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Abstract. As storage devices evolve, the time spent by software to read or write
data becomes increasingly relevant. This characteristic is accentuated in the
context of cryptographic file systems, where the software layer is in charge of
performing cryptographic operations. Seeking to address this problem, this
work proposes a solution that hides the latency of cryptographic operations in
low-latency environments through ahead-of-time encryption, taking advantage
of low-level interfaces of the Operating System kernel.

Resumo. A medida que os dispositivos de armazenamento se desenvolvem, o
tempo gasto em software para ler ou escrever dados se torna cada vez mais
relevante. Essa caracteristica se acentua no contexto de sistemas de arquivos
criptogrdficos, onde a camada de software é encarregada de realizar operacoes
criptogrdficas. Buscando atacar este problema, o presente trabalho propée uma
solucdo que esconde a laténcia das operagoes criptogrdficas em ambientes de
baixa laténcia através da criptografia antecipada, tirando proveito de interfaces
de baixo nivel do niicleo do Sistema Operacional.

1. Introducao

Podemos dividir a laténcia de uma requisi¢ao de leitura ou escrita de dados a um dispo-
sitivo de armazenamento em duas etapas: laténcia de software e laténcia de hardware. A
laténcia de software é composta pelo tempo gasto pelo cédigo do Sistema Operacional
(SO), o qual realiza operacOes de gerenciamento e validagdes de seguranga. Apds o SO
repassar a requisi¢do para o dispositivo de armazenamento, a laténcia de hardware entra
em cena, de modo que o dispositivo demora um certo tempo para realizar a operagao
requisitada.

A utilizacdo de dispositivos de armazenamento mecanicos baseados em discos
magnéticos (HDDs) implica em uma laténcia de hardware ordens de magnitude maior
que a laténcia de software, de modo que a laténcia de hardware representa quase 100% da
laténcia total da requisicdo. Contudo, gracas a tecnologias de memorias flash presentes
em dispositivos como SSDs e NVMes, os dispositivos de armazenamento se desenvolve-
ram ao ponto que a laténcia de hardware pode representar somente 50% da laténcia total
[Zhong et al. 2022].

Sistemas de Arquivos Criptograficos (SACs) aumentam a laténcia de software em
requisicoes de leitura e escrita de dados através da execucao de operagdes de criptografia,
visando manter a privacidade e a confidencialidade dos dados nos dispositivos de armaze-
namento. Considerando a utilizacao de dispositivos como HDDs, o aumento da laténcia



imposto pelos SACs € irrelevante, tendo em vista que a laténcia de hardware é bastante
superior. Contudo, o contrdrio é observado quando dispositivos de baixa laténcia sdo uti-
lizados. Nesse sentido, a otimiza¢cdo de operagdes criptograficas tem alto potencial de
melhora do desempenho total dos sistemas.

Conceitualmente, as operacdes criptograficas em um SAC sdo executadas em
sequéncia com as operagdes usuais. Em uma requisicao de leitura, o SAC precisa esperar
que o dispositivo de armazenamento coloque o dado na memoria principal (RAM) antes
de iniciar o processo de decriptacdo. De maneira similar, em operagdes de escrita, o dis-
positivo de armazenamento precisa esperar que o SAC realize as operacdes de encriptacao
para que o dado possa ser armazenado. A necessidade da execugdo sequencial dos pas-
sos apresentados anteriormente decorre da forma com que os algoritmos criptograficos
funcionam. Contudo, o algoritmo Warped AES (WAES) [Zola and De Bona 2012] in-
troduziu um método para a execugdo do algoritmo criptografico Advanced Encryption
Standard (AES), usando o modo de operacdo Counter (CTR) de forma que a execucao
das operagdes criptograficas mais custosas € realizada de forma antecipada e paralela.
Essas duas caracteristicas do WAES se encaixam perfeitamente no contexto de SACs: o
processamento antecipado pode permitir que as operagdes criptograficas custosas sejam
realizadas antes que o dado esteja pronto na memoéria RAM; o processamento paralelo
pode permitir que requisi¢cdes que sejam feitas em um mesmo momento sejam tratadas
em diferentes nicleos de processamento, sem qualquer restri¢ao.

