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Abstract. As storage devices evolve, the time spent by software to read or write
data becomes increasingly relevant. This characteristic is accentuated in the
context of cryptographic file systems, where the software layer is in charge of
performing cryptographic operations. Seeking to address this problem, this
work proposes a solution that hides the latency of cryptographic operations in
low-latency environments through ahead-of-time encryption, taking advantage
of low-level interfaces of the Operating System kernel.

Resumo. À medida que os dispositivos de armazenamento se desenvolvem, o
tempo gasto em software para ler ou escrever dados se torna cada vez mais
relevante. Essa caracterı́stica se acentua no contexto de sistemas de arquivos
criptográficos, onde a camada de software é encarregada de realizar operações
criptográficas. Buscando atacar este problema, o presente trabalho propõe uma
solução que esconde a latência das operações criptográficas em ambientes de
baixa latência através da criptografia antecipada, tirando proveito de interfaces
de baixo nı́vel do núcleo do Sistema Operacional.

1. Introdução
Podemos dividir a latência de uma requisição de leitura ou escrita de dados a um dispo-
sitivo de armazenamento em duas etapas: latência de software e latência de hardware. A
latência de software é composta pelo tempo gasto pelo código do Sistema Operacional
(SO), o qual realiza operações de gerenciamento e validações de segurança. Após o SO
repassar a requisição para o dispositivo de armazenamento, a latência de hardware entra
em cena, de modo que o dispositivo demora um certo tempo para realizar a operação
requisitada.

A utilização de dispositivos de armazenamento mecânicos baseados em discos
magnéticos (HDDs) implica em uma latência de hardware ordens de magnitude maior
que a latência de software, de modo que a latência de hardware representa quase 100% da
latência total da requisição. Contudo, graças a tecnologias de memórias flash presentes
em dispositivos como SSDs e NVMes, os dispositivos de armazenamento se desenvolve-
ram ao ponto que a latência de hardware pode representar somente 50% da latência total
[Zhong et al. 2022].

Sistemas de Arquivos Criptográficos (SACs) aumentam a latência de software em
requisições de leitura e escrita de dados através da execução de operações de criptografia,
visando manter a privacidade e a confidencialidade dos dados nos dispositivos de armaze-
namento. Considerando a utilização de dispositivos como HDDs, o aumento da latência



imposto pelos SACs é irrelevante, tendo em vista que a latência de hardware é bastante
superior. Contudo, o contrário é observado quando dispositivos de baixa latência são uti-
lizados. Nesse sentido, a otimização de operações criptográficas tem alto potencial de
melhora do desempenho total dos sistemas.

Conceitualmente, as operações criptográficas em um SAC são executadas em
sequência com as operações usuais. Em uma requisição de leitura, o SAC precisa esperar
que o dispositivo de armazenamento coloque o dado na memória principal (RAM) antes
de iniciar o processo de decriptação. De maneira similar, em operações de escrita, o dis-
positivo de armazenamento precisa esperar que o SAC realize as operações de encriptação
para que o dado possa ser armazenado. A necessidade da execução sequencial dos pas-
sos apresentados anteriormente decorre da forma com que os algoritmos criptográficos
funcionam. Contudo, o algoritmo Warped AES (WAES) [Zola and De Bona 2012] in-
troduziu um método para a execução do algoritmo criptográfico Advanced Encryption
Standard (AES), usando o modo de operação Counter (CTR) de forma que a execução
das operações criptográficas mais custosas é realizada de forma antecipada e paralela.
Essas duas caracterı́sticas do WAES se encaixam perfeitamente no contexto de SACs: o
processamento antecipado pode permitir que as operações criptográficas custosas sejam
realizadas antes que o dado esteja pronto na memória RAM; o processamento paralelo
pode permitir que requisições que sejam feitas em um mesmo momento sejam tratadas
em diferentes núcleos de processamento, sem qualquer restrição.

