
Transformando Smartphones Android em Dispositivos Dew
para Mitigar Limitações de Offloading em Redes Instáveis

Filipe de Matos1, Paulo A. L. Rego2, Fernando Trinta2

1GOHaN Research Group – Campus of Crateús – Federal University of Ceará (UFC)
63700-000 – Crateús – CE – Brasil

2ATLab – Campus of Pici – Federal University of Ceará (UFC)
60440-554 – Fortaleza – CE – Brasil

filipe.fernandes@crateus.ufc.br, {paulo,fernando.trinta}@dc.ufc.br

Abstract. Offloading helps overcome mobile devices’ computational and energy
limits, but its performance depends on an efficient server language and a sta-
ble network, which are not always guaranteed. Dew Computing converts client
devices into Dew devices, enabling local execution of server processes and pri-
oritizing internal interactions. This work defines the Duplication Management
Service (SGD), which transforms Android smartphones into Dew devices and
evaluates its impact. Tests with real devices showed that Dew enables tasks pre-
viously infeasible, reduces network traffic by up to 2.5x, and computes tasks up
to 2.9x faster in high competition scenarios despite consuming up to 19.4x more
energy. It is a promising option for unstable networks or low bandwidth.

Resumo. O offloading ajuda a superar as limitações de processamento e ener-
gia de dispositivos móveis, mas seu desempenho depende de uma linguagem de
servidor eficiente e de uma rede estável, o que nem sempre é garantido. A Dew
Computing transforma dispositivos clientes em dispositivos Dew, permitindo a
execução local de processos de servidor e priorizando interações internas. Este
trabalho define o Serviço de Gerenciamento de Duplicação (SGD), que converte
smartphones Android em dispositivos Dew e avalia seu impacto. Testes com dis-
positivos reais mostraram que a Dew viabiliza tarefas antes inviáveis, reduz o
tráfego de rede em até 2,5 vezes e realiza tarefas até 2,9 vezes mais rápido em
cenários de alta competição, apesar de consumir até 19,4 vezes mais energia.
É uma opção promissora para redes instáveis ou com baixa largura de banda.

1. Introdução
Dispositivos móveis, como smartphones e tablets, possuem restrições computacionais e
energéticas em comparação a desktops e servidores. O offloading, técnica que consiste no
envio de tarefas via rede para serem processadas por máquinas mais poderosas, poupando
recursos do dispositivo remetente [De 2016], tem se mostrado eficiente para mitigar tais
limitações. No entanto, o offloading ainda enfrenta desafios, como a influência da latência
da rede em seu desempenho [Pedhadiya et al. 2019, Shakarami et al. 2020].

A constante evolução do hardware dos dispositivos computacionais motivou o sur-
gimento de um novo paradigma pós-Computação em Nuvem, denominado Dew Compu-
ting [Wang 2015]. A Dew propõe trazer partes dos serviços inicialmente alocados na Nu-
vem, bem como paradigmas pós-Nuvem, para o dispositivo do usuário, assegurando seu



funcionamento mesmo em condições de conectividade limitada ou ausente [Ray 2019].
Para viabilizar a Dew, o dispositivo do usuário deve conter componentes que faci-
litem e automatizem o processo de duplicação, ou seja, a recepção, hospedagem e
disponibilização de uma “cópia” dos serviços-alvo na própria máquina do usuário.

No contexto do offloading em smartphones, um desafio relevante, porém pouco
explorado, está relacionado à linguagem de programação utilizada na execução remota
das tarefas. A maioria dos estudos nesse área é focada na plataforma Android e na lingua-
gem Java, especialmente devido à popularidade do Android e ao caráter de código aberto
da plataforma móvel. Contudo, estudos como [Georgiou et al. 2018, Pereira et al. 2021]
apontam que outras linguagens de programação superam o Java em desempenho compu-
tacional e eficiência energética, evidenciando as limitações dessa linguagem, sobretudo
em dispositivos com recursos restritos.

Para enfrentar esse problema, [de Matos. et al. 2021] combinou as técnicas de of-
floading e de comunicação multilı́ngue, permitindo que aplicativos clientes, muitas vezes
desenvolvidos em linguagens ineficientes, interajam com servidores escritos em lingua-
gens mais eficientes. Essa abordagem, chamada offloading multilı́ngue (MLO), demons-
trou que servidores mais eficientes que o Java podem acelerar o processamento de tarefas
em até 38% e economizar até 25% de energia do dispositivo cliente. Entretanto, a rede
foi o principal limitador, respondendo por até 97% do tempo de resposta. Para lidar com
esse problema, [de Matos et al. 2022] criou o Serviço de Offloading Multilı́ngue (SML),
que integra o servidor de offloading diretamente no smartphone cliente, permitindo que o
dispositivo execute as demandas do aplicativo independentemente da rede. Os resultados
mostraram que mover o processo servidor para o smartphone e permitir o autoatendi-
mento reduz em até 87% o tempo de resposta e 25% o consumo de energia em cenários
com alto volume de dados, além de diminuir o tráfego de rede em até 97%.

Este trabalho melhora o SML ao remodelar seus componentes, facilitando sua
configuração e automatizando seu funcionamento, tornando o smartphone Android um
dispositivo Dew apto a duplicar serviços de offloading. Também foram realizados no-
vos testes com uma nova linguagem servidora (Golang) e em cenários mais realistas,
incluindo aplicação de filtros em imagens, diferentes filtros e nı́veis de carga da rede.