Essa ideia foi explorada pelo EncFS++ [Eduardo et al. 2019], um SAC que exe-
cuta em espacgo de usudrio e que foi capaz de melhorar a vazao e a laténcia quando com-
parado com o EncFS [Gough 2017], um SAC convencional, que também executa em
espaco de usudrio, € que serviu de base para a implementacdo do EncFS++. Contudo, a
utilizagdo de um sistema de arquivos de espago de usudrio implica em uma degradacio
da laténcia [Vangoor et al. 2017], tendo em vista que o sistema de arquivos de usudrio
precisa se comunicar com o driver responsavel pela interface com os mecanismos inter-
nos do nucleo do SO. Esse problema € acentuado caso um dispositivo de armazenamento
de baixa laténcia seja utilizado. Para exemplificar esse comportamento, a sobrecarga de
desempenho imposta pelo FUSE [Vangoor et al. 2017], uma biblioteca popular para a
implementagdo de sistemas de arquivos em espago de usudrio, pode chegar a 2%, quando
utilizado um dispositivo de armazenamento NVMe (demonstrado na Se¢do 4). Dessa ma-
neira, a sobrecarga de desempenho citada anteriormente nao € aplicavel em um contexto
de baixa laténcia proporcionada pelos dispositivos de armazenamentos atuais.

Embora exista um potencial na aplicac@o de criptografia antecipada em sistemas
de arquivos, como demonstrado pelo EncFS++, um design que suporte este tipo de sis-
tema carece de pesquisa. Por isso, uma solu¢cdo que combine de forma eficiente esses con-
ceitos dentro do nucleo do SO pode superar a fraqueza que implementacdes em espago
de usudrio possuem. Tendo em vista que um SAC que utiliza operagdes de criptografia
antecipada precisa lidar com fluxos de execugdes e metadados bastante singulares, nos
propomos uma nova arquitetura de SAC que tira proveito de interfaces internas do nucleo
do SO para executar operagdes criptograficas de forma otimizada. Para validar nossa pro-
posta, nés implementamos uma prova de conceito, através da adaptagao do sistema de
arquivos padrdo do Linux, o ext4, e outras camadas da pilha de armazenamento. O resul-
tado apresentou uma melhora significativa na laténcia e vazao de dados para operagdes de



leitura e escrita quando comparado com outros SACs atuais.

Em resumo, esse artigo apresenta as seguintes contribui¢des: (i) demonstragao do
impacto de SACs em um contexto de baixa laténcia de hardware; (i1) identificacdo de
componentes-chave para um SAC de criptografia antecipada; (iii) proposta de um novo
design de SACs de criptografia antecipada, ressaltando como os componentes-chave po-
dem ser integrados na pilha de protocolos de armazenamento do Linux; (iv) uma andlise
experimental da nossa proposta sobre diferentes cargas de trabalho.

2. Fundamentacao Teérica

Nessa secdo, nds apresentamos o contexto do subsistema de armazenamento do Linux
utilizado como base para a integracdo do nosso SAC. N6s apresentamos também nogdes
basicas sobre a criptografia antecipada.

2.1. Subsistema de Armazenamento do Linux

O gerenciamento de arquivos no Linux é composto por diferentes camadas de compo-
nentes. As chamadas de sistemas relacionadas a sistemas de arquivos sdo inicialmente
recebidas pelo Virtual File System (VES), que age como uma interface entre o espago
de usudrio e as camadas inferiores. Apds o recebimento e tratamento da chamada de
sistema, o VFS identifica qual o sistema de arquivos responsdvel pelo arquivo que esta
relacionado com a chamada de sistema, e realiza o repasse da requisi¢cdo. Sistemas de ar-
quivos compdem a camada de software responsavel pela politica de acesso e organizagao
dos dados do usudrio nos dispositivos de armazenamento. O sistema de arquivos 1€ e es-
creve dados no dispositivo de armazenamento em granularidade de blocos de 4096 bytes,
objetivando desempenho. Para realizar o acesso ao dispositivo de armazenamento, o sis-
tema de arquivos realiza uma requisi¢cao para uma interface genérica denominada Camada
de E/S de Blocos. Essa, por sua vez, recebe requisicdes em um formato padronizado e
realizada requisi¢Oes diretamente aos drivers dos dispositivos de armazenamento.

