Transformando Smartphones Android em Dispositivos Dew
para Mitigar Limitacoes de Offloading em Redes Instaveis

Filipe de Matos', Paulo A. L. Rego?, Fernando Trinta®

!GOHaN Research Group — Campus of Cratets — Federal University of Ceard (UFC)
63700-000 — Crateus — CE — Brasil

2ATLab — Campus of Pici — Federal University of Cear4 (UFC)
60440-554 — Fortaleza — CE — Brasil

filipe.fernandes@crateus.ufc.br, {paulo, fernando.trinta}@dc.ufc.br

Abstract. Offloading helps overcome mobile devices’ computational and energy
limits, but its performance depends on an efficient server language and a sta-
ble network, which are not always guaranteed. Dew Computing converts client
devices into Dew devices, enabling local execution of server processes and pri-
oritizing internal interactions. This work defines the Duplication Management
Service (SGD), which transforms Android smartphones into Dew devices and
evaluates its impact. Tests with real devices showed that Dew enables tasks pre-
viously infeasible, reduces network traffic by up to 2.5x, and computes tasks up
to 2.9x faster in high competition scenarios despite consuming up to 19.4x more
energy. It is a promising option for unstable networks or low bandwidth.

Resumo. O offloading ajuda a superar as limitacdes de processamento e ener-
gia de dispositivos moveis, mas seu desempenho depende de uma linguagem de
servidor eficiente e de uma rede estdvel, o que nem sempre é garantido. A Dew
Computing transforma dispositivos clientes em dispositivos Dew, permitindo a
execugdo local de processos de servidor e priorizando interagoes internas. Este
trabalho define o Servigo de Gerenciamento de Duplicacdo (SGD), que converte
smartphones Android em dispositivos Dew e avalia seu impacto. Testes com dis-
positivos reais mostraram que a Dew viabiliza tarefas antes invidveis, reduz o
trdfego de rede em até 2,5 vezes e realiza tarefas até 2,9 vezes mais rdpido em
cendrios de alta competicdo, apesar de consumir até 19,4 vezes mais energia.
E uma op¢do promissora para redes instdveis ou com baixa largura de banda.

1. Introducao

Dispositivos méveis, como smartphones e tablets, possuem restricoes computacionais €
energéticas em comparagao a desktops e servidores. O offloading, técnica que consiste no
envio de tarefas via rede para serem processadas por maquinas mais poderosas, poupando
recursos do dispositivo remetente [De 2016], tem se mostrado eficiente para mitigar tais
limitagdes. No entanto, o offloading ainda enfrenta desafios, como a influéncia da laténcia
da rede em seu desempenho [Pedhadiya et al. 2019, Shakarami et al. 2020].

A constante evolu¢@o do hardware dos dispositivos computacionais motivou o sur-
gimento de um novo paradigma p6s-Computacao em Nuvem, denominado Dew Compu-
ting [Wang 2015]. A Dew prop0e trazer partes dos servigos inicialmente alocados na Nu-
vem, bem como paradigmas pos-Nuvem, para o dispositivo do usudrio, assegurando seu

funcionamento mesmo em condi¢des de conectividade limitada ou ausente [Ray 2019].
Para viabilizar a Dew, o dispositivo do usudrio deve conter componentes que faci-
litem e automatizem o processo de duplicacdo, ou seja, a recep¢do, hospedagem e
disponibilizacdo de uma “copia” dos servigos-alvo na propria maquina do usudrio.

No contexto do offloading em smartphones, um desafio relevante, porém pouco
explorado, esta relacionado a linguagem de programacao utilizada na execugdo remota
das tarefas. A maioria dos estudos nesse drea € focada na plataforma Android e na lingua-
gem Java, especialmente devido a popularidade do Android e ao caréter de c6digo aberto
da plataforma mével. Contudo, estudos como [Georgiou et al. 2018, Pereira et al. 2021]
apontam que outras linguagens de programacao superam o Java em desempenho compu-
tacional e eficiéncia energética, evidenciando as limitacdes dessa linguagem, sobretudo
em dispositivos com recursos restritos.

Para enfrentar esse problema, [de Matos. et al. 2021] combinou as técnicas de of-
floading e de comunicac¢ao multilingue, permitindo que aplicativos clientes, muitas vezes
desenvolvidos em linguagens ineficientes, interajam com servidores escritos em lingua-
gens mais eficientes. Essa abordagem, chamada offloading multilingue (MLO), demons-
trou que servidores mais eficientes que o Java podem acelerar o processamento de tarefas
em até 38% e economizar até 25% de energia do dispositivo cliente. Entretanto, a rede
foi o principal limitador, respondendo por até 97% do tempo de resposta. Para lidar com
esse problema, [de Matos et al. 2022] criou o Servi¢co de Offloading Multilingue (SML),
que integra o servidor de offloading diretamente no smartphone cliente, permitindo que o
dispositivo execute as demandas do aplicativo independentemente da rede. Os resultados
mostraram que mover o processo servidor para o smartphone e permitir o autoatendi-
mento reduz em até 87% o tempo de resposta € 25% o consumo de energia em cendrios
com alto volume de dados, além de diminuir o trafego de rede em até 97%.

Este trabalho melhora o SML ao remodelar seus componentes, facilitando sua
configuracdo e automatizando seu funcionamento, tornando o smartphone Android um
dispositivo Dew apto a duplicar servi¢os de offloading. Também foram realizados no-
vos testes com uma nova linguagem servidora (Golang) e em cendrios mais realistas,
incluindo aplicacdo de filtros em imagens, diferentes filtros e niveis de carga da rede.

