network variants, such
as YOLOv9 and YOLOv11, remains unexplored in the deforestation literature. In addi-
tion, the DL models are conveniently trained for classes other than deforestation, and we
do not look specifically at this problem. Moreover, existing studies emphasize the need
for deep learning networks specifically designed for deforestation segmentation, lever-
aging tailored datasets to address the challenge of limited sample availability. Therefore,
this study compares well-established architectures, such as U-Net and ResNet, with newer
DL-based detection models, including YOLO versions 8, 9, and 11.

3. Methodology
3.1. Datasets
In order to assess the DL approaches selected in this study, we utilize two publicly avail-
able datasets, provided by [Bragagnolo et al. 2021]. Both datasets consist of images cap-
tured by the Sentinel-2 Level 2A satellite, containing four spectral bands (RGB and NIR)
at a resolution of 512 × 512 pixels. The images were acquired from the Amazon and
Atlantic Forest biomes, as illustrated in Figure 1. The Amazon dataset comprises 499
training images, 100 validation images, and 20 test images, while the Atlantic Forest im-
age collection includes 485 training images, 100 validation images, and 20 test images.
The ground-truth data for each dataset was manually generated using the GRASS GIS
7.6.1 software suite, assigning binary values to the classes: class 0 (black) corresponds to
forested regions, while class 1 (white) represents deforested areas.



To ensure consistent training conditions across all networks, only the RGB bands
were used, as YOLO-type networks natively accept three-channel inputs. A preprocessing
step was also performed to adapt the labels for YOLO-based models to the expected
format, which represents each class using polygon coordinates instead of ground-truth
images, resulting in saved polygons for two classes: Deforestation and Forest.

(a) (b) (c) (d)

Figure 1. Sample images from the two datasets: (a) and (b) represent an image
and its corresponding ground-truth from the Amazon dataset, while (c) and
(d) illustrate the same for the Atlantic dataset.

3.2. Deep neural networks for automated deforestation segmentation
We implement, adjust and compare a total of ten DL architectures for the semantic seg-
mentation of deforested regions in both the Amazon and Atlantic Forest biomes. Among
the evaluated deep neural networks, three are well-established: U-Net, ResNet50, and
FCN32, while the remaining seven are YOLO-based models with different versions and
number of parameters. A detailed description of each DL network is provided below.

U-Net: The U-Net network is a semantic segmentation framework proposed
by Ronneberger et al. [Ronneberger et al. 2015], initially designed for biomedical im-
age analysis. The architecture consists of two main phases: an encoder and a de-
coder. The encoder progressively downsamples the input, reducing its spatial dimen-
sions while extracting relevant features. The decoder then upsamples the feature maps,
reconstructing the segmented image and forming the characteristic U-shaped structure of
the model. U-Net is a widely recognized segmentation architecture that has been suc-
cessfully applied in various domains, including medical imaging [Li et al. 2024], satellite
imagery [Pathak et al. 2024], and other fields requiring precise object delineation.

ResNet50: ResNet50 is a deep residual network that incorporates shortcut con-
nections to mitigate the vanishing gradient problem when training very deep architectures.
Originally proposed by He et al. [He et al. 2016] for general image classification tasks,
ResNet50 has also been widely adopted as a backbone in segmentation models due to its
strong feature extraction capabilities.

FCN32: Fully Convolutional Networks (FCNs), introduced by Long et
al. [Long et al. 2015], are segmentation frameworks that replace the fully connected lay-
ers of traditional neural networks with convolutional layers, enabling end-to-end pixel-
wise predictions. This architectural modification enables the generation of dense seg-
mentation maps instead of single-label image classifications. FCNs have been trained on
general-purpose datasets containing multiple object classes, demonstrating their versatil-
ity in various segmentation tasks.



