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Abstract. This work introduces AutoTab, an interactive system designed
to simplify the process of transcribing music into guitar tablature. By
combining sound event detection, Convolutional Neural Networks (CNNs),
and graph-based optimization algorithms, AutoTab offers an intuitive and
accessible solution for musicians of all skill levels. The system employs
precise note and chord identification through CNNs, a WebSocket-based server
for real-time audio analysis, and specialized algorithms such as the Audio
Window Analyser for improved sound event detection and TabGen for optimized
tablature generation. Initial results demonstrate robust performance, with
the Notes Model achieving 87.8% accuracy in note identification and the
Chords Model achieving a 78% Macro F1-score in chord recognition. AutoTab
aims to democratize access to high-quality transcription technology, enhancing
musical practice and learning for guitarists worldwide. Future work will focus
on addressing the challenges in polyphonic transcription and expanding the
system’s functionality.
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1. Introduction

Music is deeply rooted in human culture and provides various forms of enjoyment,
particularly for musicians. However, identifying musical elements such as notes and
chords remains a challenge, especially for beginners, leading to frustration and, in many
cases, the abandonment of musical practice [4, 23]. Guitar tablatures have become
a valuable resource for musicians, but manual transcription remains a complex and
time-consuming task, even for experienced performers [15, 13].

This challenge is further amplified for guitarists, as a single note can be played
in multiple fretboard positions, complicating transcription compared to instruments like
the piano, where each note corresponds to a unique piano key [27]. While Automatic
Music Transcription (AMT) technologies aim to address these difficulties, they still face
significant challenges due to the complexity and harmonic overlap in musical signals.
Even human experts often struggle with precise transcription, underscoring the difficulty
of designing reliable automated systems [4, 23].



Although commercial solutions like Melody Scanner1 and Guitar2Tabs2 exist,
their accessibility is often limited by financial constraints. This highlights the relevance of
open-source alternatives, fostering greater accessibility and collaborative innovation. In
response to this, AutoTab is proposed as an open-source system designed to automatically
transcribe audio recordings into guitar tablatures, democratizing access to high-quality
transcription technology for musicians of all skill levels.

AutoTab integrates convolutional neural networks (CNNs) for precise note
and chord identification, a WebSocket-based server for real-time audio analysis, and
specialized algorithms such as the Audio Window Analyser (AWA) for improved sound
event detection and TabGen for optimized tablature generation. Extensive testing and
validation were conducted to ensure accuracy and practicality, effectively addressing the
identified transcription challenges.

This paper is structured as follows: Section 2 presents the background; Section 3
reviews related works; Section 4 describes the methodology; Section 5 shows the results;
and Sections 6 and 7 provide the discussion and conclusion, respectively.

2. Background

AutoTab integrates music theory, signal processing, machine learning, and
tablature generation for automated transcription. It employs spectrograms, such as
the Constant Q Transform (CQT), and the Spectral Flux method to accurately detect
sound events. Convolutional Neural Networks (CNNs) are used for pattern recognition,
and graph-based algorithms optimise tablature generation by enhancing playability and
efficiency.

2.1. Fundamentals of Musical Structure

Music consists of melody, rhythm, and harmony, essential for musical expression
and communication [8]. Musical theory supports cognitive, psychomotor, and social
development, while musical literacy aids in interpretation and composition [25]. Notes
and chords define musical structure, with notes representing specific frequencies and
chords combining multiple notes to form harmonic foundations [8].

Musical notation documents and transmits music, primarily through sheet music
and tablatures (Figure 1). Sheet music details melody, harmony, and rhythm, akin to
written language, and follows specific rules to allow comprehensive musical interpretation
[21]. In contrast, tablature simplifies notation, using numbers and symbols to focus on
execution, particularly benefiting guitarists and facilitating learning for beginners [21].
These notations complement each other, enhancing musical understanding [19].

2.2. Signal Processing and Spectral Analysis

Sound is composed of pressure waves that the brain interprets as auditory signals.
These waves range from 20 Hz to 20 kHz, with inaudible frequencies beyond this
spectrum [9]. In digital form, sound is represented as numerical sequences fluctuating
over time, mimicking physical waves. Audio signal processing analyses and manipulates

1https://melodyscanner.com/
2https://klang.io/pt-br/guitar2tabs/



Figure 1. Representation of the same musical sequence in sheet music and
tablature

Source: [18]

these signals for enhancement, compression, and spectrogram generation, playing a key
role in capturing features for AutoTab [6]. Spectrograms visually represent sound by
mapping frequency on the vertical axis, time on the horizontal axis, and intensity through
colour variations [19]. Among the various types, the Constant Q Transform (CQT)
is particularly effective for musical analysis, segmenting the frequency spectrum into
logarithmic bands to improve note and chord identification [14].