2. Fundamentacao Teorica

Esta secdo discute conceitos basicos para a compreensdo da proposta e dos testes realiza-
dos: offloading multi-linguagem (Secdo 2.1) e paradigma Dew Computing (Se¢ao 2.2).

2.1. Offloading multi-linguagem (MLO)

Em [de Matos. et al. 2021], o MLO foi proposto como uma extensao do offloading tra-
dicional, cujo principal diferencial é permitir a interag@o entre processos implementados
em linguagens distintas, aproveitando as caracteristicas e os beneficios especificos de
cada uma. A arquitetura do MLO segue o modelo Cliente-Servidor, no qual o cliente, ge-
ralmente um dispositivo movel, transfere tarefas para servidores mais potentes, que vao
desde cloudlets locais até infraestruturas em Nuvem. Diferentemente do offloading tra-
dicional, o MLO exige a padronizacdo das mensagens para garantir a interoperabilidade
entre diferentes linguagens. Ferramentas como gRPC e Apache Thrift viabilizam essa
comunicagao, assegurando a invocacao remota e a serializacao eficiente dos dados.

O MLO permite integrar ecossistemas heterogéneos, nos quais cada componente
pode ser desenvolvido na linguagem mais adequada as suas func¢des, otimizando o desem-
penho e o uso dos recursos computacionais. Tal abordagem € particularmente util em con-
textos nos quais dispositivos moveis, sujeitos a restricdes computacionais e energéticas,
precisam executar suas proprias tarefas e também as de outros dispositivos.

2.2. Dew Computing

Dew Computing foi proposto como um novo paradigma computacional que aprimora a
relacdo entre computadores de usudrio (PCs) e a Nuvem, baseando-se em dois principios-
chave: independéncia e colaboracdao [Wang 2015]. A independéncia permite que os PCs
oferecam servigos localmente, reduzindo a dependéncia de conexdes de rede instaveis e
da prépria Nuvem. J4 a colaboracgdo otimiza a entrega de servicos ao integrar PC e Nuvem
de forma sinérgica, permitindo ajuda mutua entre eles quando existir conexao de rede.

Para viabilizar esse novo paradigma, os PCs atuam como dispositivos Dew, con-
figurados para duplicar dados ou servi¢os da Nuvem, da Fog ou da Edge [Gushev 2020].
Tal processo de duplicacdo envolve a transferéncia de uma copia, total ou parcial, desses
servicos ou dados remotos para o dispositivo Dew. Assim, o consumo dos servigos é
garantido mesmo sem conectividade, assegurando maior autonomia. Em redes estdveis,
o dispositivo Dew colabora de maneira automatica com a Nuvem, aprimorando a quali-
dade do servico, reduzindo a carga nos servidores centrais € melhorando a experiéncia do
usuario com resili€éncia local e suporte remoto. Embora inicialmente projetado para PCs,
o paradigma Dew foi expandido para incluir dispositivos como smartphones e smartwat-
ches em trabalhos recente, como [Garrocho and Oliveira 2020].

Em resumo, a Dew otimiza o consumo dos recursos dos dispositivos dos usudrios,
tornando-os menos dependentes dos paradigmas tradicionais de Nuvem. Ao permitir a
operacdo autébnoma, o paradigma reduz os impactos da baixa qualidade de conexdo e da
instabilidade da rede no processo de offloading computacional, proporcionando melhor
experiéncia ao usudrio, além de maior resiliéncia e efici€ncia ao sistema.

3. Trabalhos Relacionados

Diversos estudos ja avaliaram o desempenho de diferentes linguagens de programacgado na
computacao local [Pereira et al. 2021, Bugden and Alahmar 2022] ou remota (i.e., via of-
floading) [Georgiou and Spinellis 2019, Araujo et al. 2020] de tarefas, usando aplicacdes
reais e/ou benchmarks. Por exemplo, em [Cunha et al. 2024], analisaram-se 20 lingua-
gens, Java e Golang inclusas, considerando consumo energético e tempo de execugao.
Avaliando as métricas em conjunto, C/C++ se destacaram entre as linguagens compila-
das, Julia e Dart entre as interpretadas e C#, Java e JavaScript entre as que operam em
Miquinas Virtuais. Separadamente, Haskell obteve maior eficiéncia energética, enquanto
Julia apresentou o menor tempo de execucao. Por outro lado, em [De Matos et al. 2023],
avaliaram-se o desempenho e a escalabilidade do OML em redes HSDPA e LTE,
comparando-o com solu¢des mono-linguagem. O OML apresentou bom desempenho,
com operacoes sobre matrizes 1000x1000 processadas 34% mais rapidamente no ser-
vidor Golang em HSDPA do que localmente, além de boa escalabilidade, com tempos
menores no servidor Golang, independentemente da rede ou do nimero de clientes.

Embora a Dew seja um paradigma relativamente recente, ja ha um ntimero sig-
nificativo de trabalhos que a utilizam para resolver problemas em diversas areas do co-

nhecimento [Garrocho and Oliveira 2020, Singh et al. 2023, Yannibelli et al. 2023]. Por
exemplo, em [Bera et al. 2023], os autores desenvolveram um sistema para prever a pro-
dutividade do solo em um ambiente de Internet of Agricultural Things (I0AT), modelado
em quatro camadas: loT, Dew, Edge e Cloud. A camada Dew, composta por dispositivos
com alto poder computacional, acumula e pré-processa os dados dos sensores da camada
IoT. Os autores conduziram testes emulados que avaliaram o impacto da camada Dew em
um ambiente IoAT. Os resultados mostraram que a presenga da Dew reduziu o tempo de
resposta em até 70% e o consumo de energia em até 80%.