2. Fundamentação Teórica
Esta seção discute conceitos básicos para a compreensão da proposta e dos testes realiza-
dos: offloading multi-linguagem (Seção 2.1) e paradigma Dew Computing (Seção 2.2).

2.1. Offloading multi-linguagem (MLO)

Em [de Matos. et al. 2021], o MLO foi proposto como uma extensão do offloading tra-
dicional, cujo principal diferencial é permitir a interação entre processos implementados
em linguagens distintas, aproveitando as caracterı́sticas e os benefı́cios especı́ficos de
cada uma. A arquitetura do MLO segue o modelo Cliente-Servidor, no qual o cliente, ge-
ralmente um dispositivo móvel, transfere tarefas para servidores mais potentes, que vão
desde cloudlets locais até infraestruturas em Nuvem. Diferentemente do offloading tra-
dicional, o MLO exige a padronização das mensagens para garantir a interoperabilidade
entre diferentes linguagens. Ferramentas como gRPC e Apache Thrift viabilizam essa
comunicação, assegurando a invocação remota e a serialização eficiente dos dados.



O MLO permite integrar ecossistemas heterogêneos, nos quais cada componente
pode ser desenvolvido na linguagem mais adequada às suas funções, otimizando o desem-
penho e o uso dos recursos computacionais. Tal abordagem é particularmente útil em con-
textos nos quais dispositivos móveis, sujeitos a restrições computacionais e energéticas,
precisam executar suas próprias tarefas e também as de outros dispositivos.

2.2. Dew Computing
Dew Computing foi proposto como um novo paradigma computacional que aprimora a
relação entre computadores de usuário (PCs) e a Nuvem, baseando-se em dois princı́pios-
chave: independência e colaboração [Wang 2015]. A independência permite que os PCs
ofereçam serviços localmente, reduzindo a dependência de conexões de rede instáveis e
da própria Nuvem. Já a colaboração otimiza a entrega de serviços ao integrar PC e Nuvem
de forma sinérgica, permitindo ajuda mútua entre eles quando existir conexão de rede.

Para viabilizar esse novo paradigma, os PCs atuam como dispositivos Dew, con-
figurados para duplicar dados ou serviços da Nuvem, da Fog ou da Edge [Gushev 2020].
Tal processo de duplicação envolve a transferência de uma cópia, total ou parcial, desses
serviços ou dados remotos para o dispositivo Dew. Assim, o consumo dos serviços é
garantido mesmo sem conectividade, assegurando maior autonomia. Em redes estáveis,
o dispositivo Dew colabora de maneira automática com a Nuvem, aprimorando a quali-
dade do serviço, reduzindo a carga nos servidores centrais e melhorando a experiência do
usuário com resiliência local e suporte remoto. Embora inicialmente projetado para PCs,
o paradigma Dew foi expandido para incluir dispositivos como smartphones e smartwat-
ches em trabalhos recente, como [Garrocho and Oliveira 2020].

Em resumo, a Dew otimiza o consumo dos recursos dos dispositivos dos usuários,
tornando-os menos dependentes dos paradigmas tradicionais de Nuvem. Ao permitir a
operação autônoma, o paradigma reduz os impactos da baixa qualidade de conexão e da
instabilidade da rede no processo de offloading computacional, proporcionando melhor
experiência ao usuário, além de maior resiliência e eficiência ao sistema.

3. Trabalhos Relacionados
Diversos estudos já avaliaram o desempenho de diferentes linguagens de programação na
computação local [Pereira et al. 2021, Bugden and Alahmar 2022] ou remota (i.e., via of-
floading) [Georgiou and Spinellis 2019, Araújo et al. 2020] de tarefas, usando aplicações
reais e/ou benchmarks. Por exemplo, em [Cunha et al. 2024], analisaram-se 20 lingua-
gens, Java e Golang inclusas, considerando consumo energético e tempo de execução.
Avaliando as métricas em conjunto, C/C++ se destacaram entre as linguagens compila-
das, Julia e Dart entre as interpretadas e C#, Java e JavaScript entre as que operam em
Máquinas Virtuais. Separadamente, Haskell obteve maior eficiência energética, enquanto
Julia apresentou o menor tempo de execução. Por outro lado, em [De Matos et al. 2023],
avaliaram-se o desempenho e a escalabilidade do OML em redes HSDPA e LTE,
comparando-o com soluções mono-linguagem. O OML apresentou bom desempenho,
com operações sobre matrizes 1000x1000 processadas 34% mais rapidamente no ser-
vidor Golang em HSDPA do que localmente, além de boa escalabilidade, com tempos
menores no servidor Golang, independentemente da rede ou do número de clientes.