The equation 1 defines the CQT, where x[n] is the input signal, N is the analysis
window size, f represents the target frequency, fref is the reference frequency (typically
440 Hz), and Q is the quality factor influencing spectral resolution:

CQT (f) =
N−1∑
n=0

x[n] · 1√
N

· e−j2πqn/N , q =
f

fref
·Q (1)

CQT is essential for AutoTab, ensuring precise frequency resolution necessary for
accurate note and chord detection, even in complex musical passages.

2.3. Sound Event Detection

Sound event detection, or onset detection, identifies the precise timing of
sound events, with applications in music segmentation, speech recognition, and seismic
monitoring [32]. Several techniques exist, including Zero Crossing Rate (ZCR) for
monitoring signal polarity changes [28], Energy-Based Detection for amplitude variations
[26], and Onset Detection Function (ODF) for frequency and energy shifts [3]. More
advanced methods, such as convolutional networks on spectrograms, enhance precision
[24].

In this study, the Spectral Flux method was selected for its ability to detect spectral
variations with high accuracy while minimising false positives. This method aligns with
AutoTab’s requirements, ensuring reliable identification of musical note events [2].

2.4. Neural Networks and Tablature Generation

Neural networks enable adaptive learning for complex classification tasks [11, 10].
AutoTab employs CNNs for efficient analysis of audio spectrograms, ensuring accurate
identification of notes and chords. The architecture integrates multi-layer perceptrons,
backpropagation, and activation functions like ReLU, enhancing pattern recognition in
spectrograms and improving transcription reliability [24]. Tablature generation converts
detected notes into a playable format for string instruments [23], addressing polyphony



challenges where a note can be played in multiple fretboard positions [7]. Figure 2
illustrates this complexity.

Figure 2. Positions of C4 note on the guitar fretboard

Source: Prepared by the author

Graph theory plays a crucial role in optimizing note placement for tablature
generation. By modeling the fretboard as a graph, where nodes represent possible note
positions and edges represent transitions between them, algorithms can determine the
most efficient and playable sequence of notes. This approach minimizes finger movement
and ensures ergonomic playability, particularly in polyphonic contexts where multiple
valid positions exist for the same note. The graph-based method leverages shortest-path
algorithms to identify optimal transitions, balancing musical accuracy with practical
execution [5].

Recent advances, such as TimbreTron [12] and ProgGP [17], demonstrate the
growing role of machine learning in refining automatic transcription. These methods
integrate graph-based optimization with neural networks, further enhancing the accuracy
and usability of generated tablatures.

3. Related Works

Recent studies have addressed the challenges of guitar transcription, each
contributing unique point of views and methodologies. In this context, the study by
[29] introduced a rubric-based metric system to evaluate the playability of guitar chords,
assessing factors such as finger positioning, hand movement, and chord complexity. This
approach provides a quantitative framework for understanding the ergonomic challenges
of guitar playing, which aligns with AutoTab’s goal of optimizing tablature generation for
playability. However, the study focuses solely on chord playability and does not address
the transcription process itself.

In one of these studies, by [14] employed CNNs to transcribe guitar chords
from audio waveforms, leveraging transfer learning to improve accuracy. The study
demonstrates the effectiveness of CNNs in chord recognition, particularly when trained
on diverse datasets. AutoTab builds on this approach by integrating CNNs for both note
and chord detection, while also addressing the polyphonic challenges unique to guitar
transcription. In a complementary effort, [20] introduced a simplified CNN architecture
using 1-max pooling for robust audio event recognition, achieving high accuracy in
identifying musical events, even in noisy environments. AutoTab incorporates similar
CNN techniques for sound event detection, ensuring reliable transcription of notes and
chords in real-world audio recordings.



Among recent contributions, the study by [22] focused on enhancing onset
detection using CNNs, achieving high precision in identifying the start of musical notes.
The work highlights the importance of accurate onset detection for reliable transcription,
a challenge that AutoTab addresses through its Audio Window Analyser (AWA) module,
which combines spectral analysis and CNNs for precise note identification. Additionally,
[7] introduced a novel approach to polyphonic transcription by modeling continuous pitch
contours, addressing the challenge of multiple valid fretboard positions for the same
note. This work is particularly relevant to AutoTab’s tablature generation module, which
leverages graph-based optimization to select the most playable note sequences.