YOLOv8: The You Only Look Once (YOLO) networks are widely recognized
for their real-time object detection capabilities. Since version 8, released by Ultralyt-
ics [Jocher et al. 2023], the developers have expanded the architecture’s scope to address
other computer vision tasks, including semantic segmentation. YOLOv8 incorporates
techniques such as bottlenecks and specialized layers to extract multiscale features for
precise object delineation. This network is available in five different sizes, each offering
a trade-off between accuracy and computational efficiency. In this study, we evaluate the
small, medium, and large variants of YOLOv8.

YOLOv9: The ninth version of YOLO, developed by [Wang and Liao 2024],
builds upon the Ultralytics YOLOv5 framework and introduces two significant innova-
tions: Programmable Gradient Information (PGI) and the Generalized Efficient Layer
Aggregation Network (GELAN). PGI ensures that complete input information is utilized
in the computation of the objective function, leading to more reliable gradient updates
for optimizing network weights. GELAN, on the other hand, is a network architecture
designed to enhance parameter efficiency. YOLOv9 demonstrated superior performance
on the COCO dataset; however, it requires greater computational resources and longer
training times compared to its YOLOv8 counterparts.

YOLOv11: Also developed by Ultralytics [Jocher and Qiu 2024], YOLOv11 is
optimized for high accuracy with fewer parameters than its predecessors. Available in
five different sizes (number of parameters), YOLOv11, like YOLOv8, supports multiple
tasks beyond object detection and semantic segmentation. In our comparative analysis,
we evaluate three of its variants: small, medium, and large.

3.3. Experimental design and assessment criteria

All networks assessed in our experiments were implemented using the PyTorch library.
An extensive hyperparameter tuning process was conducted to determine the optimal con-
figuration for each network during training. This process was performed using the Op-
tuna library, exploring parameters such as learning rate, dropout rate, number of filters,
and batch size, according to each model’s specifications. A total of 50 trials were exe-
cuted, each comprising the initial training epochs, for both datasets. The YOLO models,
however, already incorporate advanced optimization mechanisms such as warmup strate-
gies and an Auto Learning Rate Finder in their standard training process, reducing the
impact of tuning. At the end of the tuning process, all models were analyzed using the
best set of parameters identified for the segmentation tasks. The networks were trained
with the ADAM optimizer. The BCEWithLogitsLoss function was employed for U-Net,
ResNet50, and FCN32, while the YOLO models utilized their standard loss function.

The models were trained in the Google Colaboratory environment utilizing an
NVIDIA Tesla T4 GPU, which features 2560 CUDA cores, 320 Tensor Cores, 40 RT
Cores, and 16 GB of GDDR6 memory. Each network was trained for 50 epochs, with a
batch size of 16 images. This number of epochs was chosen based on the available compu-
tational resources, being sufficient for the models to converge while avoiding overfitting,
thus balancing training time and overall model performance.

To quantitatively assess the performance of the trained models, four widely
adopted similarity metrics were selected from the literature: F1-Score, Over-
all Accuracy, Precision, and Recall [de Bem et al. 2020, Ortega Adarme et al. 2020,



Torres et al. 2021]. These metrics, commonly used in the segmentation task, are defined
in terms of True Positives (TP), True Negatives (TN), False Positives (FP), and False
Negatives (FN), as can be seen in Table 1. Precision quantifies the proportion of cor-
rectly predicted positive instances among all predicted positives, while Recall measures
the proportion of correctly identified positive instances relative to all actual positives. The
F1-Score represents the harmonic mean of Precision and Recall, providing a balanced
measure of model performance. Finally, Overall Accuracy (OA) indicates the proportion
of correctly classified samples relative to the total number of samples evaluated.

Table 1. Evaluation metrics and their respective formulas.

Precision Recall F1-score Overall Accuracy

TP
TP+FP

TP
TP+FN

2× Precision×Recall
Precision+Recall

TP+TN
TP+TN+FP+FN

To complement our comparative analysis, the computational complexity of each
model was assessed, reporting the total number of parameters. In general, models with
a higher number of parameters exhibit greater complexity, which can result in increased
computational burden as well as slower inference and training times. Lastly, the average
inference time on the test set for both datasets was also collected.

