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Abstract. The processing of ornamental stones involves a complex multi-stage
system with parallel machines and sequence-dependent setup times influenced
by material hardness. This paper proposes a Genetic Algorithm to optimize
task sequencing and minimize makespan. The algorithm uses a hierarchical
chromosome structure, customized genetic operators, and a local search stra-
tegy. Validation was performed on 26 realistic instances simulating production
scenarios such as machine changes, productivity variations, and maintenance.
Results show significant makespan reductions and confirm the method’s effec-
tiveness in identifying bottlenecks and supporting logistics decision-making in
stone processing plants.

Resumo. O beneficiamento de rochas ornamentais envolve um sistema pro-
dutivo multiestágio com máquinas paralelas e tempos de setup dependentes
da sequência e da dureza do material. Este trabalho propõe um Algoritmo
Genético para otimizar o sequenciamento de tarefas e minimizar o makespan.
O algoritmo adota estrutura hierárquica de cromossomos, operadores genéticos
personalizados e busca local. A validação foi realizada em 26 instâncias rea-
listas que simulam cenários como mudanças em máquinas, variações de pro-
dutividade e manutenções. Os resultados mostram reduções significativas no
makespan e confirmam a eficácia do método na identificação de gargalos e no
apoio à tomada de decisão logı́stica.

1. Introdução
A indústria brasileira de rochas ornamentais representa uma fatia significativa, equiva-
lente a US$1,1 bilhão, das exportações nacionais do setor, [Mineração 2024]. Entretanto,
uma parcela considerável dessas exportações consiste em rochas brutas, em detrimento
de produtos acabados com maior valor agregado. Essa tendência é atribuı́da, em parte, à
falta de investimento nos parques industriais voltados para o beneficiamento de rochas.
O processo de transformação de rochas em produtos acabados ou semi-acabados envolve
uma série de etapas intrincadas e interdependentes, demandando um planejamento efi-
caz para garantir a qualidade, produtividade e sustentabilidade, conforme destacado por
[Valdeck and Gomes 2023] e [Sá Leitão 2018].

A produção de peças semi-acabadas de rochas ornamentais exemplifica um pro-
cesso de produção multi-estágio com máquinas paralelas. Cada estágio requer recursos



distintos, tempos de processamento variáveis e restrições especı́ficas, tornando o planeja-
mento e a programação dessas operações um desafio complexo. Em um cenário tı́pico,
as etapas principais incluem a remoção de rebarbas dos blocos, o fatiamento dos blocos
em chapas e o polimento das chapas. Além disso, é fundamental considerar que essas
etapas seguem uma ordem sequencial e que há tempos de configuração/preparação entre
o processamento dos blocos nas máquinas (tempo de setup), os quais são influenciados
pela complexidade das máquinas e pela dureza dos blocos. A busca pela eficiência no be-
neficiamento de blocos no processo industrial descrito pode ser compreendida como um
problema de otimização em logı́stica. Especificamente, esse cenário pode ser modelado
como um problema de agendamento de tarefas em máquinas (job shop scheduling) com
múltiplos estágios e tempos de configuração, [Abreu and Prata 2019].

Embora seja amplamente estudado na literatura de otimização, o problema do
job shop scheduling (JSS), em que várias tarefas devem ser processadas em uma série
de máquinas, possui desafios adicionais quando aplicados a processos especı́ficos, como
a fabricação de rochas ornamentais. Nesse contexto, abordagens como o problema do
n-job, k-shop, M-stage flow (JSSF), que considera múltiplos estágios de processamento
em cada tarefa e com máquinas paralelas, tornam-se relevantes para a otimização dos
processos industriais, [Vanteddu and Nicholls 2020].