Embora a Dew seja um paradigma relativamente recente, já há um número sig-
nificativo de trabalhos que a utilizam para resolver problemas em diversas áreas do co-



nhecimento [Garrocho and Oliveira 2020, Singh et al. 2023, Yannibelli et al. 2023]. Por
exemplo, em [Bera et al. 2023], os autores desenvolveram um sistema para prever a pro-
dutividade do solo em um ambiente de Internet of Agricultural Things (IoAT), modelado
em quatro camadas: IoT, Dew, Edge e Cloud. A camada Dew, composta por dispositivos
com alto poder computacional, acumula e pré-processa os dados dos sensores da camada
IoT. Os autores conduziram testes emulados que avaliaram o impacto da camada Dew em
um ambiente IoAT. Os resultados mostraram que a presença da Dew reduziu o tempo de
resposta em até 70% e o consumo de energia em até 80%.

Os trabalhos do primeiro grupo mostraram que a escolha estratégica de linguagens
de programação pode otimizar o desempenho do sistema, economizando recursos compu-
tacionais e energéticos, com ou sem offloading. Já o segundo grupo destacou que a Dew
acelera o processamento, reduz o consumo de largura de banda e torna os dispositivos
mais autônomos, reduzindo sua dependência de outros paradigmas computacionais e até
mesmo da própria Internet, tornando a execução de aplicações mais resiliente e eficiente
em cenários com conectividade limitada. Essas descobertas apontam um caminho promis-
sor para combinar tais abordagens, especialmente em contextos nos quais a computação
com linguagem nativa e o offloading se mostram ineficientes ou até mesmo inviáveis.

Em [de Matos et al. 2022], houve a primeira tentativa de integrar os dois grupos
mencionados ao se desenvolver o Serviço de Offloading Multi-Linguagem (SML). No en-
tanto, o SML era apenas um protótipo, concebido como uma prova de conceito para ve-
rificar a viabilidade de duplicar um processo servidor remoto, escrito em uma linguagem
mais eficiente, em um smartphone Android e avaliar os benefı́cios gerais dessa aborda-
gem. Este trabalho aprimora a versão original, refinando a arquitetura do serviço Android
para torná-lo mais generalista e adaptável a diferentes aplicações, além de conduzir novos
testes mais alinhados com cenários do mundo real.

4. Serviço de Gerenciamento de Duplicação (SGD)
Esta seção define o Serviço de Gerenciamento de Duplicação (SGD), uma versão apri-
morada do Serviço de Offloading Multi-Linguagem (SML) de [de Matos et al. 2022]. O
SGD se diferencia do SML por: i) Implementar um mecanismo automatizado para loca-
lizar o Lado Servidor e duplicar o processo; ii) Separar as três principais atividades em
componentes distintos; iii) Criar três modelos de estratégias, a serem definidas em tempo
de execução do SGD, para guiar o comportamento de cada componente. As Seções 4.1 e
4.2 descrevem, respectivamente, os componentes dos lados Servidor (coloridos em verde)
e Cliente (coloridos em roxo) da Figura 1.

Figura 1. Arquitetura do Serviço de Gerenciamento de Duplicação



4.1. Lado Servidor
O Serviço de Duplicação permite que o Lado Cliente, hospedado em um dispositivo An-
droid, obtenha os binários dos processos servidores. Um binário de processo servidor é
um executável utilizado para iniciar o servidor em uma plataforma especı́fica. Portanto, é
por meio do download e da posterior execução de um desses arquivos na plataforma An-
droid que o processo servidor é duplicado. O Serviço de Duplicação aguarda requisições
REST e retorna o binário alvo se a requisição contiver, no mı́nimo, os identificadores do
processo servidor e da plataforma onde o Lado Cliente está sendo executado. O serviço
possui dois componentes principais: o Servidor de Duplicação e o Provedor de Binários.

O Servidor de Duplicação, desenvolvido com Flask, oferece o endpoint /bins
para atender às requisições do Lado Cliente relacionadas à duplicação de processos. As
requisições são validadas para garantir que contenham as informações necessárias para
que o Provedor de Binários localize o binário alvo no Repositório. Requisições inválidas
retornam erro e encerram a duplicação. O Provedor de Binários realiza apenas operações
de leitura, e o endpoint /bins suporta apenas o método GET do HTTP.

O Serviço de Descoberta fornece ao Lado Cliente, no inı́cio da duplicação, o
endereço IP da máquina que hospeda o Lado Servidor, permitindo a interação com o
Serviço de Duplicação. Para facilitar sua localização, ele foi inserido em um grupo Mul-
ticast conhecido, escutando em uma porta padrão. Assim, para estabelecer uma conexão
com o Serviço de Descoberta, o Lado Cliente envia uma mensagem para o grupo Multi-
cast e recebe o IP da máquina servidora em resposta. Nenhum módulo de terceiros foi
utilizado no desenvolvimento deste serviço.

4.2. Lado Cliente
Como a pesquisa é voltada para smartphones Android, optou-se por implementar o Lado
Cliente como um serviço nessa plataforma, visando proporcionar o máximo de autonomia
a ele. Nesse contexto, foi proposto o SGD, que, uma vez configurado, age de forma quase
independente do aplicativo Android que o instanciou.

O SGD tem dois componentes fundamentais. A Cache de Binários é uma pasta
no smartphone onde são armazenados os binários dos servidores duplicados ou em pro-
cesso de duplicação. É essencial que o SGD tenha privilégios de leitura, escrita e, prin-
cipalmente, de execução dos arquivos persistidos nessa pasta, uma vez que ele deverá
salvar e executar os binários dos processos servidores nela armazenados. O Gerente de
Duplicação, por sua vez, controla as ações relacionadas à duplicação: 1) Duplicar Servi-
dor Remoto; 2) Administrar Servidor Local; e 3) Limpar a Cache de Binários.