4. Results and Discussion

In this section, the results obtained from each model are presented and discussed, orga-
nized into quantitative and qualitative analyses, with separate evaluations for each ana-
lyzed dataset from the Brazilian biomes.

4.1. Amazon forest dataset

Table 2 summarizes the overall performance of each DL model on the Amazon test
dataset, with best scores in bold. The second column reports the total number of parame-
ters (in millions), with the small versions of YOLOv11 (10.10M) and YOLOv8 (11.80M)
being the lightest models, while FCN32 (134.26M) is the heaviest. The third column
displays the average inference time (in seconds) for each model. YOLOv8s (0.0142s)
emerges as the fastest model, closely followed by YOLOv11s (0.0143s), which is ex-
pected given their optimization for real-time detection. The fourth column lists the mean
and standard deviation of the F1-Score, where U-Net (0.9588 ± 0.0315) and ResNet50
(0.9497 ± 0.0347) achieve the highest scores, highlighting their robustness in accuracy.

Overall, the tabulated scores indicate that U-Net and ResNet50 achieve the high-
est accuracies, with U-Net leading across all metrics. However, this model is also the
slowest, with a mean inference time of 0.0701s. In contrast, the smaller YOLO variants,
particularly YOLOv11s, demonstrate competitive performance despite their lightweight
architectures. YOLOv11s achieves an F1-Score of 0.9336 and an OA of 0.9491, while
YOLOv8m maintains an F1-Score of 0.9319 and an OA of 0.9467. The YOLO-based
models balance performance and efficiency, making them well-suited for real-time ap-
plications. One can also observe that YOLOv8s and YOLOv9c exhibit higher standard
deviations, particularly in Recall, suggesting potential instability across different runs.



Table 2. Comparison of DL models in the Amazon forest dataset.

Models Params (M) Time (s) F1-Score OA Precision Recall
U-Net 31.03 0.0741 0.9588 ± 0.0315 0.9696 ± 0.0188 0.9558 ± 0.0354 0.9639 ± 0.0500
ResNet50 18.07 0.0334 0.9497 ± 0.0347 0.9606 ± 0.0286 0.9470 ± 0.0367 0.9544 ± 0.0535
FCN32 134.26 0.0528 0.8920 ± 0.0692 0.9217 ± 0.0319 0.8900 ± 0.0616 0.8971 ± 0.0907
YOLOv8s 11.80 0.0142 0.8781 ± 0.2118 0.8975 ± 0.2124 0.8782 ± 0.2179 0.8815 ± 0.2123
YOLOv8m 27.30 0.0312 0.9319 ± 0.0364 0.9467 ± 0.0259 0.9352 ± 0.0460 0.9299 ± 0.0407
YOLOv8l 46.00 0.0435 0.9356 ± 0.0341 0.9498 ± 0.0241 0.9369 ± 0.0460 0.9350 ± 0.0306
YOLOv9c 27.90 0.0397 0.8891 ± 0.1693 0.9185 ± 0.1114 0.9305 ± 0.0656 0.8830 ± 0.1863
YOLOv11s 10.10 0.0143 0.9336 ± 0.0350 0.9491 ± 0.0234 0.9416 ± 0.0418 0.9266 ± 0.0401
YOLOv11m 22.40 0.0341 0.9354 ± 0.0374 0.9513 ± 0.0233 0.9399 ± 0.0432 0.9320 ± 0.0437
YOLOv11l 27.60 0.0387 0.9109 ± 0.1101 0.9323 ± 0.0846 0.9356 ± 0.0424 0.9022 ± 0.1431

Figure 2. F1-Score distribution for DL models in the Amazon forest dataset.

For a clearer understanding, Figure 2 shows the distribution of prediction accu-
racy using the F1-Score metric, indicating that YOLOv8s, YOLOv9c, and YOLOv11l
exhibit outliers in the test set. Upon closer examination of the affected sample, one can
check that it corresponds to an image with significant cloud cover, while its ground-truth
annotation classifies it as entirely deforested. This misclassification in the dataset directly
impacts both the training and evaluation processes, leading to a reduction in the over-
all performance metrics. Despite this issue, the remaining YOLO models demonstrate a
more consistent distribution of results, concentrating the results between 0.9 and 1.0.