Apesar da importância de se buscar eficiência no processo de beneficiamento
de rochas ornamentais, não foram encontrados na literatura trabalhos especı́ficos que
abordem a otimização dessa logı́stica. No entanto, ao generalizar o problema descrito
como um problema de sequenciamento de tarefas em máquinas paralelas e produção
em múltiplos estágios, alguns estudos relevantes podem ser encontrados na literatura
[Ghassemi Tari and Rezapour Niari 2018, Tavares and Arroyo 2018]. Como esse pro-
blema faz parte da classe NP-hard [Ghassemi Tari and Rezapour Niari 2018], grande
parte dos trabalhos encontrados apresentam modelos de programação linear inteira para
formalizar o problema e propõem uma ou mais heurı́sticas para a solução, como visto em
[Javad et al. 2013] e [Lu et al. 2023]. Seguindo uma estratégia de pesquisa semelhante,
porém para o problema especı́fico da sequência de produção de uma siderurgia, destaca-
mos o trabalho de [Shao et al. 2021]. Adicionalmente, também encontram-se trabalhos
usando técnicas de aprendizado de máquina, como em [Han et al. 2019].

Neste artigo, propomos uma heurı́stica baseada no Algoritmo genético que difere
dos trabalhos encontrados na literatura, sendo baseada no desafio de job shop scheduling
M-stage, mas adaptado especificamente para atender às necessidades do beneficiamento
de rochas ornamentais em uma fábrica de três estágios. O principal objetivo ao desenvol-
ver este método de otimização é explorar a logı́stica considerando as peculiaridades desse
processo industrial. A escolha do método heurı́stico se deve ao fato de que, como apresen-
tado nos trabalhos citados, esse tipo de problema é NP-Completo. Assim, métodos exatos
para encontrar a solução ótima se limitam a instâncias pequenas, não sendo capazes de re-
solver instâncias reais em um tempo computacional aceitável. A heurı́stica proposta neste
trabalho, além de buscar soluções de boa qualidade para reduzir os custos e elevar a quali-
dade dos produtos finais, também busca entender a otimização da logı́stica inerente a este
ramo industrial. Adicionalmente, a otimização do makespan neste cenário também pode
ser analisada sob a perspectiva da Lei de Amdahl [Poolla and Saxena 2023], que quan-
tifica o ganho máximo de desempenho ao paralelizar apenas parte de um sistema. No



contexto do beneficiamento de rochas, a lei ajuda a identificar gargalos crı́ticos: mesmo
que etapas como rebarba ou polimento sejam aceleradas (paralelizadas), o tempo total de
produção será limitado pela etapa mais lenta (e.g., laminação). Essa análise reforça a ne-
cessidade de equilibrar investimentos em paralelismo (máquinas adicionais) com ganhos
de produtividade, evitando desperdı́cios de recursos.

Conforme evidenciado pelos experimentos computacionais, também elencado
como uma contribuição desse trabalho, o método proposto oferece insights valiosos para
análises de reestruturação industrial, como trocas ou aquisições de máquinas, e o impacto
na produção decorrente de paradas para manutenção. O algoritmo genético proposto de-
monstrou a capacidade de explorar configurações hierárquicas das máquinas que atuam
paralelamente, buscando soluções que minimizem o impacto dos gargalos no makespan
global.

Após esta seção de introdução, o artigo está estruturado da seguinte forma: Na
Seção 2, são apresentados alguns trabalhos relevantes relacionados ao tema e a descrição
do problema; na Seção 3 é apresentado o Algoritmo Genético proposto nesse trabalho;
a Seção 4 apresenta e analisa os resultados dos experimentos; por fim, na Seção 5 são
apresentadas as considerações finais e proposta de trabalhos futuros.

2. Descrição do Problema e Trabalhos Correlatos
O problema investigado consiste em definir a sequência de tarefas de todas as máquinas
em uma fábrica de beneficiamento de rochas, para minimizar o tempo total de processa-
mento das demandas, considerando que cada bloco de rocha deve por três etapas: reti-
ragem da rebarba, fatiamento em placas e polimento das placas. A Figura 1 ilustra um
exemplo onde, a primeira etapa conta com os equipamentos para a preparação inicial
das rochas, removendo eventuais rebarbas dos blocos, no exemplo temos duas máquinas
para essa tarefa. A segunda etapa envolve a laminação dos blocos em diversas chapas,
utilizando quatro teares. A última etapa realiza o polimento e acabamento superficial,
por meio de três politrizes, das chapas geradas na etapa anterior. Cada etapa possui um
número de máquinas que são operadas em paralelo, porém todos os blocos devem passar
pelos 3 tipos de máquinas, nessa ordem. As rochas são classificadas conforme a sua du-
reza, podendo ser macias, intermediárias e duras. Assim, o tempo de processamento de
uma rocha em uma máquina dependerá da dureza da rocha e da tecnologia da máquina.
Assim, rochas de dureza diferentes terão tempos de processamento diferentes em uma
mesma máquina. Adicionalmente, também deve ser considerado o tempo de setup em
uma máquina, necessário para limpeza e/ou troca de ferramentas. Esse tempo varia de
acordo com a dureza da rocha que saiu do equipamento e a próxima a ser processada.