A ação de Duplicar Servidor Remoto envolve salvar o binário do processo servidor
na Cache de Binários. Primeiro, decide-se quando iniciar o procedimento, considerando o
contexto do smartphone (como consumo de recursos) e/ou do ambiente (como latência da
rede). Em seguida, busca-se a máquina servidora via Serviço de Descoberta. Após obter
o endereço, realiza-se o download do binário via Serviço de Duplicação, salvando-o na
Cache. Tal ação é repetida sempre que o binário alvo não estiver na Cache.

A ação de Administrar Servidor Local envolve identificar o melhor momento
para iniciar e encerrar um processo servidor local, bem como executar essas ações. A
inicialização de um processo servidor local exige que seu binário já esteja na Cache, in-
dicando que a ação de Duplicar Servidor Remoto ocorreu previamente. Com base no



contexto interno do smartphone, a atividade avalia periodicamente se é adequado iniciar
ou encerrar um processo servidor, executando a ação conforme necessário.

Finalmente, a ação de Limpar a Cache de Binários envolve excluir binários do
sistema de arquivos do smartphone, com o objetivo de poupar recursos computacionais
do dispositivo. Tal ação avalia periodicamente se o binário do processo servidor pode ser
removido da Cache. A decisão considera se o binário está em uso e pode levar em conta
o contexto do smartphone, como se o armazenamento está cheio ou quase saturado.

Cada atividade é executada por uma thread especı́fica, instanciada durante a
inicialização do Gerente de Duplicação. O comportamento de cada thread é determinado
dinamicamente durante a configuração do Gerente de Duplicação, por meio de estratégias.
Além das estratégias, o Gerente de Duplicação também precisa saber a frequência com
que cada atividade será realizada. Assim, durante a configuração do serviço, também
devem ser informados os intervalos de tempo em que cada thread será escalonada para
execução. Por padrão, as atividades ocorrem a cada N minutos, onde N foi inicialmente
definido como 1, exceto a de Limpar a Cache, realizada a cada N/3 minutos. Toda a etapa
de configuração ocorre por meio da Interface de Interação com o Cliente.

A versão atual do SGD inclui três estratégias para cada uma das atividades men-
cionadas. A estratégia de Duplicar Servidor Remoto cria uma cópia do processo servidor
sempre que o binário do servidor alvo não está presente na Cache de Binários. Já a es-
tratégia de Administrar Servidor Local inicia o servidor quando seu binário está na Cache,
mas o servidor ainda não está em execução. Por fim, a estratégia de Limpar a Cache de
Binários executa a limpeza sempre que o processo servidor não está ativo no smartphone.
Perceba que cada estratégia executa suas ações sem considerar o contexto do smartphone
ou da rede, atualmente. Isso acontece porque, na versão atual do SGD, cada estratégia
tem apenas um papel ilustrativo. A expectativa é que, em trabalhos futuros, sejam desen-
volvidas estratégias reais de tomada de decisão, capazes de determinar os momentos mais
adequados para executar as ações estipuladas para cada atividade.

5. Experimentos e Resultados
O ambiente experimental (Tabela 1) foi composto por quatro dispositivos: três smartpho-
nes clientes e um notebook servidor, que atuou como Cloudlet. Esses dispositivos foram
conectados por uma rede sem fio, organizados em uma topologia estrela e posicionados a
poucos centı́metros entre si. O notebook hospedou ambos os serviços do Lado Servidor,
os binários necessários para a duplicação e o processo servidor de offloading, enquanto os
smartphones executavam a aplicação usada nos experimentos e o SGD, configurado com
estratégias simplificadas, para replicar o processo servidor remoto localmente. Entendem-
se como estratégias simplificadas aquelas desenvolvidas da forma mais simplista possı́vel.

Foi escolhida a aplicação BenchImage [Rego et al. 2017], adaptada para submeter
tarefas para processamento através do framework Apache Thrift e para iniciar o SGD.
Cliente e servidores de offloading foram desenvolvidos com os mesmos algoritmos, em
Java e Golang, respectivamente, sem paralelismo, garantindo a execução idêntica das
tarefas. As tarefas consistiam em aplicar os filtros GrayScale e Pencil na imagem SkyLine
de baixa (1 MP) e de alta (8 MP) resolução. O primeiro foi escolhido por ser um filtro
básico, enquanto o segundo foi escolhido por aplicar dois filtros (Gaussian e Sobel) em
sequência, o que o torna mais complexo, exigindo mais recursos do dispositivo.



Objetivo(s) Realizar experimentos de Prova de Conceito com a arquitetura e avaliar os impactos que
ela pode proporcionar no processamento de tarefas em uma aplicação móvel.

Sistema
(dispositivos
utilizados)

MotorolaGPlay/Cliente Qualcomm Snapdragon (1.2GHz, Quad Core), 2GB RAM e An-
droid 7, SamsungJ5/Cliente Qualcomm Snapdragon (1.2GHz, Quad Core), 1.5GB RAM
e Android 6, MotorolaE6/Cliente MediaTek (2GHz, Octa Core), 2GB RAM e Android
9, Notebook/Cloudlet com Intel Core i7, 12GB RAM e Ubuntu 22.04, Roteador Net-
gear WGR612 para construir uma rede WiFi 2,4 GHz exclusiva entre os dispositivos.