Essa ideia foi explorada pelo EncFS++ [Eduardo et al. 2019], um SAC que exe-
cuta em espaço de usuário e que foi capaz de melhorar a vazão e a latência quando com-
parado com o EncFS [Gough 2017], um SAC convencional, que também executa em
espaço de usuário, e que serviu de base para a implementação do EncFS++. Contudo, a
utilização de um sistema de arquivos de espaço de usuário implica em uma degradação
da latência [Vangoor et al. 2017], tendo em vista que o sistema de arquivos de usuário
precisa se comunicar com o driver responsável pela interface com os mecanismos inter-
nos do núcleo do SO. Esse problema é acentuado caso um dispositivo de armazenamento
de baixa latência seja utilizado. Para exemplificar esse comportamento, a sobrecarga de
desempenho imposta pelo FUSE [Vangoor et al. 2017], uma biblioteca popular para a
implementação de sistemas de arquivos em espaço de usuário, pode chegar a 2×, quando
utilizado um dispositivo de armazenamento NVMe (demonstrado na Seção 4). Dessa ma-
neira, a sobrecarga de desempenho citada anteriormente não é aplicável em um contexto
de baixa latência proporcionada pelos dispositivos de armazenamentos atuais.

Embora exista um potencial na aplicação de criptografia antecipada em sistemas
de arquivos, como demonstrado pelo EncFS++, um design que suporte este tipo de sis-
tema carece de pesquisa. Por isso, uma solução que combine de forma eficiente esses con-
ceitos dentro do núcleo do SO pode superar a fraqueza que implementações em espaço
de usuário possuem. Tendo em vista que um SAC que utiliza operações de criptografia
antecipada precisa lidar com fluxos de execuções e metadados bastante singulares, nós
propomos uma nova arquitetura de SAC que tira proveito de interfaces internas do núcleo
do SO para executar operações criptográficas de forma otimizada. Para validar nossa pro-
posta, nós implementamos uma prova de conceito, através da adaptação do sistema de
arquivos padrão do Linux, o ext4, e outras camadas da pilha de armazenamento. O resul-
tado apresentou uma melhora significativa na latência e vazão de dados para operações de



leitura e escrita quando comparado com outros SACs atuais.

Em resumo, esse artigo apresenta as seguintes contribuições: (i) demonstração do
impacto de SACs em um contexto de baixa latência de hardware; (ii) identificação de
componentes-chave para um SAC de criptografia antecipada; (iii) proposta de um novo
design de SACs de criptografia antecipada, ressaltando como os componentes-chave po-
dem ser integrados na pilha de protocolos de armazenamento do Linux; (iv) uma análise
experimental da nossa proposta sobre diferentes cargas de trabalho.

2. Fundamentação Teórica
Nessa seção, nós apresentamos o contexto do subsistema de armazenamento do Linux
utilizado como base para a integração do nosso SAC. Nós apresentamos também noções
básicas sobre a criptografia antecipada.

2.1. Subsistema de Armazenamento do Linux
O gerenciamento de arquivos no Linux é composto por diferentes camadas de compo-
nentes. As chamadas de sistemas relacionadas a sistemas de arquivos são inicialmente
recebidas pelo Virtual File System (VFS), que age como uma interface entre o espaço
de usuário e as camadas inferiores. Após o recebimento e tratamento da chamada de
sistema, o VFS identifica qual o sistema de arquivos responsável pelo arquivo que está
relacionado com a chamada de sistema, e realiza o repasse da requisição. Sistemas de ar-
quivos compõem a camada de software responsável pela polı́tica de acesso e organização
dos dados do usuário nos dispositivos de armazenamento. O sistema de arquivos lê e es-
creve dados no dispositivo de armazenamento em granularidade de blocos de 4096 bytes,
objetivando desempenho. Para realizar o acesso ao dispositivo de armazenamento, o sis-
tema de arquivos realiza uma requisição para uma interface genérica denominada Camada
de E/S de Blocos. Essa, por sua vez, recebe requisições em um formato padronizado e
realizada requisições diretamente aos drivers dos dispositivos de armazenamento.