Os trabalhos do primeiro grupo mostraram que a escolha estratégica de linguagens
de programacao pode otimizar o desempenho do sistema, economizando recursos compu-
tacionais e energéticos, com ou sem offloading. Ja o segundo grupo destacou que a Dew
acelera o processamento, reduz o consumo de largura de banda e torna os dispositivos
mais autonomos, reduzindo sua dependéncia de outros paradigmas computacionais e até
mesmo da prépria Internet, tornando a execugdo de aplicacdes mais resiliente e eficiente
em cenarios com conectividade limitada. Essas descobertas apontam um caminho promis-
sor para combinar tais abordagens, especialmente em contextos nos quais a computacao
com linguagem nativa e o offloading se mostram ineficientes ou até mesmo inviaveis.

Em [de Matos et al. 2022], houve a primeira tentativa de integrar os dois grupos
mencionados ao se desenvolver o Servico de Offloading Multi-Linguagem (SML). No en-
tanto, o SML era apenas um prot6tipo, concebido como uma prova de conceito para ve-
rificar a viabilidade de duplicar um processo servidor remoto, escrito em uma linguagem
mais eficiente, em um smartphone Android e avaliar os beneficios gerais dessa aborda-
gem. Este trabalho aprimora a versdo original, refinando a arquitetura do servigco Android
para tornd-lo mais generalista e adaptdvel a diferentes aplicacdes, além de conduzir novos
testes mais alinhados com cenérios do mundo real.

4. Servico de Gerenciamento de Duplicacdo (SGD)

Esta secdo define o Servico de Gerenciamento de Duplicacdo (SGD), uma versdo apri-
morada do Servico de Offloading Multi-Linguagem (SML) de [de Matos et al. 2022]. O
SGD se diferencia do SML por: 1) Implementar um mecanismo automatizado para loca-
lizar o Lado Servidor e duplicar o processo; ii) Separar as trés principais atividades em
componentes distintos; iii) Criar trés modelos de estratégias, a serem definidas em tempo
de execu¢ao do SGD, para guiar o comportamento de cada componente. As Secdes 4.1 e
4.2 descrevem, respectivamente, os componentes dos lados Servidor (coloridos em verde)
e Cliente (coloridos em roxo) da Figura 1.

I Interface de Interagdo com o Cliente
e Servidor de
1 D b
Gerenciar Duplicar :

Servidor "i"é':_?ede »| Servidor fe------tf---—c-poeoa
Local Remoto Gerente de 1
AT

Provedor de

Servidor de
Duplicagdo

[| T

Cache de

Servigo de Gerenciamento| Bindrios
de Duplicagao .

Repositério
de Binarios

Figura 1. Arquitetura do Servico de Gerenciamento de Duplicacao

4.1. Lado Servidor

O Servigo de Duplicacdo permite que o Lado Cliente, hospedado em um dispositivo An-
droid, obtenha os bindrios dos processos servidores. Um binério de processo servidor €
um executdvel utilizado para iniciar o servidor em uma plataforma especifica. Portanto, é
por meio do download e da posterior execucdo de um desses arquivos na plataforma An-
droid que o processo servidor € duplicado. O Servigo de Duplicacdo aguarda requisicoes
REST e retorna o bindrio alvo se a requisi¢do contiver, no minimo, os identificadores do
processo servidor e da plataforma onde o Lado Cliente estd sendo executado. O servigo
possui dois componentes principais: o Servidor de Duplicac@o e o Provedor de Bindrios.

O Servidor de Duplicacdo, desenvolvido com Flask, oferece o endpoint /bins
para atender as requisi¢coes do Lado Cliente relacionadas a duplicagdo de processos. As
requisicoes sdo validadas para garantir que contenham as informagdes necessarias para
que o Provedor de Bindrios localize o bindrio alvo no Repositério. Requisi¢des invalidas
retornam erro e encerram a duplica¢do. O Provedor de Bindrios realiza apenas operagdes
de leitura, e o endpoint /bins suporta apenas o método GET do HTTP.

O Servigo de Descoberta fornece ao Lado Cliente, no inicio da duplicacdo, o
endere¢o IP da mdquina que hospeda o Lado Servidor, permitindo a interagdo com o
Servico de Duplicacdo. Para facilitar sua localizacao, ele foi inserido em um grupo Mul-
ticast conhecido, escutando em uma porta padrao. Assim, para estabelecer uma conexao
com o Servigo de Descoberta, o Lado Cliente envia uma mensagem para o grupo Multi-
cast e recebe o IP da maquina servidora em resposta. Nenhum mddulo de terceiros foi
utilizado no desenvolvimento deste servico.

4.2. Lado Cliente

Como a pesquisa € voltada para smartphones Android, optou-se por implementar o Lado
Cliente como um servico nessa plataforma, visando proporcionar o maximo de autonomia
a ele. Nesse contexto, foi proposto o SGD, que, uma vez configurado, age de forma quase
independente do aplicativo Android que o instanciou.