AutoTab builds upon these studies by integrating their successful aspects into
a comprehensive, user-friendly system. For example, it combines the CNN-based
approaches proposed by [14] and [20] for note and chord detection, the onset
detection techniques described in [22] for precise note identification, and the polyphonic
transcription methods presented in [7] for optimized tablature generation. Additionally,
AutoTab extends these works by introducing a graph-based optimization algorithm to
ensure ergonomic playability and by providing an interactive web interface for real-time
transcription.

4. Methodology

The methodology employed in this study integrates audio signal processing, sound
event detection, machine learning models, and automatic tablature generation into an
interactive web-based system. This research follows an experimental design, employing
quantitative evaluation metrics such as accuracy and F1-score, combined with usability
assessments involving amateur and professional musicians. The system was evaluated
across multiple components, including note and chord detection accuracy, processing
speed, and user interaction efficiency.

4.1. Dataset Preparation

Three datasets were utilized for training the classifiers: OwnSet,
IDMT-SMT-GUITAR V2 [15], and GuitarSet [30]. The IDMT-SMT-GUITAR V2
dataset includes authentic recordings of various guitars and musical styles, featuring
techniques such as bends, slides, and chords, making it invaluable for training the
neural network. The GuitarSet focuses on acoustic guitar sounds, providing diverse
and complex audio samples with advanced harmonies and chords. The OwnSet was
developed to address specific gaps, such as missing harmonics and background noise,
and includes classical chords, power chords, and noise sounds.

The datasets were organized into a folder named Raw, maintaining their original
structure. Python scripts were developed to extract and organize audio fragments of
individual notes and chords into separate folders. These scripts read annotations to
identify the start and end points of each note, classifying segments as chords or isolated
notes based on their intervals. The extracted audio fragments were stored in a directory
named Custom, with subfolders named after the identified notes.

To enhance dataset diversity, an audio augmentation routine was implemented to
modify the pitch of the original recordings, generating new audio versions with higher or



lower tones. Each augmented file was stored in a dedicated folder, following the same
organisational structure as the original dataset. This process significantly expanded the
dataset, increasing the number of individual note files from 22,799 to 84,243 and chord
files from 1,757 to 20,998.

Finally, a preprocessing algorithm was developed to prepare the data for neural
network training. This algorithm locates, loads, and processes audio files from the Custom
folder, associating each audio file with its corresponding notes. The processed data is then
exported in the Numpy (.npy) format, ensuring efficient loading and portability. The
dataset is divided into three subsets: one for individual notes, one for chords, and a mixed
dataset combining both.

4.2. Classifier Architecture

The classifier architecture for this project was developed using the TensorFlow
framework [1], chosen for its flexibility, efficiency, and extensive community support.
The architecture is based on CNNs, which excel at identifying complex visual patterns,
making them ideal for analyzing spectrograms of audio signals. The base architecture,
inspired by [20], consists of three main layers: input, convolutional, and output.

Three distinct CNN models were developed, each tailored for specific tasks:

• model notes: Specialized in detecting individual notes.
• model chords: Focused on recognizing harmonies and chords.
• model mix: A generalist model combining the capabilities of the other two,

designed to identify both notes and chords.

4.2.1. Input Layer

The input layer accepts a three-dimensional matrix of dimensions 84x173x1,
representing the Constant-Q Transform (CQT) spectrogram of an audio signal. This
matrix serves as the foundation for identifying musical notes in the analyzed audio.

4.2.2. Convolutional Layers

The model includes two parallel convolutional layers, each equipped with 64
filters. The first layer uses a kernel size of 3, while the second uses a kernel size of 5,
both with valid padding. Following each convolutional layer, a GlobalMaxPooling
layer is applied to emulate the efficiency of max-pooling-1d, as suggested by [20].
The outputs of these layers are concatenated to optimize the model’s ability to identify
relevant patterns in the audio data.

4.2.3. Output Layer

The output layer consists of two dense layers: the first with 128 units and the
second with 49 units, corresponding to the detectable notes in the dataset. The activation
function of the final layer varies depending on the model’s purpose:

• For model notes, the softmax activation function ensures that only one
output unit is activated at a time, indicating a specific note.