Existem algumas requisi¢cdes de leituras e escritas que podem nao precisar gerar
operagoes de E/S para o dispositivo de armazenamento gragas a Page Cache, um conjunto
de paginas na memoria RAM que mantém blocos (de 4096 bytes) do disco em cache.
Quando uma requisi¢ao de leitura € recebida e o bloco que contém o dado esté presente na
Page Cache, a operacdo de leitura se resume a uma copia de memoria da Page Cache para
o0 buffer do usuario, evitando a laténcia de hardware. Operacoes de escrita que modificam
dados presentes na Page Cache se resumem a uma copia de memoria do buffer do usuério
para a Page Cache, de forma que a persisténcia dos dados é agendada para um momento
mais oportuno pelo nicleo do SO. Embora a Page Cache seja utilizada por padrao no
Linux (em operacdes denominadas buffered 1/0), algumas aplicagcdes como Banco de
Dados podem preferir utilizar politicas de cache proprias, devido aos seus padrdes de
acesso exclusivos. Por isso, o Linux oferece um tipo de requisi¢do chamada direct /0,
que desativa a utilizacao da Page Cache e sempre gera requisi¢des para a camada de E/S
de blocos. Nesse caso, os dados sao movidos diretamente entre o buffer do usudrio e o
dispositivo de armazenamento.

2.2. Criptografia Antecipada

Apoés a padronizagdo do algoritmo Advanced Encryption Standard (AES) pelo NIST
[Dworkin et al. 2001], este se tornou a especificacdo de criptografia mais utilizada em



diversos cendrios. Por ser uma cifra de bloco, o AES realiza a criptografia em peque-
nas porc¢oes de dados de 128 bits. Tendo em vista que a maioria dos dados gerenciados
por aplicacOes sdo maiores que o tamanho do bloco processado pelo AES, modos de
operacao como o Cipher Block Chaining (CBC), XEX-based Tweaked-codebook mode
with Ciphertext Stealing (XTS) e Counter (CTR) surgiram, trazendo formas de aplicacao
do algoritmo AES em dados de tamanhos arbitrarios.

O modo de operacdo CTR, apresentado na Figura 1, trata um conjunto de dados
arbitrarios como um conjunto de blocos de 128 bits. A cifra de blocos € aplicada sobre um
contador (counter) de 128 bits, e o resultado é submetido a uma operacao de XOR com o
texto a ser encriptado/decriptado. O contador é normalmente concatenado com um Vetor
de Inicializacao (VI) aleatorio, produzindo um valor utilizado somente uma vez (nonce)
para uma mesma chave. O modo de operacdo CTR pode encriptar ou decriptar blocos de
dados diferentes de forma paralela. A seguranca desse modo de operacao € comprovada,
desde que seja seguida a forma de execucao [Lipmaa et al. 2000], fazendo com que seja
utilizada em diversos cendrios.

A carga de trabalho criptografica pesada é realizada na regido pontilhada da Figura
1, de forma que os pardmetros necessarios sao o nonce e a chave criptografica. O insight
da criptografia antecipada € que o dado a ser encriptado/decriptado ndo € necessario nessa
etapa. Este primeiro processamento gera uma mascara criptografica, que serd aplicada
ao dado por meio de uma operacdo XOR, gerando o dado encriptado ou decriptado. Esse
esquema, combinado com a possibilidade de criar mascaras criptograficas simultanea-
mente em diferentes nicleos de processamento, é explorado pelo WAES e implementado
em uma biblioteca denominada WAESIib [Zola and De Bona 2012].
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Figura 1. Modo de Operacao CTR