O SGD tem dois componentes fundamentais. A Cache de Bindrios é uma pasta
no smartphone onde sdao armazenados os bindrios dos servidores duplicados ou em pro-
cesso de duplicagdo. E essencial que o SGD tenha privilégios de leitura, escrita e, prin-
cipalmente, de execu¢do dos arquivos persistidos nessa pasta, uma vez que ele devera
salvar e executar os bindrios dos processos servidores nela armazenados. O Gerente de
Duplicacao, por sua vez, controla as a¢des relacionadas a duplicac@o: 1) Duplicar Servi-
dor Remoto; 2) Administrar Servidor Local; e 3) Limpar a Cache de Binérios.

A acdo de Duplicar Servidor Remoto envolve salvar o binério do processo servidor
na Cache de Bindrios. Primeiro, decide-se quando iniciar o procedimento, considerando o
contexto do smartphone (como consumo de recursos) e/ou do ambiente (como laténcia da
rede). Em seguida, busca-se a maquina servidora via Servigo de Descoberta. Apds obter
o endereco, realiza-se o download do binario via Servico de Duplicacdo, salvando-o na
Cache. Tal agdo € repetida sempre que o binario alvo ndo estiver na Cache.

A acdo de Administrar Servidor Local envolve identificar o melhor momento
para iniciar e encerrar um processo servidor local, bem como executar essas acoes. A
inicializacdo de um processo servidor local exige que seu binario j4 esteja na Cache, in-
dicando que a acdo de Duplicar Servidor Remoto ocorreu previamente. Com base no

contexto interno do smartphone, a atividade avalia periodicamente se ¢ adequado iniciar
ou encerrar um processo servidor, executando a acdo conforme necessario.

Finalmente, a acdo de Limpar a Cache de Binarios envolve excluir binarios do
sistema de arquivos do smartphone, com o objetivo de poupar recursos computacionais
do dispositivo. Tal a¢do avalia periodicamente se o bindrio do processo servidor pode ser
removido da Cache. A decisdo considera se o bindrio estd em uso e pode levar em conta
o contexto do smartphone, como se o armazenamento estd cheio ou quase saturado.

Cada atividade € executada por uma thread especifica, instanciada durante a
inicializacdo do Gerente de Duplicacdo. O comportamento de cada thread é determinado
dinamicamente durante a configuracdo do Gerente de Duplicacdo, por meio de estratégias.
Além das estratégias, o Gerente de Duplicagdo também precisa saber a frequéncia com
que cada atividade serd realizada. Assim, durante a configura¢do do servico, também
devem ser informados os intervalos de tempo em que cada thread serd escalonada para
execucdo. Por padrdo, as atividades ocorrem a cada N minutos, onde N foi inicialmente
definido como 1, exceto a de Limpar a Cache, realizada a cada N/3 minutos. Toda a etapa
de configuracdo ocorre por meio da Interface de Interagdo com o Cliente.

A versao atual do SGD inclui trés estratégias para cada uma das atividades men-
cionadas. A estratégia de Duplicar Servidor Remoto cria uma cdpia do processo servidor
sempre que o bindrio do servidor alvo ndo esta presente na Cache de Binarios. Ja a es-
tratégia de Administrar Servidor Local inicia o servidor quando seu binario esta na Cache,
mas o servidor ainda ndo estd em execugdo. Por fim, a estratégia de Limpar a Cache de
Bindrios executa a limpeza sempre que o processo servidor ndo esté ativo no smartphone.
Perceba que cada estratégia executa suas acoes sem considerar o contexto do smartphone
ou da rede, atualmente. Isso acontece porque, na versdo atual do SGD, cada estratégia
tem apenas um papel ilustrativo. A expectativa é que, em trabalhos futuros, sejam desen-
volvidas estratégias reais de tomada de decisdo, capazes de determinar os momentos mais
adequados para executar as acdes estipuladas para cada atividade.

5. Experimentos e Resultados

O ambiente experimental (Tabela 1) foi composto por quatro dispositivos: trés smartpho-
nes clientes e um notebook servidor, que atuou como Cloudlet. Esses dispositivos foram
conectados por uma rede sem fio, organizados em uma topologia estrela e posicionados a
poucos centimetros entre si. O notebook hospedou ambos os servicos do Lado Servidor,
os bindrios necessarios para a duplicacao e o processo servidor de offloading, enquanto os
smartphones executavam a aplicacdo usada nos experimentos € o SGD, configurado com
estratégias simplificadas, para replicar o processo servidor remoto localmente. Entendem-
se como estratégias simplificadas aquelas desenvolvidas da forma mais simplista possivel.

Foi escolhida a aplicacao BenchImage [Rego et al. 2017], adaptada para submeter
tarefas para processamento através do framework Apache Thrift e para iniciar o SGD.
Cliente e servidores de offloading foram desenvolvidos com os mesmos algoritmos, em
Java e Golang, respectivamente, sem paralelismo, garantindo a execucdo idéntica das
tarefas. As tarefas consistiam em aplicar os filtros GrayScale e Pencil na imagem SkyLine
de baixa (1 MP) e de alta (8 MP) resolu¢@o. O primeiro foi escolhido por ser um filtro
basico, enquanto o segundo foi escolhido por aplicar dois filtros (Gaussian e Sobel) em
sequéncia, o que o torna mais complexo, exigindo mais recursos do dispositivo.

Objetivo(s) | Realizar experimentos de Prova de Conceito com a arquitetura e avaliar os impactos que
ela pode proporcionar no processamento de tarefas em uma aplicacdo mével.