• For model chords and model mix, the sigmoid activation function allows
multiple output units to be activated simultaneously, enabling the identification of
chords and polyphonic notes.



The choice of 49 output units aligns with the dataset’s structure, facilitating the
subsequent tablature generation process. This approach distinguishes the model from
others, such as [14], which use six output units to represent guitar strings, highlighting
the adaptability of the proposed architecture for diverse musical contexts.

4.3. Automatic Tablature Generation

The TabGen algorithm automates the generation of up to k distinct tablatures
from a specific sequence of notes, extracted directly from the Audio Window Analyser
(AWA) module. The AWA module is responsible for detecting musical notes within
audio windows. It processes audio files by converting them into spectrograms using the
Short-Time Fourier Transform (STFT) and identifies precise note onsets using methods
such as onset strength and onset detect. The module then predicts the notes
present in each window by analyzing the Constant-Q Transform (CQT) spectrogram,
leveraging a trained neural network to assign confidence scores to the detected notes. This
process ensures accurate and efficient note identification, which is essential for subsequent
tablature generation.

Based on graph theory and the k-shortest paths algorithm [31], TabGen identifies
the most playable tablature sequences, optimizing transitions between notes and chords
for ease of execution.

4.3.1. Mapping Notes on the Guitar Fretboard

The first step involves creating a map of all possible note positions on a 24-fret
guitar, considering standard tuning (E2-A2-D3-G3-B3-E4). This map, generated by a
function, associates each note with its exact position on the fretboard, represented by
coordinates (x, y). This mapping is essential for calculating the weight of each note, which
reflects its playability based on criteria such as hand movement and string proximity.

4.3.2. Graph Construction

TabGen employs graph theory to model the relationships between note positions.
For each chord, a preliminary graph is constructed, mapping all possible combinations
of note positions. Each combination is assigned a weight based on playability criteria,
including:

• Fretboard Proximity: Evaluates the dispersion of notes along the fretboard,
assigning higher weights to combinations requiring greater hand movement.

• String Proximity: Assesses the distance between strings, penalizing stretches that
increase difficulty.

• Comfort Zone: Adjusts weights based on proximity to the guitarist’s preferred
fretboard position.

For example, a C major chord (C3, E3, G3) can be played in 24 combinations,
as illustrated in Figure 3. These combinations are represented as nodes in the graph,
connected by edges weighted according to playability.

4.3.3. K-Shortest Paths Algorithm

To generate the most playable tablatures, TabGen applies Yen’s algorithm [31],
which extends Dijkstra’s algorithm to find the k shortest paths in a graph. This approach



Figure 3. Graph representation for tablature generation.

Source: Prepared by the author.

ensures that the algorithm identifies multiple viable tablature sequences, optimizing
transitions between chords and minimizing the guitarist’s effort.

4.3.4. Output

The final output of TabGen is a vector containing up to k tablature sequences,
each represented as a sub-vector of note positions and assigned a weight reflecting its
playability. An example of the output structure is shown in Figure 4. This flexibility
allows musicians to choose the most suitable tablature based on their preferences and
skill level.

Figure 4. Example of tablatures generated by TabGen

Final Result:
[

{Tablature: [[(3,1)], [(2,2)], [(0,3),(3,1)(2,2)]], Weight: 100},
{Tablature: [...], Weight: ...},
...
{Tablature: [(k-th combination)],
Weight: (weight of the k-th tablature)}

]

Source: Prepared by the author.

5. Results

In this section, we present the results obtained by the critical modules of
the AutoTab system, focusing on sound event detection and the identification of
notes and chords. The analysis was conducted using two datasets: an external one
(IDMT GUITAR V2) for evaluating sound event detection and an internal one (Custom)
for testing the accuracy of the note and chord identification models.

5.1. Sound Event Detection

The sound event detection module, based on the Spectral Flux method, was
evaluated using 19,341 events. The results showed a hit rate of 87.5% (18,512), with



errors in 3.9% (829) of the samples and a false positive rate of 8.6% (1,823). Although
the method demonstrated effectiveness in identifying sound events, the presence of false
positives suggests the need for improvements, especially in scenarios with rapid chord
sequences or dense sound environments.

5.2. Note and Chord Identification

The note and chord identification models were evaluated using the internal dataset
(Custom), which contains a wide variety of note and chord sounds. The results for each
model are detailed below.

5.2.1. Chord Model (model chords)

The model chords was tested with 51,748 files, achieving a hit rate of 60%
(31,027). However, errors and incorrect detections were significant, with 24.5% (12,700)
and 15.5% (8,021), respectively.