Existem algumas requisições de leituras e escritas que podem não precisar gerar
operações de E/S para o dispositivo de armazenamento graças à Page Cache, um conjunto
de páginas na memória RAM que mantém blocos (de 4096 bytes) do disco em cache.
Quando uma requisição de leitura é recebida e o bloco que contém o dado está presente na
Page Cache, a operação de leitura se resume a uma cópia de memória da Page Cache para
o buffer do usuário, evitando a latência de hardware. Operações de escrita que modificam
dados presentes na Page Cache se resumem a uma cópia de memória do buffer do usuário
para a Page Cache, de forma que a persistência dos dados é agendada para um momento
mais oportuno pelo núcleo do SO. Embora a Page Cache seja utilizada por padrão no
Linux (em operações denominadas buffered I/O), algumas aplicações como Banco de
Dados podem preferir utilizar polı́ticas de cache próprias, devido aos seus padrões de
acesso exclusivos. Por isso, o Linux oferece um tipo de requisição chamada direct I/O,
que desativa a utilização da Page Cache e sempre gera requisições para a camada de E/S
de blocos. Nesse caso, os dados são movidos diretamente entre o buffer do usuário e o
dispositivo de armazenamento.

2.2. Criptografia Antecipada
Após a padronização do algoritmo Advanced Encryption Standard (AES) pelo NIST
[Dworkin et al. 2001], este se tornou a especificação de criptografia mais utilizada em



diversos cenários. Por ser uma cifra de bloco, o AES realiza a criptografia em peque-
nas porções de dados de 128 bits. Tendo em vista que a maioria dos dados gerenciados
por aplicações são maiores que o tamanho do bloco processado pelo AES, modos de
operação como o Cipher Block Chaining (CBC), XEX-based Tweaked-codebook mode
with Ciphertext Stealing (XTS) e Counter (CTR) surgiram, trazendo formas de aplicação
do algoritmo AES em dados de tamanhos arbitrários.

O modo de operação CTR, apresentado na Figura 1, trata um conjunto de dados
arbitrários como um conjunto de blocos de 128 bits. A cifra de blocos é aplicada sobre um
contador (counter) de 128 bits, e o resultado é submetido a uma operação de XOR com o
texto a ser encriptado/decriptado. O contador é normalmente concatenado com um Vetor
de Inicialização (VI) aleatório, produzindo um valor utilizado somente uma vez (nonce)
para uma mesma chave. O modo de operação CTR pode encriptar ou decriptar blocos de
dados diferentes de forma paralela. A segurança desse modo de operação é comprovada,
desde que seja seguida a forma de execução [Lipmaa et al. 2000], fazendo com que seja
utilizada em diversos cenários.

A carga de trabalho criptográfica pesada é realizada na região pontilhada da Figura
1, de forma que os parâmetros necessários são o nonce e a chave criptográfica. O insight
da criptografia antecipada é que o dado a ser encriptado/decriptado não é necessário nessa
etapa. Este primeiro processamento gera uma máscara criptográfica, que será aplicada
ao dado por meio de uma operação XOR, gerando o dado encriptado ou decriptado. Esse
esquema, combinado com a possibilidade de criar máscaras criptográficas simultanea-
mente em diferentes núcleos de processamento, é explorado pelo WAES e implementado
em uma biblioteca denominada WAESlib [Zola and De Bona 2012].
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Figura 1. Modo de Operação CTR