3. Arquitetura e Implementacao de um SAC Utilizando Criptografia
Antecipada

A Figura 2a apresenta a execu¢do de uma operacao de leitura em um SAC convencio-
nal. Mesmo que a CPU esteja livre para executar qualquer tipo de trabalho enquanto a
operagdo de E/S estd sendo tratada pelo dispositivo de armazenamento, todas as operacoes
devem ser executadas em sequéncia devido a necessidade de o dado estar em memoria
para ser processado. Por outro lado, através da aplicacdo da criptografia antecipada, a
dependéncia do dado se restringe a minima operacao do XOR, e o tempo de CPU, que
anteriormente era ocioso, pode ser utilizado para produzir méascaras criptogréficas. Essa
abordagem esconde a laténcia de operacdes de criptografias, como mostrado na Figura 2b.
Se, para as operacodes de leitura, € possivel criar mascaras enquanto as operagoes de E/S



estdo sendo executas, mdscaras para as operagdes de escrita podem ser criadas ainda mais
cedo. Isso € possivel porque novos blocos de dados utilizardo novos nonces, permitindo
a criacdo de um conjunto de mdscaras que servirao escritas futuras.
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Figura 2. Execugdo de um SAC convencional e do SAC proposto

O modo de operacdo CTR possui a desvantagem de necessitar do armazenamento
de um nonce para cada bloco de dados. Visto que o sistema de arquivos também lida
com dados em uma granularidade de blocos, € possivel armazenar um nonce para cada
bloco de dados de 4096 bytes, reservando os bits menos significativos para servirem como
um contador, incrementado a cada bloco de 128 bits. Dessa maneira, nds mantemos a
seguranca do modo de operagdo, além de manter a sobrecarga de espaco abaixo de 0.4%.
Além disso, cada nonce é composto de duas partes: um VI imprevisivel e um contador.
Para cada requisicdo de escrita (criacdo de um novo bloco de dados de 4096 bytes ou
modificacdo de um bloco existente), um VI imprevisivel de 64 bits € utilizado com um
contador de 64 bits, o qual é incrementado a cada bloco escrito.

Nossa proposta, denominada ext4james, busca manter a confidencialidade de da-
dos que estdao armazenados no dispositivo de armazenamento, de forma que confidenci-
alidade de dados em memoria estd fora do escopo deste trabalho. Nds assumimos que o
nidcleo do SO € seguro. Por consequéncia, confiamos na integridade da biblioteca crip-
togréfica provida pelo nicleo do Linux Crypfo API [Mueller and Vasut 2025], tendo em
vista que a utilizamos para realizar as operacdes criptograficas. Ainda que o gerencia-
mento de chaves criptograficas esteja fora do escopo deste trabalho, € possivel incorporar
diferentes solucdes na nossa proposta através da Crypto API.

Durante a fase de idealizacdo deste trabalho, foi possivel identificar quatro
desafios-chave que guiaram os esforcos de implementagdo: armazenamento de nonces,
fluxos de execucao, adaptacdo da WAESIib e gerenciamento de contextos criptograficos.

3.1. Armazenamento de Nonces

Visto que um nonce de 16 bytes € necessario para o processo de decriptagao de um bloco
de dados, o seu armazenamento deve ser realizado de modo a permitir que a sua leitura
e escrita ndo gere sobrecarga de desempenho. Por isso, foi adotado um esquema ins-
pirado no gerenciamento de volumes do ext4 [Kernel Development Community 2025a],
em conjunto com o conceito de n-nodes introduzido no EncFS++, além da utilizacdo de
interfaces providas pela camada de VFS e da camada de sistema de arquivos.

Os primeiros nonces de todos os arquivos de dados sdo armazenados em um tnico
arquivo, denominado Arguivo Global. Caso seja necessario, cada arquivo de dados tera



um arquivo de armazenamento de nonces dedicado para armazenar os nonces que nao
puderam ser armazenados no Arquivo Global. Visando tirar maxima vantagem dos limites
que o sistema de arquivos ext4 proporciona para os arquivos, nds organizamos o Arquivo
Global conforme apresentado na Figura 3.
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Figura 3. Gerenciamento do Arquivo Global

Os primeiros 256 nonces associados a um arquivo de dados, utilizados para de-
criptador os primeiros 1MB de dados, serdo armazenados em uma péagina (bloco de 4096
bytes) do Arquivo Global. Este arquivo, por sua vez, € dividido em grupos, objetivando a
facilidade no gerenciamento. Cada grupo possui 2'° + 1 pdginas, onde a primeira pagina
armazena o Group bitmap que controla as paginas ocupadas do grupo em questdo. To-
das as outras paginas de um grupo sdo destinadas a armazenar os nonces iniciais de um
arquivo de dados.