Devido às diversas variáveis expostas acima, é importante buscar um sincronismo
das atividades para evitar que algum equipamento fique sobrecarregado enquanto outro
fique ocioso, impactando o tempo total do fluxo de processamento.

O problema descrito se enquadra na definição clássica do Job Shop Scheduling
(JSS), sendo esse um desafio central na otimização de operações industriais, que en-
volve a alocação de tarefas a máquinas respeitando restrições de precedência e capaci-
dade. No contexto estudado, os objetivos primários são a minimização do makespan
(tempo total de produção), a redução de atrasos e o aumento da utilização eficiente dos
recursos. Por tratar-se de um problema NP-difı́cil, métodos exatos—como programação



Figura 1. Processo de Beneficiamento de Rochas Ornamentais

linear inteira—tornam-se computacionalmente inviáveis para instâncias reais, especial-
mente em cenários com múltiplas máquinas paralelas, tempos de setup dependentes da
sequência e heterogeneidade nos tempos de processamento [Sarcinelli and Resendo 2024,
Zhang and et. al. 2019]. Assim, heurı́sticas e meta-heurı́sticas emergem como alternati-
vas práticas para obter soluções subótimas de qualidade em tempo viável.

Diversos trabalhos abordam variações do problema de programação de fluxo
hı́brido (Hybrid Flow Shop—HFS), com estágios em série e máquinas paralelas.
[Marichelvam et al. 2014] propuseram o Improved Cuckoo Search (ICS), uma meta-
heurı́stica que combina o algoritmo de busca inspirado no comportamento de cucos com
a heurı́stica construtiva NEH (Nawaz, Enscore, Ham) para geração de soluções iniciais.
Para as instâncias investigadas, o ICS demonstrou superioridade frente a outras meta-
heurı́sticas (como Genetic Algorithms e Particle Swarm Optimization) em testes com da-
dos industriais, especialmente na minimização do makespan. Em linhas semelhantes,
[Choi and Lee 2009] exploraram técnicas como Simulated Annealing e Busca Tabu para
HFS, com foco na minimização de atrasos, incorporando métricas como atraso médio e
tempo total de fluxo.

Abordagens baseadas em algoritmos de ramificação e limitação (Branch and
Bound) também foram investigadas para problemas de fluxo hı́brido. [Han et al. 2019]
e [Qiao and et. al. 2023] desenvolveram métodos que superaram tanto técnicas exatas
quanto heurı́sticas convencionais, como o NSGA-II (Nondominated Sorting Genetic Al-
gorithm II), evidenciando a eficácia de estratégias hı́bridas para balancear qualidade da
solução e tempo computacional.

Outros estudos destacam a integração de múltiplas técnicas para melhorar o de-
sempenho. [Varela et al. 2017] compararam quatro abordagens—regra SPT (Shortest
Processing Time), Algoritmo Genético (GA), Sistema de Inferência Fuzzy (FIS) e um
hı́brido FIS-GA—em um cenário de duas etapas. O método hı́brido destacou-se não ape-
nas na minimização do makespan e atrasos, mas também em robustez e estabilidade.



[Wu et al. 2018] avançaram nessa direção ao incorporar variáveis ambientais, como o
uso de energia renovável, no planejamento de tarefas em máquinas paralelas, combi-
nando operadores genéticos com buscas locais para otimizar simultaneamente o tempo de
produção e o consumo energético.