3. Arquitetura e Implementação de um SAC Utilizando Criptografia
Antecipada

A Figura 2a apresenta a execução de uma operação de leitura em um SAC convencio-
nal. Mesmo que a CPU esteja livre para executar qualquer tipo de trabalho enquanto a
operação de E/S está sendo tratada pelo dispositivo de armazenamento, todas as operações
devem ser executadas em sequência devido à necessidade de o dado estar em memória
para ser processado. Por outro lado, através da aplicação da criptografia antecipada, a
dependência do dado se restringe à mı́nima operação do XOR, e o tempo de CPU, que
anteriormente era ocioso, pode ser utilizado para produzir máscaras criptográficas. Essa
abordagem esconde a latência de operações de criptografias, como mostrado na Figura 2b.
Se, para as operações de leitura, é possı́vel criar máscaras enquanto as operações de E/S



estão sendo executas, máscaras para as operações de escrita podem ser criadas ainda mais
cedo. Isso é possı́vel porque novos blocos de dados utilizarão novos nonces, permitindo
a criação de um conjunto de máscaras que servirão escritas futuras.
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Figura 2. Execução de um SAC convencional e do SAC proposto

O modo de operação CTR possui a desvantagem de necessitar do armazenamento
de um nonce para cada bloco de dados. Visto que o sistema de arquivos também lida
com dados em uma granularidade de blocos, é possı́vel armazenar um nonce para cada
bloco de dados de 4096 bytes, reservando os bits menos significativos para servirem como
um contador, incrementado a cada bloco de 128 bits. Dessa maneira, nós mantemos a
segurança do modo de operação, além de manter a sobrecarga de espaço abaixo de 0.4%.
Além disso, cada nonce é composto de duas partes: um VI imprevisı́vel e um contador.
Para cada requisição de escrita (criação de um novo bloco de dados de 4096 bytes ou
modificação de um bloco existente), um VI imprevisı́vel de 64 bits é utilizado com um
contador de 64 bits, o qual é incrementado a cada bloco escrito.

Nossa proposta, denominada ext4james, busca manter a confidencialidade de da-
dos que estão armazenados no dispositivo de armazenamento, de forma que confidenci-
alidade de dados em memória está fora do escopo deste trabalho. Nós assumimos que o
núcleo do SO é seguro. Por consequência, confiamos na integridade da biblioteca crip-
tográfica provida pelo núcleo do Linux Crypto API [Mueller and Vasut 2025], tendo em
vista que a utilizamos para realizar as operações criptográficas. Ainda que o gerencia-
mento de chaves criptográficas esteja fora do escopo deste trabalho, é possı́vel incorporar
diferentes soluções na nossa proposta através da Crypto API.

Durante a fase de idealização deste trabalho, foi possı́vel identificar quatro
desafios-chave que guiaram os esforços de implementação: armazenamento de nonces,
fluxos de execução, adaptação da WAESlib e gerenciamento de contextos criptográficos.

3.1. Armazenamento de Nonces
Visto que um nonce de 16 bytes é necessário para o processo de decriptação de um bloco
de dados, o seu armazenamento deve ser realizado de modo a permitir que a sua leitura
e escrita não gere sobrecarga de desempenho. Por isso, foi adotado um esquema ins-
pirado no gerenciamento de volumes do ext4 [Kernel Development Community 2025a],
em conjunto com o conceito de n-nodes introduzido no EncFS++, além da utilização de
interfaces providas pela camada de VFS e da camada de sistema de arquivos.

Os primeiros nonces de todos os arquivos de dados são armazenados em um único
arquivo, denominado Arquivo Global. Caso seja necessário, cada arquivo de dados terá



um arquivo de armazenamento de nonces dedicado para armazenar os nonces que não
puderam ser armazenados no Arquivo Global. Visando tirar máxima vantagem dos limites
que o sistema de arquivos ext4 proporciona para os arquivos, nós organizamos o Arquivo
Global conforme apresentado na Figura 3.
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Figura 3. Gerenciamento do Arquivo Global

Os primeiros 256 nonces associados a um arquivo de dados, utilizados para de-
criptador os primeiros 1MB de dados, serão armazenados em uma página (bloco de 4096
bytes) do Arquivo Global. Este arquivo, por sua vez, é dividido em grupos, objetivando a
facilidade no gerenciamento. Cada grupo possui 215 + 1 páginas, onde a primeira página
armazena o Group bitmap que controla as páginas ocupadas do grupo em questão. To-
das as outras páginas de um grupo são destinadas a armazenar os nonces iniciais de um
arquivo de dados.