Fatores/
Nı́veis

Cenários (Dispositivos Juntos e e Dispositivos Separados) Tipos de Processamento (Lo-
cal, Dew e Cloudlet), Linguagens de Nı́veis de Programação (Golang e Java), Resolução
de imagem (1 MP e 8 MP) e Filtro de imagem (GrayScale e Pencil).

Iterações Cada experimento foi realizado 50 vezes para cada combinação de Fatores/Nı́veis; Dentre
os resultados, foram removidos os outliers e escolhidas as 40 amostras mais rápidas.

Métricas
avaliadas

Tempo de Reposta (tempo necessário para aplicar o filtro na imagem), Consumo de Rede
(quantidade de bytes transmitidos na rede durante o processamento) e Consumo de Ener-
gia (energia dispendida para aplicar o filtro na imagem).

Tabela 1. Detalhes sobre a configuração dos experimentos realizados

Também foi introduzido um novo mecanismo de computação de tarefas, a abor-
dagem Dew, onde cada tarefa é processada por um processo servidor recém-duplicado no
smartphone através do SGD. Uma vez em execução, o processo servidor recém-duplicado
atende às requisições do aplicativo cliente através da interface de loopback e não realiza
mais ações na rede externa. Os demais mecanismos são: Local (realizada pelo próprio
aplicativo cliente) e Cloudlet (realizada pelo processo servidor hospedado no notebook).

Foram avaliadas as métricas Tempo de Resposta, Consumo de Energia e Consumo
de Rede. O Tempo de Resposta considera apenas o tempo de aplicação do filtro, excluindo
o tempo de duplicação, que leva cerca de 50s na abordagem Dew, segundo testes preli-
minares. O Consumo de Energia também considera apenas a energia gasta para aplicar
o filtro, enquanto o Consumo de Rede mede os bytes transmitidos nas abordagens Dew
e Cloudlet. A abordagem Local foi desconsiderada por não utilizar a rede. O Tempo de
Resposta foi medido na aplicação, o Consumo de Energia via dumpsys e o Consumo de
Rede através do Wireshark monitorando a porta padrão no servidor.

Os experimentos foram repetidos 50 vezes com o auxı́lio da ferramenta Ebser-
ver [Oliveira et al. 2023]. Outliers (fora da faixa interquartil) foram excluı́dos e as 40 en-
tradas restantes mais rápidas foram avaliadas. Também foram aplicados testes estatı́sticos
e post-hoc para garantir a precisão das conclusões: Kruskal-Wallis seguido de Nemenyi
para Tempo de Resposta e Consumo de Energia, e Mann-Whitney para Consumo de Rede.
Os resultados são apresentados e discutidos conforme os dois cenários a seguir.

5.1. Cenário 1: Dispositivos Separados
Este cenário comparou as abordagens Local, Dew e Cloudlet no Samsung J5 sem con-
corrência mútua, garantindo mais recursos na rede e no servidor para operações remotas.
A rede não foi isolada de interferências externas, possivelmente causando retransmissões
por colisões de sinais. Uma rede com boa largura de banda disponı́vel e um servidor subu-
tilizado favorecem o offloading (adotada pela abordagem Cloudlet), que depende bastante
da transmissão de dados para ser eficiente. Já a abordagem Dew se beneficia disso apenas
durante a duplicação do processo, operando localmente depois.

A Tabela 2 resume os resultados deste cenário. Em relação ao Tempo de Resposta,



a abordagem Dew não superou a Cloudlet, independentemente do filtro ou resolução da
imagem, como era esperado. Em ambientes com baixa disputa, o offloading da Cloudlet
deve a ser mais eficiente, uma vez que a transmissão de dados tende a ser mais rápida.
Além disso, a computação da tarefa acontece no notebook na Cloudlet, com hardware
superior comparado ao smartphone da Dew, o que afeta a velocidade de computação.

CENÁRIO 1 Tempo de Reposta
(em segs)

Consumo de Energia
(em Joules)

Consumo de Rede
(em Kbytes)

Filtro Res Loc Dew Clo Loc Dew Clo Dew Clo

GrayScale
1 MP 14,12

±0,03
2,31

±0,01
1,55

±0,01
9,69

±0,42
2,51

±0,04
0,56

±0,03
3006,32
±144,40

1000,68
±0,62

8 MP -
16,99
±0,03

10,94
±0,05 -

9,38
±0,08

0,98
±0,07

3086,93
±2,64

7001,15
±0,01

Pencil
1 MP 23,89

±0,04
4,76

±0,01
2,01

±0,01
17,79
±1,54

3,52
±0,01

0,59
±0,03

3078,01
±0,73

1181,11
±0,43

8 MP -
35,20
±0,04

15,42
±0,34 -

19,19
±0,10

1,02
±0,02

3083,08
±1,27

8001,12
±0,01

Tabela 2. Resultados do smartphone SamsungJ5 no Cenário 1

Se por um lado a abordagem Dew não superou a Cloudlet, por outro ela foi melhor
que a Local em todas as configurações. Em alguns casos, a abordagem Dew computou
tarefas que a abordagem Local não conseguiu devido a problemas de memória. Tais
resultados confirmam a literatura, que aponta o Java (usado no cliente) como mais lento e
mais consumidor de recursos do que o Golang (usado no servidor duplicado).