Sistema MotorolaGPlay/Cliente Qualcomm Snapdragon (1.2GHz, Quad Core), 2GB RAM e An-
(dispositivos| droid 7, Samsung]J5/Cliente Qualcomm Snapdragon (1.2GHz, Quad Core), 1.5GB RAM
utilizados) | e Android 6, MotorolaE6/Cliente MediaTek (2GHz, Octa Core), 2GB RAM e Android
9, Notebook/Cloudlet com Intel Core i7, 12GB RAM e Ubuntu 22.04, Roteador Net-
gear WGR612 para construir uma rede WiFi 2,4 GHz exclusiva entre os dispositivos.

Fatores/ Cendrios (Dispositivos Juntos e e Dispositivos Separados) Tipos de Processamento (Lo-

Niveis cal, Dew e Cloudlet), Linguagens de Niveis de Programacao (Golang e Java), Resolugdo
de imagem (1 MP e 8 MP) e Filtro de imagem (GrayScale e Pencil).

Iteracoes Cada experimento foi realizado 50 vezes para cada combinag@o de Fatores/Niveis; Dentre
os resultados, foram removidos os outliers e escolhidas as 40 amostras mais rdpidas.

Métricas Tempo de Reposta (tempo necessdrio para aplicar o filtro na imagem), Consumo de Rede

avaliadas (quantidade de bytes transmitidos na rede durante o processamento) e Consumo de Ener-

gia (energia dispendida para aplicar o filtro na imagem).

Tabela 1. Detalhes sobre a configuracao dos experimentos realizados

Também foi introduzido um novo mecanismo de computacdo de tarefas, a abor-
dagem Dew, onde cada tarefa € processada por um processo servidor recém-duplicado no
smartphone através do SGD. Uma vez em execug¢ao, o processo servidor recém-duplicado
atende as requisicoes do aplicativo cliente através da interface de loopback e nao realiza
mais acOes na rede externa. Os demais mecanismos sdo: Local (realizada pelo préprio
aplicativo cliente) e Cloudlet (realizada pelo processo servidor hospedado no notebook).

Foram avaliadas as métricas Tempo de Resposta, Consumo de Energia e Consumo
de Rede. O Tempo de Resposta considera apenas o tempo de aplicagao do filtro, excluindo
o tempo de duplicacdo, que leva cerca de 50s na abordagem Dew, segundo testes preli-
minares. O Consumo de Energia também considera apenas a energia gasta para aplicar
o filtro, enquanto o Consumo de Rede mede os byfes transmitidos nas abordagens Dew
e Cloudlet. A abordagem Local foi desconsiderada por nao utilizar a rede. O Tempo de
Resposta foi medido na aplicacdo, o Consumo de Energia via dumpsys e o Consumo de
Rede através do Wireshark monitorando a porta padrdo no servidor.

Os experimentos foram repetidos 50 vezes com o auxilio da ferramenta Ebser-
ver [Oliveira et al. 2023]. Outliers (fora da faixa interquartil) foram excluidos e as 40 en-
tradas restantes mais rdpidas foram avaliadas. Também foram aplicados testes estatisticos
e post-hoc para garantir a precisao das conclusdes: Kruskal-Wallis seguido de Nemenyi
para Tempo de Resposta e Consumo de Energia, e Mann-Whitney para Consumo de Rede.
Os resultados sao apresentados e discutidos conforme os dois cendrios a seguir.

5.1. Cenario 1: Dispositivos Separados

Este cendrio comparou as abordagens Local, Dew e Cloudlet no Samsung J5 sem con-
corréncia mutua, garantindo mais recursos na rede e no servidor para operagdes remotas.
A rede ndo foi isolada de interferéncias externas, possivelmente causando retransmissoes
por colisoes de sinais. Uma rede com boa largura de banda disponivel e um servidor subu-
tilizado favorecem o offloading (adotada pela abordagem Cloudlet), que depende bastante
da transmissao de dados para ser eficiente. Ja a abordagem Dew se beneficia disso apenas
durante a duplicacdo do processo, operando localmente depois.

A Tabela 2 resume os resultados deste cendrio. Em relacdo ao Tempo de Resposta,

a abordagem Dew ndo superou a Cloudlet, independentemente do filtro ou resolucdo da
imagem, como era esperado. Em ambientes com baixa disputa, o offloading da Cloudlet
deve a ser mais eficiente, uma vez que a transmissdo de dados tende a ser mais rapida.
Além disso, a computagdo da tarefa acontece no notebook na Cloudlet, com hardware
superior comparado ao smartphone da Dew, o que afeta a velocidade de computacao.

CENARIO 1 Tempo de Reposta Consumo de Energia Consumo de Rede
(em segs) (em Joules) (em Kbytes)

Filtro Res Loc Dew Clo Loc Dew Clo Dew Clo
1 MP 14,12 2,31 1,55 9,69 2,51 0,56 | 3006,32 | 1000,68
GrayScale 40,03 | £0,01 | £0,01 | £0,42 | +£0,04 | +0,03 | +144,40 40,62
3 MP) 16,99 | 10,94) 9,38 0,98 | 3086,93 | 7001,15
40,03 | £0,05 40,08 | £0,07 +2,64 40,01
1 MP 23,89 4,76 2,01 | 17,79 3,52 0,59 | 3078,01 | 1181,11
Pencil 40,04 | £0,01 | £0,01 | £1,54 | £0,01 | +0,03 40,73 40,43
3 MP) 35,20 | 15,42) 19,19 1,02 | 3083,08 | 8001,12
40,04 | £0,34 40,10 | £0,02 +1,27 40,01

Tabela 2. Resultados do smartphone SamsungJ5 no Cenario 1

Se por um lado a abordagem Dew nao superou a Cloudlet, por outro ela foi melhor
que a Local em todas as configuracdes. Em alguns casos, a abordagem Dew computou
tarefas que a abordagem Local ndo conseguiu devido a problemas de memoria. Tais
resultados confirmam a literatura, que aponta o Java (usado no cliente) como mais lento e
mais consumidor de recursos do que o Golang (usado no servidor duplicado).