As primeiras quatro paginas do Arquivo Global compdem o Group-Full bitmap.
Este bitmap indica os grupos que todas as paginas estdo armazenando nonces de algum ar-
quivo, ou seja, ndo possuem mais espacos livres. A associacdo entre o Group-Full bitmap
e os group bitmaps compdem um bitmap de dois niveis. Essa abordagem hierarquizada
prové boa utiliza¢do do tamanho do Arquivo Global e acessos otimizados ao mesmo. Para
enderecar uma pagina dentro do Arquivo Global, um inteiro de 32 bits pode ser utilizado:
os primeiros 17 bits enderecam o grupo e os ultimos 15 bits enderecam a pédgina dentro
do grupo.

Para associar um indice do Arquivo Global (e o arquivo de nonces dedicado, caso
necessario) ao arquivo de dados, nds tiramos vantagem da camada de Sistema de Ar-
quivos. O EXT4 prové um mecanismo chamado Extended Attributes, nos permitindo
armazenar atributos customizaveis juntamente com os metadados do arquivo, sem a ne-
cessidade de utilizacdo de blocos extras de armazenamento.

Para realizar a criagdo, delegao, leitura e escrita do Arquivo Global e dos arquivos
dedicados de nonces, nés tiramos proveito das interfaces oferecidas pela camada do VFS,
fazendo com que as operacdes citadas anteriormente pulem” as operacgdes criptograficas
e ndo gerem qualquer degradacdo de desempenho adicional. Para evitar a sobrecarga de
software a cada acesso em um bloco de dados, nds realizamos a leitura e escrita de nonces
em granularidade de blocos, mantendo um bloco de nonces em cache para cada arquivo
de dados, de forma que a requisi¢ao de nonces em sequéncia nao impacte o desempenho
do SAC.

A geracdo de novos nonces ocorre em cada operagdo de escrita de dados. Nos
mantemos um numero inteiro global denominado Contador Global, que € incrementado
em unidades de 256 (deixando 8 bits reservados para a divisdo de um bloco de 4096
bytes em blocos menores de 128 bits/16 bytes) a cada requisicao de escrita de dados.
Entdo, quando uma operacdo de escrita € realizada, o valor atual do Contador Global é
concatenado com um valor aleatorio imprevisivel de 64 bits, criando o nonce utilizado
para realizar a encriptagcdo do bloco de dados sendo escrito.



3.2. Fluxos de Execucao

A Figura 4 apresenta os fluxos de execucdo do sistema proposto. As linhas vermelhas
(pontilhadas) estao relacionadas ao fluxo executado nas operagdes de escrita (encriptacao
de dados), enquanto as linhas azuis (tracejadas) sdo executadas em operacdes de lei-
tura (decriptacdo de dados). Linhas pretas (cheias) podem ser executadas para ambas
operagdes. A comunicacdo entre a camada de sistemas de arquivos e a camada de E/S
de blocos € realizada de forma padronizada através de uma estrutura denominada BIO,
a qual contém informagdes como ponteiros para os blocos de dados e informagdes de
identificac@o para acesso ao dado apds a operagdo do dispositivo de armazenamento ser
finalizada.
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Figura 4. Arquitetura do SAC proposto

Podemos considerar que a operagdo mais importante em um SAC de criptografia
antecipada € a criacdo de mascaras. O SAC precisa realizar a requisi¢do de criacdo de
mascaras em um momento tal que seja muito provavel que a méscara esteja pronta para
uso quando o dado estiver pronto em memoria. Analisaremos, inicialmente, as operagoes
de escritas. Requisi¢des que modificam dados que estdo armazenados na Page Cache
devem ser ignorados pelas operacdes de criptografia, pois a memoria deve permanecer
decriptada e acessos a ela ndo devem impor degradacdo de desempenho. No instante que
0 SO decidir que € um momento oportuno de escrever paginas da Page Cache no disco, ou
quando uma aplicacao realizar operacdes de escrita do tipo Direct I/0, o SAC ja precisa
ter mdscaras criptograficas prontas para aplicacdo. Isso significa que as requisicoes de
criacdo de méscaras devem ser feitas antes mesmo das requisi¢des de escritas existirem.
Por isso, foi utilizada uma abordagem especulativa de criagdo de méscaras criptograficas
para escrita. Como novas escritas utilizarao novos nonces, € possivel criar um conjunto de



madscaras que serao consumidas a cada requisicao feita. Dessa forma, € bastante provavel
que exista uma mdscara pronta quando uma requisi¢@o de escrita for executada.