As primeiras quatro páginas do Arquivo Global compõem o Group-Full bitmap.
Este bitmap indica os grupos que todas as páginas estão armazenando nonces de algum ar-
quivo, ou seja, não possuem mais espaços livres. A associação entre o Group-Full bitmap
e os group bitmaps compõem um bitmap de dois nı́veis. Essa abordagem hierarquizada
provê boa utilização do tamanho do Arquivo Global e acessos otimizados ao mesmo. Para
endereçar uma página dentro do Arquivo Global, um inteiro de 32 bits pode ser utilizado:
os primeiros 17 bits endereçam o grupo e os últimos 15 bits endereçam a página dentro
do grupo.

Para associar um ı́ndice do Arquivo Global (e o arquivo de nonces dedicado, caso
necessário) ao arquivo de dados, nós tiramos vantagem da camada de Sistema de Ar-
quivos. O EXT4 provê um mecanismo chamado Extended Attributes, nos permitindo
armazenar atributos customizáveis juntamente com os metadados do arquivo, sem a ne-
cessidade de utilização de blocos extras de armazenamento.

Para realizar a criação, deleção, leitura e escrita do Arquivo Global e dos arquivos
dedicados de nonces, nós tiramos proveito das interfaces oferecidas pela camada do VFS,
fazendo com que as operações citadas anteriormente ”pulem” as operações criptográficas
e não gerem qualquer degradação de desempenho adicional. Para evitar a sobrecarga de
software a cada acesso em um bloco de dados, nós realizamos a leitura e escrita de nonces
em granularidade de blocos, mantendo um bloco de nonces em cache para cada arquivo
de dados, de forma que a requisição de nonces em sequência não impacte o desempenho
do SAC.

A geração de novos nonces ocorre em cada operação de escrita de dados. Nós
mantemos um número inteiro global denominado Contador Global, que é incrementado
em unidades de 256 (deixando 8 bits reservados para a divisão de um bloco de 4096
bytes em blocos menores de 128 bits/16 bytes) a cada requisição de escrita de dados.
Então, quando uma operação de escrita é realizada, o valor atual do Contador Global é
concatenado com um valor aleatório imprevisı́vel de 64 bits, criando o nonce utilizado
para realizar a encriptação do bloco de dados sendo escrito.



3.2. Fluxos de Execução

A Figura 4 apresenta os fluxos de execução do sistema proposto. As linhas vermelhas
(pontilhadas) estão relacionadas ao fluxo executado nas operações de escrita (encriptação
de dados), enquanto as linhas azuis (tracejadas) são executadas em operações de lei-
tura (decriptação de dados). Linhas pretas (cheias) podem ser executadas para ambas
operações. A comunicação entre a camada de sistemas de arquivos e a camada de E/S
de blocos é realizada de forma padronizada através de uma estrutura denominada BIO,
a qual contém informações como ponteiros para os blocos de dados e informações de
identificação para acesso ao dado após a operação do dispositivo de armazenamento ser
finalizada.
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Figura 4. Arquitetura do SAC proposto

Podemos considerar que a operação mais importante em um SAC de criptografia
antecipada é a criação de máscaras. O SAC precisa realizar a requisição de criação de
máscaras em um momento tal que seja muito provável que a máscara esteja pronta para
uso quando o dado estiver pronto em memória. Analisaremos, inicialmente, as operações
de escritas. Requisições que modificam dados que estão armazenados na Page Cache
devem ser ignorados pelas operações de criptografia, pois a memória deve permanecer
decriptada e acessos a ela não devem impor degradação de desempenho. No instante que
o SO decidir que é um momento oportuno de escrever páginas da Page Cache no disco, ou
quando uma aplicação realizar operações de escrita do tipo Direct I/O, o SAC já precisa
ter máscaras criptográficas prontas para aplicação. Isso significa que as requisições de
criação de máscaras devem ser feitas antes mesmo das requisições de escritas existirem.
Por isso, foi utilizada uma abordagem especulativa de criação de máscaras criptográficas
para escrita. Como novas escritas utilizarão novos nonces, é possı́vel criar um conjunto de



máscaras que serão consumidas a cada requisição feita. Dessa forma, é bastante provável
que exista uma máscara pronta quando uma requisição de escrita for executada.