Quanto ao Consumo de Energia, a abordagem Cloudlet mostrou-se mais vanta-
josa, como esperado, pois a Dew exige maior participacdo do smartphone ao computar
a tarefa, aumentando o consumo de energia, enquanto na Cloudlet o dispositivo apenas
aguarda o resultado. O Tempo de Resposta reduzido na Cloudlet também contribui para
sua eficiéncia. Além disso, a Dew foi mais econdmica que a Local, embora ndo tenha sido
possivel comparar para imagens de 8 MP devido ao alto Tempo de Resposta da Local.

Quanto ao Consumo de Rede, a abordagem Dew apresentou desempenho quase
idéntico para todas as resolugdes e filtros, pois a interacdo com a rede ocorre apenas du-
rante a duplicacdo. O download consumiu recursos de rede semelhantes, com pequenas
variacOes devido a interferéncias externas potencialmente. Para imagens de 8 MP, a Dew
transmitiu metade dos dados da Cloudlet. Para 1 MP, a Cloudlet enviou um ter¢o dos da-
dos da Dew. Esse comportamento esté relacionado ao tamanho das imagens e do bindrio,
pois quanto maior a resolu¢do, maior a quantidade de dados necessaria, ao passo que o
bindrio tem tamanho fixo. Esses resultados apontam que a Dew pode economizar recur-
sos e reduzir o congestionamento da rede. Os testes estatisticos e post-hoc confirmaram
diferenca significativa entre os valores da Tabela 2, refor¢cando os argumentos desta secao.

5.2. Cenario 2: Dispositivos Juntos

O segundo cendrio comparou as abordagens Dew e Cloudlet em um ambiente onde 0s trés
smartphones iniciam o processamento simultaneamente, o que aumenta a disputa e reduz
a largura de banda disponivel. Além disso, a sobrecarga no notebook, que processa as
tarefas de trés dispositivos, pode tornar o offloading mais lento, tornando o cendrio mais
desafiador para a Cloudlet. A Dew também € afetada pelo compartilhamento da rede,

porém menos que a Cloudlet, pois as a¢des na rede ocorrem apenas durante a duplicacio,
quando os tré€s smartphones disputam o acesso ao Servico de Duplicagdo.

A Tabela 3 resume os resultados obtidos neste cenério. Focando apenas no Tempo
de Resposta, nota-se que, ao contrario do cendrio anterior, a abordagem Dew teve o me-
lhor desempenho em todas as configuracdes avaliadas em comparagdo a Cloudlet. Tal re-
sultado era esperado, pois o compartilhamento da rede e do notebook pelos smartphones
gera disputas de recursos, afetando o desempenho da Cloudlet. A diferenca de desempe-
nho entre as abordagens Local e Dew permaneceu significativa, embora tenha diminuido
levemente, pelo mesmo motivo apresentado no cendrio anterior.

CENARIO 2 Tempo de Reposta Consumo de Energia Consumo de Rede
(em segs) (em Joules) (em Kbytes)

Filtro Res Loc Dew Clo Loc Dew Clo Dew Clo
1 MP 14,12 2,27 8,39 9,69 2,83 0,57 | 3815,89 | 1002,10
GrayScale 40,03 | £0,01 | £0,01 | £0,42 | £0,01 | £0,01 +2,10 40,45
3 MP) 16,80 | 50,32) 9,35 1,17 | 3905,08 | 8124,25
40,03 | £0,98 40,05 | £0,02 | £157,70 +4,20
1 MP 23,89 4,73 | 11,76 | 17,79 3,88 0,61 | 3814,49 | 1183,67
Pencil 40,04 | £0,01 | £0,35 | +1,54 | £0,05 | £0,01 +2,24 40,47
8 MP i 35,06 | 62,37) 19,11 1,38 | 3835,49 | 9095,00
40,05 | £0,99 +0,17 | £0,07 +2,56 +5,60

Tabela 3. Resultados do smartphone SamsungJ5 no Cenario 2

Ja em relacdo a métrica de Consumo de Energia, ao contrario do Cenario 1, a abor-
dagem com o menor Tempo de Resposta (Dew) nao foi a que consumiu menos energia.
Na abordagem Dew, o smartphone cliente hospeda também o processo servidor, exigindo
um papel ativo para processar as tarefas, o que aumenta o consumo de energia do dis-
positivo. Em contrapartida, a espera passiva na abordagem Cloudlet economiza energia,
embora seja significativamente mais demorada. Também nota-se que a Dew consome me-
nos energia que a Local, devido ao uso de uma linguagem de programacao mais eficiente.

Por fim, em relacao ao Consumo de Rede, nao houve diferengas significativas em
relacdo as observacdes discutidas no Cenario 1, exceto pelo aumento no trafego de dados
em todas as configuragdes. Isso se deve a maior disputa no meio compartilhado, com mais
smartphones usando a rede simultaneamente. Quanto maior a concorréncia, mais chances
de colisdes e retransmissdes de pacotes, o que tende a elevar o Consumo de Rede. Como
no cendrio anterior, os testes estatisticos e post-hoc evidenciam diferencgas significativas
na Tabela 3, refor¢cando os argumentos desta secao.