5.2.2. Note Model (model notes)

The model notes showed higher accuracy, with a hit rate of 87.8% (77,910) in
88,704 tested files. Errors and incorrect detections were relatively low, with 7.1% (6,333)
and 5.0% (4,461), respectively.

5.2.3. Generalist Model (model mix)

The model mix, designed to identify both notes and chords, was tested with
142,826 files, achieving a hit rate of 71.1% (101,581). Errors and incorrect detections
were 18.6% (26,521) and 10.3% (14,724), respectively.

5.3. Comparative Analysis

Compared to established methods in the literature, the AutoTab system
demonstrated competence but with room for improvement. The Spectral Flux method
used for sound event detection achieved a hit rate of 87.5%, while CNN-based approaches,
such as the one proposed by [24], achieved an F-score of up to 90.3%. For note
identification, the model notes achieved an accuracy of 87%, in contrast to the CREPE
Pitch Tracker [16], which reaches 96%. For chords, the model chords achieved 60%
accuracy, while the work of [14] achieved 88.7%.

These results highlight the effectiveness of the AutoTab system but also point to
the need for improvements, especially in detecting subtle sound events and identifying
chords in polyphonic contexts.

6. Discussion

The AutoTab system has demonstrated robust performance in automatic guitar
tablature transcription, leveraging advanced signal processing techniques, CNNs, and
graph-based optimization algorithms. The system’s ability to accurately detect sound
events and identify notes and chords has been validated through extensive testing,
achieving an 87.8% accuracy in note identification and a 78% Macro F1-score in
chord recognition. These results highlight the effectiveness of the proposed approach,
particularly in monophonic contexts where the system excels.



However, challenges remain in polyphonic scenarios, where the complexity
of overlapping harmonics and multiple valid fretboard positions for the same note
complicates transcription. While the Spectral Flux method used for sound event detection
achieved a hit rate of 87.5%, the presence of false positives (8.6%) indicates room for
improvement, especially in dense or noisy audio environments. Similarly, the Chord
Model (model chords) achieved a lower accuracy of 60%, suggesting that further
refinement is needed for reliable chord recognition in polyphonic contexts.

The integration of CNNs for spectrogram analysis has proven effective, with the
Note Model (model notes) achieving high accuracy. However, the Generalist Model
(model mix), designed to handle both notes and chords, showed a balanced but lower
performance (71.1% accuracy), indicating that specialized models may still be necessary
for optimal results. These findings align with previous studies, such as [14], which
emphasize the challenges of polyphonic transcription and the need for advanced neural
network architectures.

The TabGen algorithm, based on graph theory and the k-shortest paths approach,
successfully generates playable tablatures by optimizing note transitions for ergonomic
execution. This feature enhances the usability of the system, allowing musicians to choose
from multiple tablature options based on their preferences and skill levels. However,
the algorithm’s reliance on predefined playability criteria may limit its adaptability to
individual playing styles, suggesting a potential area for future enhancement.

7. Conclusion

The AutoTab system represents a step forward in automatic guitar tablature
transcription, offering an accessible and user-friendly solution for musicians of all skill
levels. By integrating signal processing, CNNs, and graph-based optimization, the
system addresses key challenges in musical transcription, such as sound event detection,
note and chord identification, and tablature generation. The interactive web interface
further enhances usability, enabling real-time transcription and providing musicians with
a practical tool for learning and practice.

Despite its strengths, the system has limitations, particularly in handling
polyphonic music and low-quality audio recordings. Future work should focus on
improving the accuracy of chord recognition and sound event detection, potentially
through the use of more advanced neural network architectures or hybrid approaches
combining CNNs with recurrent networks. Additionally, expanding the system’s
functionality to include features such as tablature regeneration, virtual synthesizers, and
database integration could further enhance its utility and appeal.
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[26] Julius O. Smith. Spectral Audio Signal Processing.
http:http://ccrma.stanford.edu/ jos/sasp///ccrma.stanford.edu/˜jos/sasp/,
accessed 2024. online book, 2011 edition.

[27] D.R. Tuohy and W.D. Potter. Ga-based music arranging for guitar. In 2006 IEEE
International Conference on Evolutionary Computation, pages 1065–1070, 2006.

[28] G. Tzanetakis and P. Cook. Musical genre classification of audio signals. IEEE
Transactions on Speech and Audio Processing, 10(5):293–302, 2002.
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