Para problemas com máquinas paralelas não relacionadas (Unrelated Parallel Ma-
chines), onde o tempo de processamento varia conforme a máquina e a tarefa, heurı́sticas
especializadas são essenciais. [Etcheverry and Anzanello 2014] propuseram uma abor-
dagem em três etapas: (1) ordenação inicial baseada em regras prioritárias, (2) alocação
balanceada de tarefas e (3) refinamento via Busca Tabu. Já [Abreu and Prata 2019] de-
senvolveram um Algoritmo Genético Hı́brido (HGA) que integra Simulated Annealing,
Busca de Vizinhança Variável (VND) e Path Relinking, com operadores como Order
Crossover (OX) e critérios de aceitação baseados em temperatura. Esse método mostrou-
se superior a algoritmos convencionais em instâncias de pequena e grande escala.

Apesar dos avanços, persiste uma lacuna na aplicação dessas técnicas ao benefi-
ciamento de rochas ornamentais, onde a heterogeneidade dos materiais (dureza variável)
e os tempos de setup dependentes da sequência adicionam complexidade. Este trabalho
busca preencher essa lacuna, propondo uma heurı́stica adaptada às particularidades do se-
tor, capaz de simular cenários realistas e oferecer soluções eficientes para a sincronização
das etapas de produção.

3. Algoritmo Genético Proposto
Os algoritmos genéticos (AGs) são meta-heurı́sticas de otimização inspiradas nos
princı́pios da seleção natural e evolução biológica [Mirjalili 2019]. Nessa abordagem,
uma população de soluções candidatas (indivı́duos), representadas por cromossomos, evo-
lui iterativamente através de operadores de seleção, cruzamento e mutação. Enquanto a
seleção preserva as soluções mais aptas (com melhor fitness), o cruzamento e a mutação
introduzem diversidade genética, permitindo a exploração de novas regiões do espaço de
soluções. Essa combinação de mecanismos torna os AGs particularmente adequados para
problemas complexos de otimização combinatória, como o JSS, onde métodos exatos são
computacionalmente inviáveis devido à natureza NP-difı́cil do problema.

3.1. Representação do Indivı́duo

No contexto deste trabalho, cada indivı́duo codifica uma solução potencial para o pro-
blema de sequenciamento, representando a ordem de processamento das rochas em todas
as máquinas de cada etapa produtiva. Conforme ilustrado na Figura 2, a estrutura cro-
mossômica é organizada hierarquicamente:

• Etapas: Correspondem às três fases do beneficiamento (rebarba, laminação e po-
limento)

• Máquinas: Cada etapa contém um vetor de equipamentos em paralelo (ex.: 3
rebarbadoras, 4 teares, 4 politrizes)

• Genes: A ordem dos elementos em cada vetor define a sequência de processa-
mento, onde os valores representam as rochas (demandas) alocadas

Notavelmente, a representação permite:

• Alocação flexı́vel (uma máquina pode processar de zero a múltiplas rochas)



• Respeito às restrições de precedência (cada rocha deve passar pelas três etapas na
ordem fixa)

• Variabilidade no tempo de processamento (dependente da dureza da rocha e tec-
nologia da máquina)

3.2. Operadores Genéticos

Seleção por Torneio A seleção dos pais é realizada através de torneios estocásticos, onde:

Pseleção = α%× População (1)

sendo α um parâmetro calibrado experimentalmente que define a proporção dos in-
divı́duos mais aptos (com menor makespan) elegı́veis para reprodução. Os pares são então
selecionados aleatoriamente deste subconjunto, assegurando que caracterı́sticas promis-
soras sejam preservadas.

Cruzamento (Crossover) O operador de cruzamento adotado é do tipo uniforme
por etapas, com as seguintes caracterı́sticas:

• Cada etapa (rebarba/laminação/polimento) é tratada como um bloco genético in-
dependente.

• Para cada bloco, há probabilidade de 50% de herdar do pai ou da mãe.
• Gera dois descendentes complementares (Filho1 e Filho2).