Quanto ao Consumo de Energia, a abordagem Cloudlet mostrou-se mais vanta-
josa, como esperado, pois a Dew exige maior participação do smartphone ao computar
a tarefa, aumentando o consumo de energia, enquanto na Cloudlet o dispositivo apenas
aguarda o resultado. O Tempo de Resposta reduzido na Cloudlet também contribui para
sua eficiência. Além disso, a Dew foi mais econômica que a Local, embora não tenha sido
possı́vel comparar para imagens de 8 MP devido ao alto Tempo de Resposta da Local.

Quanto ao Consumo de Rede, a abordagem Dew apresentou desempenho quase
idêntico para todas as resoluções e filtros, pois a interação com a rede ocorre apenas du-
rante a duplicação. O download consumiu recursos de rede semelhantes, com pequenas
variações devido a interferências externas potencialmente. Para imagens de 8 MP, a Dew
transmitiu metade dos dados da Cloudlet. Para 1 MP, a Cloudlet enviou um terço dos da-
dos da Dew. Esse comportamento está relacionado ao tamanho das imagens e do binário,
pois quanto maior a resolução, maior a quantidade de dados necessária, ao passo que o
binário tem tamanho fixo. Esses resultados apontam que a Dew pode economizar recur-
sos e reduzir o congestionamento da rede. Os testes estatı́sticos e post-hoc confirmaram
diferença significativa entre os valores da Tabela 2, reforçando os argumentos desta seção.

5.2. Cenário 2: Dispositivos Juntos

O segundo cenário comparou as abordagens Dew e Cloudlet em um ambiente onde os três
smartphones iniciam o processamento simultaneamente, o que aumenta a disputa e reduz
a largura de banda disponı́vel. Além disso, a sobrecarga no notebook, que processa as
tarefas de três dispositivos, pode tornar o offloading mais lento, tornando o cenário mais
desafiador para a Cloudlet. A Dew também é afetada pelo compartilhamento da rede,



porém menos que a Cloudlet, pois as ações na rede ocorrem apenas durante a duplicação,
quando os três smartphones disputam o acesso ao Serviço de Duplicação.

A Tabela 3 resume os resultados obtidos neste cenário. Focando apenas no Tempo
de Resposta, nota-se que, ao contrário do cenário anterior, a abordagem Dew teve o me-
lhor desempenho em todas as configurações avaliadas em comparação à Cloudlet. Tal re-
sultado era esperado, pois o compartilhamento da rede e do notebook pelos smartphones
gera disputas de recursos, afetando o desempenho da Cloudlet. A diferença de desempe-
nho entre as abordagens Local e Dew permaneceu significativa, embora tenha diminuı́do
levemente, pelo mesmo motivo apresentado no cenário anterior.

CENÁRIO 2 Tempo de Reposta
(em segs)

Consumo de Energia
(em Joules)

Consumo de Rede
(em Kbytes)

Filtro Res Loc Dew Clo Loc Dew Clo Dew Clo

GrayScale
1 MP 14,12

±0,03
2,27

±0,01
8,39

±0,01
9,69

±0,42
2,83

±0,01
0,57

±0,01
3815,89
±2,10

1002,10
±0,45

8 MP -
16,80
±0,03

50,32
±0,98 -

9,35
±0,05

1,17
±0,02

3905,08
±157,70

8124,25
±4,20

Pencil
1 MP 23,89

±0,04
4,73

±0,01
11,76
±0,35

17,79
±1,54

3,88
±0,05

0,61
±0,01

3814,49
±2,24

1183,67
±0,47

8 MP -
35,06
±0,05

62,37
±0,99 -

19,11
±0,17

1,38
±0,07

3835,49
±2,56

9095,00
±5,60

Tabela 3. Resultados do smartphone SamsungJ5 no Cenário 2

Já em relação a métrica de Consumo de Energia, ao contrário do Cenário 1, a abor-
dagem com o menor Tempo de Resposta (Dew) não foi a que consumiu menos energia.
Na abordagem Dew, o smartphone cliente hospeda também o processo servidor, exigindo
um papel ativo para processar as tarefas, o que aumenta o consumo de energia do dis-
positivo. Em contrapartida, a espera passiva na abordagem Cloudlet economiza energia,
embora seja significativamente mais demorada. Também nota-se que a Dew consome me-
nos energia que a Local, devido ao uso de uma linguagem de programação mais eficiente.

Por fim, em relação ao Consumo de Rede, não houve diferenças significativas em
relação às observações discutidas no Cenário 1, exceto pelo aumento no tráfego de dados
em todas as configurações. Isso se deve à maior disputa no meio compartilhado, com mais
smartphones usando a rede simultaneamente. Quanto maior a concorrência, mais chances
de colisões e retransmissões de pacotes, o que tende a elevar o Consumo de Rede. Como
no cenário anterior, os testes estatı́sticos e post-hoc evidenciam diferenças significativas
na Tabela 3, reforçando os argumentos desta seção.