Figure 3 shows the overlap between the ground-truth and the predictions gener-
ated by each deep neural model. In this comparison, ground-truth is marked in green,
predicted areas in magenta, and overlapping regions appear in white. From the analyzed
image-sample, one can inspect that all models detect large deforested areas, with edge
refinement being the primary differentiating factor among them. U-Net and ResNet50
provide the best coverage of ground-truth areas, minimizing the presence of uncovered
green pixels, however, the ResNet50 tends to produce more false positives, as indicated by
the magenta edges around detected regions. FCN32 also struggles with precise boundary
delineation. Meanwhile, the YOLO networks demonstrate a balanced trade-off between
contour definition and accuracy, but face challenges in detecting smaller deforested areas.

By analyzing the general performance of the networks across all test images, Fig-
ure 4 presents the cumulative confusion matrix, illustrating the percentage distribution of
pixels classified as TP, TN, FP, and FN. First, the distribution suggests that the Amazon
dataset has well-balanced classes. Second, the U-Net and ResNet50 models demonstrated



(a) Image (b) Ground-truth (c) U-Net (d) ResNet50 (e) FCN32 (f) YOLOv8s

(g) YOLOv8m (h) YOLOv8l (i) YOLOv9c (j) YOLOv11s (k) YOLOv11m (l) YOLOv11l

Figure 3. Qualitative comparison of a deforestation sample from Amazon dataset.

the most favorable distributions, whereas FCN32 exhibits the weakest performance due
to a higher FP rate. Among the YOLO-derived models, all achieve high TP prediction
rates, however, YOLOv8s, YOLOv9c, and YOLOv11l presented higher FN errors, likely
influenced by the misclassification of outlier samples.

(a) U-Net (b) ResNet (c) FCN32 (d) YOLOv8s (e) YOLOv8m

(f) YOLOv8l (g) YOLOv9c (h) YOLOv11s (i) YOLOv11m (j) YOLOv11l

Figure 4. Cumulative confusion matrix for the Amazon forest dataset.

4.2. Atlantic forest dataset

Having examined the first dataset, our evaluation was extended to the second dataset
using the same approach. Table 3 presents the evaluation metrics w.r.t. the Atlantic Forest
dataset, emphasizing key performance differences among the DL models. In this case,
the neural networks show lower accuracy than on the Amazon dataset, indicating that this
dataset poses a greater challenge. While U-Net and ResNet50 continue to demonstrate
superior accuracy, the trained models YOLOv8s, and YOLOv11s emerge as more suitable
alternatives for applications requiring computational efficiency.

Concerning the distribution of scores for the test set, a similar pattern is observed,
as illustrated in Figure 5. While the overall average is slightly lower compared to the



Table 3. Comparison of DL models in the Atlantic forest dataset.

Models Params (M) Time (s) F1-Score OA Precision Recall
U-Net 31.03 0.0679 0.9524 ± 0.0243 0.9363 ± 0.0356 0.9544 ± 0.0273 0.9523 ± 0.0461
ResNet50 72.26 0.1005 0.9332 ± 0.0327 0.9105 ± 0.0477 0.9358 ± 0.0365 0.9346 ± 0.0650
FCN32 134.26 0.0483 0.8704 ± 0.0551 0.8241 ± 0.0574 0.8190 ± 0.0642 0.9308 ± 0.0595
YOLOv8s 11.80 0.0142 0.9188 ± 0.0334 0.8700 ± 0.0534 0.9328 ± 0.0351 0.9060 ± 0.0399
YOLOv8m 27.30 0.0312 0.9082 ± 0.0635 0.8847 ± 0.0685 0.9192 ± 0.0937 0.9024 ± 0.0375
YOLOv8l 46.00 0.0440 0.9156 ± 0.0389 0.8969 ± 0.0300 0.9374 ± 0.0316 0.8955 ± 0.0505
YOLOv9c 27.90 0.0387 0.9145 ± 0.0413 0.8964 ± 0.0312 0.9361 ± 0.0301 0.8948 ± 0.0570
YOLOv11s 10.10 0.0143 0.8999 ± 0.0849 0.8860 ± 0.0539 0.9314 ± 0.0379 0.8764 ± 0.1135
YOLOv11m 22.40 0.0336 0.9194 ± 0.0341 0.9001 ± 0.0279 0.9360 ± 0.0305 0.9039 ± 0.0441
YOLOv11l 27.60 0.0383 0.9178 ± 0.0377 0.8991 ± 0.0315 0.9392 ± 0.0299 0.8983 ± 0.0512