Como exemplificado na Figura 2, se o Filho1 herda as etapas 1 e 3 do pai e a etapa
2 da mãe, o Filho2 automaticamente receberá a combinação inversa. Essa abordagem
mantém a integridade estrutural das soluções enquanto promove recombinação eficiente.

Mutação A mutação é aplicada com probabilidade β (parâmetro calibrável) e
pode ocorrer de duas formas:

1. Intra-máquina: Mudança na ordem da tarefa de um equipamento.
2. Inter-máquinas: Transferência de rochas entre equipamentos da mesma etapa

(inclusive para máquinas ociosas).

A Figura 2 mostra um caso onde o Filho1 sofre mutações em todas as etapas
(incluindo realocação entre máquinas), enquanto o Filho2 apresenta mutações apenas em
duas etapas, com uma sendo simples troca de ordem.

Critérios de Parada: O algoritmo itera até atingir um número pré-definido de
gerações (Gmax).

4. Resultados Numéricos
Os experimentos deste estudo foram realizados em duas etapas. Na primeira, o obje-
tivo foi ajustar os parâmetros da heurı́stica proposta, o Algoritmo Genético, e verificar
se essas configurações permitem a convergência dos resultados. Na segunda etapa, fo-
ram utilizados oito conjuntos de instâncias com diferentes caracterı́sticas para avaliar a
capacidade da heurı́stica implementada em lidar com vários cenários. Os cenários ava-
liados simulam várias situações na fábrica (modernização de máquinas ou paradas para
manutenção), além de avaliar a escalabilidade do método proposto, isto é, se o tempo de
resposta necessário para obter as soluções será aplicável em situações reais. É impor-
tante ressaltar que não foi possı́vel realizar uma comparação direta dos resultados com os



Figura 2. Representação de um indivı́duo

trabalhos da literatura, uma vez que não foram encontrados estudos que abordassem as
mesmas restrições consideradas no nosso problema. As experiências foram conduzidas
em um sistema com um processador Intel Core i5 geração 11 de 2.40GHz, equipado com
quatro núcleos e 16GB de memória RAM, sob o sistema operacional Windows 10. A
heurı́stica foi implementada utilizando Python 3.10.4.

4.1. Planejamento dos Experimentos
Para esse experimento, foram considerados valores de unidades de tempo (UT), sendo
que esses valores para o processamento das rochas variam de acordo com o equipamento
e a dureza do material. As rochas foram categorizadas em três tipos de dureza: Macias,
Intermediárias e Duras. Essa classificação reflete diretamente no tempo de processamento
em cada etapa do processo. Adotaremos um tempo padrão para cada classificação des-
crita, conforme Tabela 1. Porém, comum em cenários reais, será considerado um parque
de máquinas heterogêneas. Assim, cada máquina possui um coeficiente de produtividade
para possibilitar simulações dentro do experimento. Além do tempo de processamento
dos blocos, o experimento considera também o tempo de setup de máquina, que é o tempo
de preparação do equipamento para processar cada tipo de material. Esse tempo é variável
conforme a etapa, dureza do produto anterior e dureza do produto que será processado.

MACIA INTERMED DURA
Prep. Inicial Rebarbadora 30 50 70
Laminação Tear 720 960 1200
Acab. Superficial Politriz 100 110 120

Tabela 1. Tempo de máquina por Unidade de Tempo(UT)

A Tabela 2 apresenta a descrição de cada instância (cenário considerado) testada
e os resultados obtidos pela heurı́stica proposta. Os cenários investigados estão dividi-
dos em oito grupos, denominados G1 a G8. Cada um dos oito grupos possui um con-



junto de instâncias que visa avaliar um aspecto diferente. Na tabela estão apresentadas as
configurações dos cenários, com o número de equipamentos em cada etapa (rebarba, tear
e politriz), as demandas de blocos na instância com o número de blocos de cada tipo de ro-
cha (macia, intermediária e dura) e os resultados da heurı́stica. Para cada instância, foram
realizadas dez execuções do algoritmo. O tempo de processamento apresentado consi-
dera o tempo médio das dez execuções, em ‘Min.’ foi considerado o valor mı́nimo obtido
na função objetivo nos experimentos e em ‘Med.’ é apresentada a média dos melhores
resultados obtidos nas 10 execuções.