Assim como em operações de escrita, operações de leitura que acessam dados que
estão presentes na Page Cache não devem gerar degradação de desempenho. Quando
uma página precisar ser buscada do dispositivo de armazenamento para a Page Cache, ou
a aplicação executar uma requisição de leitura do tipo direct I/O, o sistema de arquivos
cria uma estrutura BIO que contém os blocos que deverão ser lidos e o buffer que receberá
os dados, e a submete para a camada de E/S de blocos. Diferente das operações de escrita,
a decriptação de dados acontece após o término da operação do dispositivo de armazena-
mento. Dessa forma, o tempo da latência de hardware pode ser aproveitado para criar
as máscaras criptográficas. Quando a estrutura BIO está pronta, logo antes da submissão
para a camada de E/S de blocos, o SAC já tem acesso aos ı́ndices dos blocos envolvidos
na operação. Com esta informação, é possı́vel encontrar os nonces referentes aos blocos
no Arquivo Global ou no arquivo de nonces dedicado, e submeter a requisição de criação
de máscaras. Quando o dispositivo de armazenamento gerar uma interrupção, indicando
a finalização da operação de leitura, as máscaras, muito provavelmente, estarão prontas
para serem aplicadas sobre o dado.

3.3. Adaptação da WAESlib
A WAESlib é responsável por prover criptografia antecipada por meio de uma interface
simples. Visto que a WAESlib é uma biblioteca de espaço de usuário, se fez necessária
uma completa reimplementação para permitir o seu uso no contexto do núcleo do SO. A
criação de máscaras, que na implementação original era realizada com o suporte da GPU,
foi reimplementada utilizando AES-NI [Gueron 2010], um conjunto de instruções pre-
sente nos processadores atuais que proporciona baixa latência na execução de operações
criptográficas. A biblioteca Crypto API [Mueller and Vasut 2025], provida pelo núcleo do
Linux, foi utilizada para executar operações AES-NI de forma transparente. As operações
de XOR foram executadas utilizando AVX [Lomont 2011], um conjunto de instruções que
utilizam registradores vetoriais para lidar com dados em palavras grandes.

Tendo em vista que as requisições de criação de máscaras podem ser tratadas de
forma paralela, foi criado um conjunto de threads trabalhadoras, as quais permanecem
bloqueadas e acordam se existirem requisições de criação pendentes. As requisições são
enfileiradas em uma heap binária, permitindo a implementação de um mecanismo de
prioridades para as máscaras criadas.

3.4. Gerenciamento dos Contextos Criptográficos
Um contexto criptográfico é um conceito provido pela WAESlib, o qual define a estrutura
que representa uma operação criptográfica para um bloco. Cada contexto contém um
buffer de origem de dados, um buffer de destino, uma chave criptográfica, um nonce e
uma prioridade. Dessa forma, para a encriptação ou decriptação de um bloco de dados,
se faz necessário reservar um contexto criptográfico, preenchê-lo com as informações
necessárias e submetê-lo para WAESlib.

A WAESlib provê todos os contextos criptográficos individualmente, sendo
obrigação do SAC gerenciá-los. Como as máscaras criptográficas das operações de es-
crita são criadas em um contexto de execução diferente que as máscaras utilizadas em
operações de escrita, o gerenciamento delas é realizado de forma diferente.