Assim como em operagdes de escrita, operagdes de leitura que acessam dados que
estdo presentes na Page Cache nao devem gerar degradacdo de desempenho. Quando
uma pédgina precisar ser buscada do dispositivo de armazenamento para a Page Cache, ou
a aplicacdo executar uma requisicao de leitura do tipo direct I/0O, o sistema de arquivos
cria uma estrutura B/O que contém os blocos que deverao ser lidos e o buffer que recebera
os dados, e a submete para a camada de E/S de blocos. Diferente das operagdes de escrita,
a decriptacdo de dados acontece apds o término da operacdo do dispositivo de armazena-
mento. Dessa forma, o tempo da laténcia de hardware pode ser aproveitado para criar
as mascaras criptograficas. Quando a estrutura BIO esta pronta, logo antes da submissao
para a camada de E/S de blocos, o SAC ja tem acesso aos indices dos blocos envolvidos
na operacdo. Com esta informagdo, é possivel encontrar os nonces referentes aos blocos
no Arquivo Global ou no arquivo de nonces dedicado, e submeter a requisicao de criacao
de méscaras. Quando o dispositivo de armazenamento gerar uma interrupc¢ao, indicando
a finalizacdo da operacdo de leitura, as mdscaras, muito provavelmente, estardo prontas
para serem aplicadas sobre o dado.

3.3. Adaptacao da WAESIib

A WAESIib ¢ responsavel por prover criptografia antecipada por meio de uma interface
simples. Visto que a WAESIib € uma biblioteca de espaco de usudrio, se fez necessaria
uma completa reimplementacdo para permitir o seu uso no contexto do nucleo do SO. A
criacdo de méscaras, que na implementacgdo original era realizada com o suporte da GPU,
foi reimplementada utilizando AES-NI [Gueron 2010], um conjunto de instrugdes pre-
sente nos processadores atuais que proporciona baixa laténcia na execugdo de operacoes
criptograficas. A biblioteca Crypto API [Mueller and Vasut 2025], provida pelo nucleo do
Linux, foi utilizada para executar operacoes AES-NI de forma transparente. As operagdes
de XOR foram executadas utilizando AVX [Lomont 2011], um conjunto de instru¢des que
utilizam registradores vetoriais para lidar com dados em palavras grandes.

Tendo em vista que as requisi¢des de criagdo de mascaras podem ser tratadas de
forma paralela, foi criado um conjunto de threads trabalhadoras, as quais permanecem
bloqueadas e acordam se existirem requisicoes de criacdo pendentes. As requisi¢des sao
enfileiradas em uma heap bindria, permitindo a implementacdo de um mecanismo de
prioridades para as mascaras criadas.

3.4. Gerenciamento dos Contextos Criptograficos

Um contexto criptografico € um conceito provido pela WAESIib, o qual define a estrutura
que representa uma operacao criptografica para um bloco. Cada contexto contém um
buffer de origem de dados, um buffer de destino, uma chave criptografica, um nonce e
uma prioridade. Dessa forma, para a encriptagdo ou decriptacdo de um bloco de dados,
se faz necessdrio reservar um contexto criptografico, preenché-lo com as informacoes
necessarias e submeté-lo para WAESIib.

A WAESIib prové todos os contextos criptograficos individualmente, sendo
obrigacdo do SAC gerencid-los. Como as mascaras criptograficas das operacdes de es-
crita sdo criadas em um contexto de execucdo diferente que as mascaras utilizadas em
operagOes de escrita, o gerenciamento delas € realizado de forma diferente.