5.3. Considerações Finais
A arquitetura do SGD, apesar de sua flexibilidade e robustez, apresenta desafios que de-
vem ser considerados. Um dos principais é a necessidade de desenvolvimento separado
para cliente e servidor, possivelmente utilizando linguagens distintas. Essa caracterı́stica
pode aumentar a complexidade do desenvolvimento e manutenção do sistema. No en-
tanto, estratégias como a Engenharia Orientada a Modelos (MDE) ou o uso de Modelos
de Linguagem Ampla (LLMs) para tradução de código podem mitigar esse obstáculo.

Além disso, a duplicação do processo servidor no dispositivo móvel pode ex-
por a ataques, como injeção de código e falhas de segurança. Para mitigar esse risco,



recomenda-se usar servidores confiáveis e autenticados, além de realizar o download se-
guro com protocolos criptográficos robustos, como o TLS (Transport Layer Security),
para garantir a confidencialidade e integridade do binário durante a fase de duplicação.

Outro desafio identificado foi o elevado tempo de duplicação do processo servi-
dor, que pode comprometer a eficiência do sistema, especialmente em cenários dinâmicos
e em aplicações sensı́veis à latência. Diante disso, propõem-se estudos voltados à criação
e à avaliação experimental de soluções concretas para mitigar o atraso causado por esse
processo. Entre as estratégias promissoras, destacam-se o uso de técnicas como cache
distribuı́da e a duplicação proativa de processos com base na previsão de demanda, apoi-
ada, por exemplo, por modelos inteligentes de tomada de decisão. Em ambos os casos, é
essencial buscar um equilı́brio entre a rápida disponibilização do processo e o consumo
de recursos do dispositivo do usuário, que, em geral, apresenta limitações nesse aspecto.

Por outro lado, os resultados indicaram que a Dew, viabilizada pelo SGD, tem
vantagens relevantes. No cenário com alta disputa por recursos, ela superou o offloa-
ding em velocidade, desde que o processo servidor estivesse previamente duplicado no
smartphone. Além disso, ela reduziu o impacto da transmissão de dados, essencial para
aplicações com comunicação contı́nua, como jogos. Esses achados destacam a Dew como
uma alternativa promissora para soluções como as de [Robaina and Fiorese 2023], permi-
tindo execução eficiente sem depender da conectividade com a rede.

Os experimentos também confirmaram achados do estudo anterior, mostrando que
a Dew mantém um consumo de rede estável, poupando largura de banda em situações de
grande volume de dados de entrada e saı́da. Porém, o maior consumo energético do
dispositivo móvel em comparação com o offloading precisa ser melhor investigado, pois
pode ser uma restrição séria para dispositivos com baterias menores, como smartwatches.

Em resumo, os testes confirmaram e expandiram observações anteriores, mos-
trando que a abordagem Dew do SGD amplia as capacidades do smartphone, especial-
mente em redes sobrecarregadas ou instáveis. Contudo, desafios como os altos tempos
de duplicação e consumo energético precisam de mais exploração. Estudos futuros de-
vem focar na otimização desses aspectos e na avaliação em aplicações de maior escala,
consolidando sua contribuição para a computação distribuı́da.

6. Conclusão e Trabalhos Futuros
Embora o offloading ajude a mitigar as restrições dos dispositivos móveis, ele ainda en-
frenta desafios, como a latência de rede, que afeta seu desempenho. Em um trabalho ante-
rior [de Matos et al. 2022], foi desenvolvido um protótipo de serviço Android, chamado
Serviço de Offloading Multi-Linguagem (SML), que permite que dispositivos móveis as-
sumam processos servidores de offloading originalmente hospedados em máquinas remo-
tas, reduzindo os impactos da rede ao realizar a interação localmente.

Este trabalho aprimorou o SML, preservando seu objetivo original, mas reformu-
lando sua arquitetura interna para torná-lo mais flexı́vel às necessidades de diferentes
aplicativos. A principal mudança foi a introdução do conceito de estratégias, que permite
definir dinamicamente o comportamento dos componentes centrais do SGD em tempo
de execução. Tal abordagem proporciona maior controle e personalização, otimizando o
desempenho do sistema em diferentes cenários e requisitos de aplicação. Os testes re-
alizados em um novo contexto e cenário reforçaram observações do trabalho anterior e



também revelaram novos resultados sobre os impactos da abordagem Dew. Por exem-
plo, em uma rede congestionada, a Dew reduziu o tempo de resposta das tarefas em até
3,7 vezes em relação à abordagem que usa o offloading. Além disso, foi identificado
que a solução do SGD ampliou a capacidade dos smartphones Android, permitindo que,
ao duplicar processos servidores desenvolvidos em linguagens mais eficientes do que a
adotada no aplicativo cliente, não só houvesse uma redução no tempo de resposta e no
consumo de energia do dispositivo móvel, como também fosse possı́vel computar tarefas
que anteriormente eram inviáveis com a linguagem nativa.

Como trabalhos futuros, sugere-se o estudo e o desenvolvimento de estratégias
que considerem o contexto do smartphone (como a carga de bateria disponı́vel) e da rede
externa (como o nı́vel de intensidade do sinal) para determinar os melhores momentos
para que o SGD possa agir. Também se pretende conduzir uma pesquisa focada na criação
de estratégias e no uso de caching para reduzir o tempo de duplicação e mitigar os efeitos
negativos da ação no desempenho da solução Dew. Por fim, realizar testes com novos
dispositivos, linguagens servidoras e aplicativos continua sendo bastante promissor.