Primeiramente, iremos analisar o gerenciamento dos contextos criptográficos para
as operações de leitura. Cada requisição de leitura é composta por um conjunto de blocos
(4096 bytes) sequenciais. Visto que cada bloco precisa de uma máscara, um conjunto de
contextos criptográficos é necessário para cara requisição. O cenário ideal seria reservar
um número de contextos criptográficos igual ao número de blocos sendo lidos, o que per-
mitiria que as threads trabalhadoras produzissem o maior número de máscaras possı́vel.
Contudo, um conjunto de processos realizando grandes requisições de leitura poderia re-
servar inúmeros contextos, desbalanceando a utilização entre o restante dos processos.
Por isso, nós definimos um número máximo de contextos reservados por requisição. Se
um processo está lendo mais blocos que o tamanho do conjunto de contextos, o SAC tra-
tará aquele conjunto como uma janela deslizante, de forma que quando uma máscara for
aplicada sobre um dado, o contexto desta máscara será usado para criar a próxima máscara
ainda não utilizada. O número máximo de contextos por requisições foi implementado
de forma variável, podendo ser modificado de acordo à carga de trabalho do sistema: um
tamanho maior de conjunto de contextos pode causar maior uso de memória, por outro
lado, um menor tamanho do conjunto de páginas pode evitar que threads trabalhadoras
produzam todas as máscaras necessárias durante o tempo da latência de hardware.

Para as requisições de escrita, foi definido um único conjunto de contextos de
tamanho fixo. Esse conjunto de contexto é tratado como uma janela deslizante que cria
máscaras criptográficas, utilizando o Contador Global. A criação de novas máscaras se
inicia no momento de montagem do SAC. Quando uma operação de escrita acontece,
o SAC pode aplicar uma máscara já computada, de forma que o nonce utilizado para a
criação da máscara será armazenado no Arquivo Global ou em um arquivo dedicado de
nonces. Após a utilização da máscara, o contexto que continha a máscara em questão
pode ser reutilizado para a criação de uma nova máscara que será utilizada em operações
de escritas futuras.

4. Resultados e Discussões

Nós executamos nossos testes utilizando a ferramenta de benchmark FIO [Axboe 2025],
que nos permite criar altas cargas de trabalho para sistemas de arquivos. Os testes fo-
ram executados na nossa versão modificadao do Linux versão 6.1.10, em uma máquina
equipada com um processador Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz, memória
RAM 16GB 2933MHz DDR5, e um dispositivo de armazenamento NVMe ADATA
SX6000LNP. As polı́ticas do Linux Governor, que gerencia a escala de frequência da
CPU, foram definidas para o nı́vel de performance. Todas as requisições do usuário foram
executadas através de operações Direct I/O, sempre gerando requisições para o sistema
de arquivos.

Visto que o EncFS++ não provê suporte a requisições de Direct I/O, nós decidi-
mos executar o sistema de arquivos BBFS [Pfeiffer 2018] como base de desempenho de
sistemas de arquivos em espaço de usuário. BBFS é um sistema de arquivos que executa
em espaço de usuário através da biblioteca FUSE (mesma biblioteca utilizada pelo EncFS
e EncFS++) que simplesmente repassa todas as requisições para o ext4. Como o EncFS++
realiza as operações de criptografia antes de repassar as requisições para o ext4, podemos
assumir que o BBFS é sempre mais rápido que o EncFS++.

Considerando que nosso objetivo é demonstrar a vantagem do nosso sistema,



ext4james, com relação aos SAC atuais, nós comparamos nossa execução com o SAC
fscrypt [Kernel Development Community 2025b], um SAC implementado no núcleo do
SO que também utiliza ext4 como base. Além disso, o fscrypt utiliza o modo de operação
XTS para aplicação da criptografia AES através da Crypto API. As semelhanças entre
o fscrypt e o ext4james facilitam as comparações e evidenciam as vantagens da arqui-
tetura proposta. Buscanto uma comparação justa, nós também executamos uma versão
do ext4james que utiliza o modo de operação CTR sem a criptografia antecipada (CTR
padrão), facilitando o entendimento das otimizações propostas. Nós também executamos
testes com o sistema de arquivos ext4 puro, sem qualquer operação criptográfica, a fim
de prover um parâmetro de comparação para os SACs, já que todos utilizam o ext4 como
base.
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Figura 5. Cargas de Trabalho Sequenciais e Aleatórias de Leitura e Escrita