Primeiramente, iremos analisar o gerenciamento dos contextos criptograficos para
as operagoes de leitura. Cada requisi¢ao de leitura é composta por um conjunto de blocos
(4096 bytes) sequenciais. Visto que cada bloco precisa de uma mascara, um conjunto de
contextos criptograficos é necessario para cara requisicao. O cendrio ideal seria reservar
um nimero de contextos criptograficos igual ao ndmero de blocos sendo lidos, o que per-
mitiria que as threads trabalhadoras produzissem o maior nimero de mascaras possivel.
Contudo, um conjunto de processos realizando grandes requisi¢des de leitura poderia re-
servar inumeros contextos, desbalanceando a utilizacao entre o restante dos processos.
Por isso, nés definimos um nimero méaximo de contextos reservados por requisi¢do. Se
um processo estd lendo mais blocos que o tamanho do conjunto de contextos, o SAC tra-
tard aquele conjunto como uma janela deslizante, de forma que quando uma mascara for
aplicada sobre um dado, o contexto desta mascara serd usado para criar a proxima mascara
ainda ndo utilizada. O nimero méaximo de contextos por requisi¢des foi implementado
de forma varidvel, podendo ser modificado de acordo a carga de trabalho do sistema: um
tamanho maior de conjunto de contextos pode causar maior uso de memoria, por outro
lado, um menor tamanho do conjunto de paginas pode evitar que threads trabalhadoras
produzam todas as mascaras necessdarias durante o tempo da laténcia de hardware.

Para as requisi¢des de escrita, foi definido um unico conjunto de contextos de
tamanho fixo. Esse conjunto de contexto € tratado como uma janela deslizante que cria
mascaras criptograficas, utilizando o Contador Global. A criacdo de novas mascaras se
inicia no momento de montagem do SAC. Quando uma operacio de escrita acontece,
0 SAC pode aplicar uma madscara ja computada, de forma que o nonce utilizado para a
criacdo da mdscara serd armazenado no Arquivo Global ou em um arquivo dedicado de
nonces. ApOs a utilizacdo da mascara, o contexto que continha a mascara em questdao
pode ser reutilizado para a criagdo de uma nova mdscara que sera utilizada em operagdes
de escritas futuras.

4. Resultados e Discussoes

Nos executamos nossos testes utilizando a ferramenta de benchmark FIO [Axboe 2025],
que nos permite criar altas cargas de trabalho para sistemas de arquivos. Os testes fo-
ram executados na nossa versao modificadao do Linux versdo 6.1.10, em uma méquina
equipada com um processador Intel(R) Core(TM) 17-10700 CPU @ 2.90GHz, memoria
RAM 16GB 2933MHz DDRS5, e um dispositivo de armazenamento NVMe ADATA
SX6000LNP. As politicas do Linux Governor, que gerencia a escala de frequéncia da
CPU, foram definidas para o nivel de performance. Todas as requisi¢des do usudrio foram
executadas através de operacdes Direct 1/0, sempre gerando requisi¢des para o sistema
de arquivos.

Visto que o EncFS++ ndo prové suporte a requisi¢des de Direct 1/0, nés decidi-
mos executar o sistema de arquivos BBEFS [Pfeiffer 2018] como base de desempenho de
sistemas de arquivos em espago de usudrio. BBFS € um sistema de arquivos que executa
em espaco de usudrio através da biblioteca FUSE (mesma biblioteca utilizada pelo EncFS
e EncFS++) que simplesmente repassa todas as requisicdes para o ext4. Como o EncFS++
realiza as operacgoes de criptografia antes de repassar as requisi¢des para o ext4, podemos
assumir que o BBFS € sempre mais rapido que o EncFS++.

Considerando que nosso objetivo é demonstrar a vantagem do nosso sistema,



extdjames, com relacdo aos SAC atuais, nds comparamos nossa execucao com o SAC
fscrypt [Kernel Development Community 2025b], um SAC implementado no nucleo do
SO que também utiliza ext4 como base. Além disso, o fscrypt utiliza o modo de operagao
XTS para aplicacao da criptografia AES através da Crypto API. As semelhangas entre
o fscrypt e o extdjames facilitam as comparacdes e evidenciam as vantagens da arqui-
tetura proposta. Buscanto uma comparagdo justa, nds também executamos uma versao
do ext4james que utiliza 0 modo de operagdo CTR sem a criptografia antecipada (CTR
padrdo), facilitando o entendimento das otimizac¢des propostas. Nos também executamos
testes com o sistema de arquivos ext4 puro, sem qualquer operagdo criptogréfica, a fim
de prover um parametro de comparagdo para os SACs, ja que todos utilizam o ext4 como
base.
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Figura 5. Cargas de Trabalho Sequenciais e Aleatdrias de Leitura e Escrita