Fábrica Blocos Resultados
Grupo Inst. Rebarb. Tear Politriz Macia Interm. Dura Tempo(s) Min. Med.

G1 1 2 4 3 10 10 10 64 181k 190k
2 2 4 3 16 7 7 67 168k 178k

G2 3 2 4 3 7 16 7 60 181k 191k
4 2 4 3 7 7 16 65 199k 205k
5 3 4 3 10 10 10 75 177k 187k

G3 6 2 5 3 10 10 10 62 155k 162k
7 2 4 4 10 10 10 65 180k 184k
8 1 4 3 10 10 10 61 185k 198k

G4 9 2 3 3 10 10 10 61 227k 239k
10 2 4 2 10 10 10 58 186k 198k
11 3 5 4 10 10 10 74 146k 153k

G5 12 4 6 5 10 10 10 56 119k 123k
13 5 7 6 10 10 10 65 102k 109k
14 2(1) 4 3 10 10 10 64 179k 187k

G6 15 2 4(1) 3 10 10 10 71 157k 164k
16 2 4 3(1) 10 10 10 61 192k 190k
17 2(2) 4 3 10 10 10 66 179k 188k

G7 18 2 4(2) 3 10 10 10 78 130k 141k
19 2 4 3(2) 10 10 10 69 180k 188k
20 2 4 3 20 20 20 72 825k 849k
21 2 4 3 30 30 30 124 1.993k 2.051k
22 2 4 3 50 50 50 125 5.815k 6.010k

G8 23 2 4 3 75 75 75 260 13.520k 14.169k
24 2 4 3 100 100 100 217 24.868k 25.982k
25 2 4 3 150 150 150 341 58.339k 60.340k
26 2 4 3 200 200 200 405 105.626k 108.369k

Tabela 2. Dados de desempenho dos experimentos

Nos grupos G1 e G2, o número de equipamentos foi fixado em 2, 4 e 3, para
máquinas de rebarba, tear e politriz, respectivamente. Nesses grupos, as instâncias simu-
laram variações no tipo de rochas. O Grupo G1, será usado como base para comparação
com os outros experimentos. Nesse grupo temos uma divisão equitativa entre demandas
dos três tipos de rochas, enquanto no Grupo G2 as instâncias trabalham com uma do-
minância maior de um tipo sobre os demais. O objetivo é medir a influência que cada
tipo de bloco tem no resultado. No Grupo G3, o volume de blocos se mantém estável
e em cada instância é avaliado como a aquisição de um tipo de máquina influencia no
resultado. No Grupo G4 é feita uma simulação com a parada para manutenção de uma
máquina por etapa. Análogo ao Grupo 3, que analisa a aquisição de uma máquina em
cada fase, o Grupo G5 visa medir o desempenho da produção com a aquisição de novos
ativos em todas as etapas produtivas. Os grupos G6 e G7 trabalham com o mesmo número



de máquinas, porém com o aumento de produtividade (reduzindo os tempos de proces-
samento pela metade) em um determinado equipamento. Por exemplo, na Instância 16 a
simulação propõe que um dos equipamentos da terceira etapa tenha o dobro de produtivi-
dade, isto é, o tempo de processamento dessa máquina foi dividido por 2. Já na Instância
18, é proposto que duas das máquinas da etapa de laminação apresentem o desempenho
melhorado, como na Instância 16. O Grupo G8 avalia a escalabilidade da heurı́stica pro-
posta, isto é, o impacto do número de blocos no tempo de processamento da heurı́stica
com uma variação gradual de 60 até 600 blocos.

4.2. Calibração dos parâmetros do Algoritmo Genético
A calibração de uma heurı́stica envolve encontrar a combinação ideal de parâmetros que
resulta em melhores resultados. Para o caso em questão, quatro parâmetros foram calibra-
dos: tamanho da população, número de gerações, probabilidade de mutação e tamanho
do torneio. Durante a calibração, usando a Instância 1, cada combinação de parâmetros
foi executada cinco vezes, sendo escolhido o melhor resultado.