5.3. Consideracoes Finais

A arquitetura do SGD, apesar de sua flexibilidade e robustez, apresenta desafios que de-
vem ser considerados. Um dos principais € a necessidade de desenvolvimento separado
para cliente e servidor, possivelmente utilizando linguagens distintas. Essa caracteristica
pode aumentar a complexidade do desenvolvimento e manuten¢ao do sistema. No en-
tanto, estratégias como a Engenharia Orientada a Modelos (MDE) ou o uso de Modelos
de Linguagem Ampla (LLMs) para traducdo de c6digo podem mitigar esse obstaculo.

Além disso, a duplicagdo do processo servidor no dispositivo movel pode ex-
por a ataques, como inje¢ao de cddigo e falhas de seguranca. Para mitigar esse risco,

recomenda-se usar servidores confiaveis e autenticados, além de realizar o download se-
guro com protocolos criptograficos robustos, como o TLS (Transport Layer Security),
para garantir a confidencialidade e integridade do binério durante a fase de duplicagdo.

Outro desafio identificado foi o elevado tempo de duplicagdo do processo servi-
dor, que pode comprometer a eficiéncia do sistema, especialmente em cendrios dindmicos
e em aplicagdes sensiveis a laténcia. Diante disso, propdem-se estudos voltados a criagdo
e a avaliacdo experimental de solucdes concretas para mitigar o atraso causado por esse
processo. Entre as estratégias promissoras, destacam-se o uso de técnicas como cache
distribuida e a duplicacdo proativa de processos com base na previsao de demanda, apoi-
ada, por exemplo, por modelos inteligentes de tomada de decisdo. Em ambos os casos, €
essencial buscar um equilibrio entre a rapida disponibiliza¢do do processo e 0 consumo
de recursos do dispositivo do usudrio, que, em geral, apresenta limitacdes nesse aspecto.

Por outro lado, os resultados indicaram que a Dew, viabilizada pelo SGD, tem
vantagens relevantes. No cendrio com alta disputa por recursos, ela superou o offloa-
ding em velocidade, desde que o processo servidor estivesse previamente duplicado no
smartphone. Além disso, ela reduziu o impacto da transmissdo de dados, essencial para
aplicacdes com comunicacao continua, como jogos. Esses achados destacam a Dew como
uma alternativa promissora para solucdes como as de [Robaina and Fiorese 2023], permi-
tindo execucdo eficiente sem depender da conectividade com a rede.

Os experimentos também confirmaram achados do estudo anterior, mostrando que
a Dew mantém um consumo de rede estavel, poupando largura de banda em situagcdes de
grande volume de dados de entrada e saida. Porém, o maior consumo energético do
dispositivo mével em comparagdo com o offloading precisa ser melhor investigado, pois
pode ser uma restri¢cao séria para dispositivos com baterias menores, como smartwatches.

Em resumo, os testes confirmaram e expandiram observagdes anteriores, mos-
trando que a abordagem Dew do SGD amplia as capacidades do smartphone, especial-
mente em redes sobrecarregadas ou instaveis. Contudo, desafios como os altos tempos
de duplicagcdo e consumo energético precisam de mais exploragdo. Estudos futuros de-
vem focar na otimizacao desses aspectos € na avaliacdo em aplicagdes de maior escala,
consolidando sua contribui¢do para a computagao distribuida.

6. Conclusao e Trabalhos Futuros

Embora o offloading ajude a mitigar as restricdoes dos dispositivos méveis, ele ainda en-
frenta desafios, como a laténcia de rede, que afeta seu desempenho. Em um trabalho ante-
rior [de Matos et al. 2022], foi desenvolvido um protétipo de servico Android, chamado
Servigo de Offloading Multi-Linguagem (SML), que permite que dispositivos moveis as-
sumam processos servidores de offloading originalmente hospedados em maquinas remo-
tas, reduzindo os impactos da rede ao realizar a interacao localmente.

Este trabalho aprimorou o SML, preservando seu objetivo original, mas reformu-
lando sua arquitetura interna para torna-lo mais flexivel as necessidades de diferentes
aplicativos. A principal mudanca foi a introdu¢do do conceito de estratégias, que permite
definir dinamicamente o comportamento dos componentes centrais do SGD em tempo
de execucao. Tal abordagem proporciona maior controle e personalizacdo, otimizando o
desempenho do sistema em diferentes cenarios e requisitos de aplicagdo. Os testes re-
alizados em um novo contexto e cendrio reforcaram observagdes do trabalho anterior e

também revelaram novos resultados sobre os impactos da abordagem Dew. Por exem-
plo, em uma rede congestionada, a Dew reduziu o tempo de resposta das tarefas em até
3,7 vezes em relagdo a abordagem que usa o offloading. Além disso, foi identificado
que a solu¢ao do SGD ampliou a capacidade dos smartphones Android, permitindo que,
ao duplicar processos servidores desenvolvidos em linguagens mais eficientes do que a
adotada no aplicativo cliente, ndo sé houvesse uma reducdo no tempo de resposta e no
consumo de energia do dispositivo movel, como também fosse possivel computar tarefas
que anteriormente eram inviaveis com a linguagem nativa.