Figure 5. F1-Score distribution for DL models in the Atlantic forest dataset.

Amazon dataset, the key characteristics remain consistent. The YOLO networks achieve
a more compact result distribution, although YOLOv8m and YOLOv11s present outliers.

The qualitative analysis of Figure 6, which depicts a large deforested portion of
the Atlantic biome, reveals that the networks maintain similar behaviors across differ-
ent datasets, despite the higher difficulty level in delineating the targets in this dataset.
U-Net and ResNet accurately capture small regions of the ground-truth, but struggle to
classify certain areas marked as deforested. This observation is further supported by the
confusion matrices in Figure 7, which highlight an imbalance in the Atlantic dataset, as it
contains a higher proportion of positive samples. This imbalance directly affects network
performance, contributing to the differences observed between the two datasets analyzed.
Further examining Figure 7, one may conclude that YOLO networks achieve higher TN
rates, with YOLOv11l reaching 27.72%. This shows that these models are more conser-
vative in classifying deforested areas, potentially reducing false positive detections.

5. Conclusion
This study implemented, systematically tuned, and compared several deep learning ar-
chitectures for deforestation segmentation, focusing on the Amazon and Atlantic For-
est biomes. These include both well-established segmentation networks, such as U-Net,
ResNet50, and FCN32, as well as modern detection frameworks, including YOLOv8,
YOLOv9c, and YOLOv11 with various parameter settings. Our quantitative and visual
analysis revealed that U-Net and ResNet50 achieved the highest segmentation accuracy.
However, lighter YOLO variants, particularly YOLOv8 and YOLOv11, offered a favor-
able trade-off between accuracy and computational efficiency, making them well-suited



(a) Image (b) Ground-truth (c) U-Net (d) ResNet (e) FCN32 (f) YOLOv8s

(g) YOLOv8m (h) YOLOv8l (i) YOLOv9c (j) YOLOv11s (k) YOLOv11m (l) YOLOv11l

Figure 6. Qualitative comparison of a deforestation sample from Atlantic dataset.

(a) UNet (b) ResNet (c) FCN32 (d) YOLOv8s (e) YOLOv8m

(f) YOLOv8l (g) YOLOv9c (h) YOLOv11n (i) YOLOv11m (j) YOLOv11l

Figure 7. Cumulative confusion matrix for the Atlantic forest dataset.

for real-time monitoring applications. These findings reinforce the potential of deep learn-
ing for large-scale deforestation detection. By evaluating both the accuracy and compu-
tational efficiency of the deep neural models, our analysis provides practical insights for
real-time monitoring applications, where computational resources may be limited.

This study also contributes by addressing deforestation in the Atlantic Forest
biome through deep learning techniques. Although previous research on deforestation
in this region has been limited, this work serves as an important starting point, providing
practical guidelines and benchmarks for future studies.

Given the critical importance of image quality and accurate ground-truth annota-
tions, future research should prioritize refining segmentation techniques and incorporating
additional spectral data to enhance both accuracy and real-world applicability. Another
potential approach is to expand the datasets, both in size and diversity [Ribas et al. 2025],
to improve the generalization capabilities of the models.
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