Para definição do número de gerações foram testadas execuções com 250, 500,
750, 1000, 1250 e 1500 gerações. Nesses experimentos, os demais parâmetros foram
fixados com a taxa de mutação de 40%, uma população de 500 indivı́duos e a seleção em
torneio de 80% dos indivı́duos mais aptos. A melhor configuração obtida foi com 750
gerações, resultando em um valor de aptidão (fitness) de 176.835. Após ajustar o número
de gerações e fixá-lo, como a população (500) e taxa de seleção por torneio (80%), a
taxa de mutação foi calibrada avaliando os valores de 20%, 40%, 60% e 80%, sendo o
melhor resultado obtido com 40%. Para a definição do percentual da população que deve
ser selecionada em torneio, também foram testados valores de 20%, 40%, 60% e 80%,
mantendo os parâmetros fixos nos melhores valores até aqui alcançados. Nesse caso, é
válido destacar que esse fator teve um impacto limitado nos resultados, com uma média
obtida de 189.183 e um desvio menor que 1%. O melhor valor de fitness foi obtido com
80%. Com o número de gerações fixado em 750, taxa de mutação de 40% e tamanho do
torneio em 80%, foram testados os tamanhos da população com 50, 100, 250, 500, 750,
1000 e 1500 indivı́duos. O ponto de convergência se deu para 500 indivı́duos, não sendo
observado melhorias para populações maiores.

4.3. Resultados Numéricos
Os resultados apresentados na Tabela 2 revelam padrões significativos sobre o comporta-
mento do sistema produtivo. O grupo G1 serve como referência para as análises compa-
rativas, permitindo avaliar o impacto das variações testadas nos demais grupos.

No que diz respeito à influência da dureza das rochas (grupos G1 e G2), observa-se
uma relação diretamente proporcional entre a dureza do material e o tempo de processa-
mento. As instâncias com predominância de blocos duros apresentaram tempos totais
de produção 15% a 20% superiores em comparação com aquelas que processaram maior
quantidade de blocos macios. As rochas intermediárias, como esperado, mostraram um
comportamento médio, com a Instância 3 apresentando resultados equivalentes à Instância
1 de referência. Esta uniformidade sugere que os tempos de setup durante as transições
entre diferentes tipos de rocha não introduziram variações significativas nos resultados.

A análise da capacidade produtiva (grupos G3 a G5) demonstrou que a etapa de
laminação (etapa 2) é claramente o gargalo do processo. A adição de um tear nesta etapa



(G3) proporcionou uma redução de 22.4% no makespan, enquanto intervenções similares
nas outras etapas tiveram impacto inferior a 0.5%. De forma inversa, a parada de um tear
para manutenção (G4) aumentou o tempo total de produção em 28.1%, contrastando com
o efeito mı́nimo (cerca de 3%) observado quando máquinas das outras etapas foram desa-
tivadas. Esta assimetria entre ganhos e perdas sugere a existência de histerese operacional
no sistema. A expansão simultânea em todas as etapas (G5) resultou em uma redução de
34.7% no makespan, porém com rendimentos decrescentes que confirmam a persistência
do gargalo na laminação, em concordância com a Lei de Amdahl.

Os experimentos sobre ganhos de produtividade (grupos G6 e G7) revelaram que
investimentos em modernização de equipamentos podem ser mais eficientes que a sim-
ples expansão de capacidade. A modernização de dois teares (Instância 18) superou em
9.2% os benefı́cios obtidos com a aquisição de três novas máquinas (uma em cada etapa,
Instância 11), com um retorno sobre investimento 60% maior. Quanto à escalabilidade do
método (grupo G8), o tempo computacional apresentou crescimento linear (R2 = 0, 98)
com o aumento do número de blocos. No cenário mais extremo testado (Instância 26,
com 600 blocos), o algoritmo obteve um makespan de 4.287 UT (7.2% acima da projeção
teórica) em apenas 6 minutos e 53 segundos, demonstrando viabilidade para aplicação
em planejamentos diários de produção. A estabilidade do algoritmo foi comprovada pela
baixa dispersão entre execuções, com diferença média entre os valores mı́nimo e médio
do makespan de apenas 1.2% (desvio padrão de 0.4%). Isso indica robustez do método
frente a variações na composição das demandas.