Como trabalhos futuros, sugere-se o estudo e o desenvolvimento de estratégias
que considerem o contexto do smartphone (como a carga de bateria disponivel) e da rede
externa (como o nivel de intensidade do sinal) para determinar os melhores momentos
para que o SGD possa agir. Também se pretende conduzir uma pesquisa focada na criagao
de estratégias e no uso de caching para reduzir o tempo de duplicac@o e mitigar os efeitos
negativos da acdo no desempenho da solu¢do Dew. Por fim, realizar testes com novos
dispositivos, linguagens servidoras e aplicativos continua sendo bastante promissor.

Referéncias

Aratjo, M., Maia, M. E. E,, Rego, P. A. L., and De Souza, J. N. (2020). Performance
analysis of computational offloading on embedded platforms using the gRPC fra-
mework. In 8th International Workshop on ADVANCE:s in ICT Infrastructures and
Services (ADVANCE 2020), pages 1-8.

Bera, S., Dey, T., Mukherjee, A., and Buyya, R. (2023). E-cropreco: a dew-edge-based
multi-parametric crop recommendation framework for internet of agricultural things.
The Journal of Supercomputing, 79:11965-11999.

Bugden, W. and Alahmar, A. (2022). The safety and performance of prominent pro-
gramming languages. International Journal of Software Engineering and Knowledge
Engineering, 32:713-744.

Cunha, S. a., Silva, L., Saraiva, J. a., and Fernandes, J. a. P. (2024). Trading runtime for
energy efficiency: Leveraging power caps to save energy across programming langua-
ges. In Proceedings of the 17th ACM SIGPLAN International Conference on Software
Language Engineering, SLE ’24, page 130-142, New York, USA. ACM.

De, D. (2016). Mobile Cloud Computing: Architectures, Algorithms and Applications.
CRC Press.

de Matos, F., Oliveira, W., Castor, F., Rego, P., and Trinta, F. (2022). Multi-language
offloading service: An android service aimed at mitigating the network consumption
during computation offloading. In Proceedings of the Brazilian Symposium on Multi-
media and the Web, page 329-338, New York, US. ACM.

de Matos., E., Rego., P, and Trinta., F. (2021). An empirical study about the adoption
of multi-language technique in computation offloading in a mobile cloud computing

scenario. In Proceedings of the 11th International Conference on Cloud Computing
and Services Science - CLOSER,, pages 207-214. INSTICC, SciTePress.

De Matos, F., Rego, P. A. L., and Trinta, F. (2023). Evaluating offloading scalability
using a multi-language approach on cellular networks. In 2023 IEEE 20th Consumer
Communications & Networking Conference, pages 125-130, Piscataway, US. IEEE.

Garrocho, C. T. B. and Oliveira, R. A. R. (2020). Counting time in drops: views on the
role and importance of smartwatches in dew computing. Wireless Networks, 26:3139—
3157.

Georgiou, S., Kechagia, M., Louridas, P., and Spinellis, D. (2018). What are your pro-
gramming language’s energy-delay implications? In 2018 IEEE/ACM 15th Interna-
tional Conference on Mining Software Repositories, pages 303-313, New York, US.
ACM.

Georgiou, S. and Spinellis, D. (2019). Energy-delay investigation of remote inter-process
communication technologies. Journal of Systems and Software, 162:1-14.

Gushev, M. (2020). Dew computing architecture for cyber-physical systems and iot. In-
ternet of Things, 11:1-9.

Oliveira, W., Moraes, B., Castor, F., and Fernandes, J. P. (2023). Ebserver: Automating
resource-usage data collection of android applications. In 2023 IEEE/ACM 10th In-
ternational Conference on Mobile Software Engineering and Systems, pages 55-59,
Piscataway, US. Institute of Electrical and Electronics Engineers.

Pedhadiya, M. K., Jha, R. K., and Bhatt, H. G. (2019). Device to device communication:
A survey. Journal of Network and Computer Applications, 129:71-89.

Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J. P., and Saraiva, J.
(2021). Ranking programming languages by energy efficiency. Science of Computer
Programming, 205:1-30.

Ray, P. P. (2019). Minimizing dependency on internetwork: Is dew computing a solution?
Transactions on Emerging Telecommunications Technologies, 30:1-13.

Rego, P. A., Costa, P. B., Coutinho, E. F., Rocha, L. S., Trinta, F. A., and Souza, J.
N. d. (2017). Performing computation offloading on multiple platforms. Computer
Communications, 105(C):1-13.

Robaina, G. and Fiorese, A. (2023). Gaming on the edge: Uma arquitetura de computacao
na borda para jogos em dispositivos méveis. In Anais do XLI Simpésio Brasileiro de
Redes de Computadores e Sistemas Distribuidos, pages 574-587, Porto Alegre, RS,
Brasil. SBC.

Shakarami, A., Shahidinejad, A., and Ghobaei-Arani, M. (2020). A review on the compu-
tation offloading approaches in mobile edge computing: A game-theoretic perspective.
Software: Practice and Experience, 50:1719-1759.

Singh, P., Gaba, G. S., Kaur, A., Hedabou, M., and Gurtov, A. (2023). Dew-cloud-
based hierarchical federated learning for intrusion detection in iomt. /EEE Journal of
Biomedical and Health Informatics, 27:722-731.

Wang, Y. (2015). Cloud-dew architecture. International Journal of Cloud Computing,
4:199-210.

Yannibelli, V., Hirsch, M., Toloza, J., Majchrzak, T. A., Zunino, A., and Mateos, C.
(2023). Speeding up smartphone-based dew computing: In vivo experiments setup via
an evolutionary algorithm. Sensors, 23:1-22.