A Figura 5a apresenta a vazão de leituras sequencias utilizando o dispositivo de
armazenamento NVMe. No eixo Y direito, é apresentado o ganho, em porcentagem, do
ext4james em comparação com o fscrypt. A Figura 5b apresenta a latência para as mesmas
operações. O primeiro ponto a ser considerado é que somente utilizar o modo de operação
CTR não gera melhoras no desempenho. O modo de operação XTS, que é otimizado para
utilização em armazenamento de dados, provê ganhos de desempenho quando comparado
com o modo de operação CTR puro. Contudo, ao ser utilizada a criptografia antecipada, o
ext4james melhora a vazão em até 28% e a latência em até 22%. Vale ressaltar, também,
que ainda que o BBFS não execute qualquer operação criptográfica, a latência apresentada
é maior que todos os SACs apresentados, demonstrando a degradação de desempenho im-
posta por uma execução em espaço de usuário. Ademais, a vazão e latência do ext4james
se aproximam do ext4 a medida que o tamanho das requisições aumentam, fazendo com
que a latência das operações criptográficas fiquem quase que totalmente escondidas. As
Figuras 5c e 5d apresentam o desempenho dos sistemas em uma carga de trabalho de
leituras aleatórias. O resultado mostram uma melhora no desempenho da vazão em até
9% e melhora na latência em até 8%. Visto que o dispositivo de armazenamento leva
mais tempo para realizar acessos aleatórios, a latência de software se torna menos repre-
sentativa, escondendo as otimizações das operações criptográficas. Nós decidimos não
apresentar os testes feitos para as requisições aleatórias de 256KB, pois para o sistema
de arquivos ext4 (e consequentemente para todos os outros SACs), sofreu com grandes
variações nos tempos de requisição, impossibilitando uma avaliação dos tempos de cripto-
grafia. Acreditamos que esse comportamento está relacionado ao hardware utilizado, mas
consideramos que uma análise mais aprofundada seja necessária em trabalhos futuros.

As Figuras 5e e 5f apresentam os resultados para as cargas de trabalho de escritas
sequenciais. Estes resultados mostram uma melhora na vazão de até 11% e na latência
de até 9%. Embora os ganhos de desempenho apresentados para as cargas de trabalho
de escrita sejam menores que as apresentadas para a leitura, nós mantivemos a latência
muito próxima da latência do ext4 , indicando que o gargalo não está nas operações crip-
tográficas, mas sim na latência de hardware do NVMe. As Figuras 5g e 5h apresentam
comportamentos similares encontrados nas escritas aleatórias, onde nossa proposta me-
lhora a vazão em até 13% e a latência em até 12%.

5. Conclusão

Este trabalho propôs um SAC que tira proveito das interfaces e informações presentes
em diferentes camadas do núcleo do SO para prover criptografia antecipada em ambi-
entes de baixa latência. Os resultados dos testes da nossa prova de conceito mostraram
uma melhora de desempenho para diferentes padrões de acesso quando comparado com
arquiteturas convencionais. Os resultados também contribuı́ram para a discussão sobre
comportamentos dos SACs. Além disso, nossa proposta tem potencial de prover melho-
res desempenhos a medida que os dispositivos de armazenamento evoluem, visto que a
latência introduzida pela camada de criptografia se torna cada vez mais relevante. Para
trabalhos futuros, nós planejamos a integração de soluções de gerenciamento de chaves
criptográficas para maior usabilidade. Ademais, planejamos a integração com soluções
de gerenciamento de metadados para controle de tolerância a falhas, buscando incorpo-
rar soluções já existentes na literatura [Liu et al. 2018], as quais controlam metadados de
aplicações que utilizam o modo de operação AES-CTR.
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