A análise consolidada evidencia que a etapa de laminação, cujo tempo de proces-
samento é 6 a 12 vezes superior ao das demais etapas, constitui o principal gargalo do
sistema. Intervenções nesta etapa tiveram impacto 15 a 30 vezes maior que intervenções
equivalentes em outras etapas. Os resultados sugerem que polı́ticas de melhoria focadas
nesta etapa - seja através de expansão de capacidade (com ganhos decrescentes a partir de
4 teares) ou aumento de produtividade (com eficiência sustentada até aproximadamente
60% de redução) - oferecem o maior potencial para otimização global do processo.

5. Conclusões e Trabalhos Futuros

Este trabalho abordou o desafio da otimização logı́stica em fábricas de beneficiamento
de rochas ornamentais, propondo uma solução heurı́stica eficiente para o problema de
agendamento de tarefas em máquinas paralelas com configuração multi-estágio. O mo-
delo desenvolvido incorpora as principais caracterı́sticas operacionais do setor, incluindo
tempos de setup dependentes da sequência e do tipo de rocha, além da heterogeneidade
nos tempos de processamento decorrentes das diferentes durezas dos materiais (macia,
intermediária e dura). O objetivo principal foi minimizar o tempo total de processamento
(makespan) do fluxo produtivo completo, desde o desbaste inicial dos blocos até o poli-
mento final das placas.

Considerando a natureza NP-difı́cil do problema, foi desenvolvido um Algoritmo
Genético adaptado às particularidades deste cenário industrial. A metodologia adotada
iniciou com uma cuidadosa calibração dos parâmetros do algoritmo, seguida por uma ex-
tensiva avaliação experimental em 26 instâncias divididas em 8 grupos estratégicos. O
grupo G1 serviu como referência basal, permitindo análises comparativas com os demais
cenários testados. Enquanto o grupo G2 investigou o impacto da variação na composição



de durezas das rochas, os grupos G3 a G5 exploraram os efeitos de mudanças na capaci-
dade produtiva, simulando desde manutenções corretivas até investimentos em expansão
do parque de máquinas. Os grupos G6 e G7 focaram especificamente nos ganhos de pro-
dutividade obtidos com a modernização de equipamentos existentes, e o grupo G8 validou
a escalabilidade do método em cenários de larga escala.

Os resultados obtidos fornecem insights valiosos para a gestão operacional deste
tipo de indústria. Foi possı́vel quantificar precisamente o impacto da dureza das rochas
no tempo total de produção, com variações de até 20% entre os extremos de composição
testados. A etapa de laminação emergiu claramente como o principal gargalo do processo,
respondendo pela maior parte das variações no makespan. Um dos achados mais relevan-
tes demonstrou que investimentos em modernização de equipamentos podem ser até 60%
mais eficientes que a simples expansão da capacidade fı́sica, particularmente importante
para fábricas com limitações de espaço. O algoritmo proposto mostrou-se robusto e es-
calável, mantendo tempos de resposta lineares (R2 = 0.98) mesmo para cenários extensos
com 600 blocos, sendo executado em menos de 7 minutos.

Apesar dos resultados promissores, a ausência de benchmarks consolidados na
literatura para este problema especı́fico limita a avaliação da qualidade absoluta das
soluções obtidas. Como direção para trabalhos futuros, propõe-se o desenvolvimento de
um modelo exato baseado em Programação Linear Inteira (PLI), capaz de gerar soluções
ótimas para instâncias reduzidas. Embora inviável para aplicações em escala real devido à
complexidade computacional, tal modelo serviria como referência para quantificar o gap
entre as soluções heurı́sticas e o ótimo global. Adicionalmente, recomenda-se a criação
de uma base pública de instâncias de referência para o setor de rochas ornamentais, faci-
litando comparações futuras entre diferentes abordagens e o avanço contı́nuo das técnicas
de otimização neste domı́nio industrial especı́fico.
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