Referências
Araújo, M., Maia, M. E. F., Rego, P. A. L., and De Souza, J. N. (2020). Performance

analysis of computational offloading on embedded platforms using the gRPC fra-
mework. In 8th International Workshop on ADVANCEs in ICT Infrastructures and
Services (ADVANCE 2020), pages 1–8.

Bera, S., Dey, T., Mukherjee, A., and Buyya, R. (2023). E-cropreco: a dew-edge-based
multi-parametric crop recommendation framework for internet of agricultural things.
The Journal of Supercomputing, 79:11965–11999.

Bugden, W. and Alahmar, A. (2022). The safety and performance of prominent pro-
gramming languages. International Journal of Software Engineering and Knowledge
Engineering, 32:713–744.

Cunha, S. a., Silva, L., Saraiva, J. a., and Fernandes, J. a. P. (2024). Trading runtime for
energy efficiency: Leveraging power caps to save energy across programming langua-
ges. In Proceedings of the 17th ACM SIGPLAN International Conference on Software
Language Engineering, SLE ’24, page 130–142, New York, USA. ACM.

De, D. (2016). Mobile Cloud Computing: Architectures, Algorithms and Applications.
CRC Press.

de Matos, F., Oliveira, W., Castor, F., Rego, P., and Trinta, F. (2022). Multi-language
offloading service: An android service aimed at mitigating the network consumption
during computation offloading. In Proceedings of the Brazilian Symposium on Multi-
media and the Web, page 329–338, New York, US. ACM.

de Matos., F., Rego., P., and Trinta., F. (2021). An empirical study about the adoption
of multi-language technique in computation offloading in a mobile cloud computing
scenario. In Proceedings of the 11th International Conference on Cloud Computing
and Services Science - CLOSER,, pages 207–214. INSTICC, SciTePress.

De Matos, F., Rego, P. A. L., and Trinta, F. (2023). Evaluating offloading scalability
using a multi-language approach on cellular networks. In 2023 IEEE 20th Consumer
Communications & Networking Conference, pages 125–130, Piscataway, US. IEEE.



Garrocho, C. T. B. and Oliveira, R. A. R. (2020). Counting time in drops: views on the
role and importance of smartwatches in dew computing. Wireless Networks, 26:3139–
3157.

Georgiou, S., Kechagia, M., Louridas, P., and Spinellis, D. (2018). What are your pro-
gramming language’s energy-delay implications? In 2018 IEEE/ACM 15th Interna-
tional Conference on Mining Software Repositories, pages 303–313, New York, US.
ACM.

Georgiou, S. and Spinellis, D. (2019). Energy-delay investigation of remote inter-process
communication technologies. Journal of Systems and Software, 162:1–14.

Gushev, M. (2020). Dew computing architecture for cyber-physical systems and iot. In-
ternet of Things, 11:1–9.

Oliveira, W., Moraes, B., Castor, F., and Fernandes, J. P. (2023). Ebserver: Automating
resource-usage data collection of android applications. In 2023 IEEE/ACM 10th In-
ternational Conference on Mobile Software Engineering and Systems, pages 55–59,
Piscataway, US. Institute of Electrical and Electronics Engineers.

Pedhadiya, M. K., Jha, R. K., and Bhatt, H. G. (2019). Device to device communication:
A survey. Journal of Network and Computer Applications, 129:71–89.

Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J. P., and Saraiva, J.
(2021). Ranking programming languages by energy efficiency. Science of Computer
Programming, 205:1–30.

Ray, P. P. (2019). Minimizing dependency on internetwork: Is dew computing a solution?
Transactions on Emerging Telecommunications Technologies, 30:1–13.

Rego, P. A., Costa, P. B., Coutinho, E. F., Rocha, L. S., Trinta, F. A., and Souza, J.
N. d. (2017). Performing computation offloading on multiple platforms. Computer
Communications, 105(C):1–13.

Robaina, G. and Fiorese, A. (2023). Gaming on the edge: Uma arquitetura de computação
na borda para jogos em dispositivos móveis. In Anais do XLI Simpósio Brasileiro de
Redes de Computadores e Sistemas Distribuı́dos, pages 574–587, Porto Alegre, RS,
Brasil. SBC.

Shakarami, A., Shahidinejad, A., and Ghobaei-Arani, M. (2020). A review on the compu-
tation offloading approaches in mobile edge computing: A game-theoretic perspective.
Software: Practice and Experience, 50:1719–1759.

Singh, P., Gaba, G. S., Kaur, A., Hedabou, M., and Gurtov, A. (2023). Dew-cloud-
based hierarchical federated learning for intrusion detection in iomt. IEEE Journal of
Biomedical and Health Informatics, 27:722–731.

Wang, Y. (2015). Cloud-dew architecture. International Journal of Cloud Computing,
4:199–210.

Yannibelli, V., Hirsch, M., Toloza, J., Majchrzak, T. A., Zunino, A., and Mateos, C.
(2023). Speeding up smartphone-based dew computing: In vivo experiments setup via
an evolutionary algorithm. Sensors, 23:1–22.