A Figura 5a apresenta a vazdo de leituras sequencias utilizando o dispositivo de
armazenamento NVMe. No eixo Y direito, é apresentado o ganho, em porcentagem, do
ext4james em comparagdo com o fscrypt. A Figura 5b apresenta a laténcia para as mesmas
operagdes. O primeiro ponto a ser considerado € que somente utilizar o modo de operacdo
CTR nao gera melhoras no desempenho. O modo de operacao XTS, que € otimizado para
utilizagdo em armazenamento de dados, prové ganhos de desempenho quando comparado
com o modo de operagao CTR puro. Contudo, ao ser utilizada a criptografia antecipada, o
ext4james melhora a vazao em até 28% e a laténcia em até 22%. Vale ressaltar, também,
que ainda que o BBFS nao execute qualquer operacgao criptografica, a laténcia apresentada
¢ maior que todos os SACs apresentados, demonstrando a degradagdo de desempenho im-
posta por uma execucao em espaco de usudrio. Ademais, a vazao e laténcia do ext4james
se aproximam do ext4 a medida que o tamanho das requisi¢des aumentam, fazendo com
que a laténcia das operagdes criptograficas fiquem quase que totalmente escondidas. As
Figuras 5c e 5d apresentam o desempenho dos sistemas em uma carga de trabalho de
leituras aleatdrias. O resultado mostram uma melhora no desempenho da vazdo em até
9% e melhora na laténcia em até 8%. Visto que o dispositivo de armazenamento leva
mais tempo para realizar acessos aleatorios, a laténcia de software se torna menos repre-
sentativa, escondendo as otimizacdes das operacdes criptograficas. Nés decidimos ndo
apresentar os testes feitos para as requisi¢oes aleatdrias de 256KB, pois para o sistema
de arquivos ext4 (e consequentemente para todos os outros SACs), sofreu com grandes
variagdes nos tempos de requisi¢do, impossibilitando uma avaliacao dos tempos de cripto-
grafia. Acreditamos que esse comportamento estd relacionado ao hardware utilizado, mas
consideramos que uma andlise mais aprofundada seja necesséria em trabalhos futuros.

As Figuras 5e e 5f apresentam os resultados para as cargas de trabalho de escritas
sequenciais. Estes resultados mostram uma melhora na vazao de até 11% e na laténcia
de até 9%. Embora os ganhos de desempenho apresentados para as cargas de trabalho
de escrita sejam menores que as apresentadas para a leitura, nés mantivemos a laténcia
muito proxima da laténcia do ext4 , indicando que o gargalo ndo estd nas operacgdes crip-
tograficas, mas sim na laténcia de hardware do NVMe. As Figuras 5g e 5h apresentam
comportamentos similares encontrados nas escritas aleatdrias, onde nossa proposta me-
lhora a vazao em até 13% e a laténcia em até 12%.

5. Conclusao

Este trabalho propos um SAC que tira proveito das interfaces e informagdes presentes
em diferentes camadas do nicleo do SO para prover criptografia antecipada em ambi-
entes de baixa laténcia. Os resultados dos testes da nossa prova de conceito mostraram
uma melhora de desempenho para diferentes padroes de acesso quando comparado com
arquiteturas convencionais. Os resultados também contribuiram para a discussdo sobre
comportamentos dos SACs. Além disso, nossa proposta tem potencial de prover melho-
res desempenhos a medida que os dispositivos de armazenamento evoluem, visto que a
laténcia introduzida pela camada de criptografia se torna cada vez mais relevante. Para
trabalhos futuros, nds planejamos a integracao de solugdes de gerenciamento de chaves
criptograficas para maior usabilidade. Ademais, planejamos a integracdo com solucdes
de gerenciamento de metadados para controle de tolerancia a falhas, buscando incorpo-
rar solucOes ja existentes na literatura [Liu et al. 2018], as quais controlam metadados de
aplicagcdes que utilizam o modo de operacao AES-CTR.
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